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Lyapunov exponents in disordered chaotic systems: Avoided crossing and level statistics
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The behavior of the Lyapunov exponents~LEs! of a disordered system consisting of mutually coupled
chaotic maps with different parameters is studied. The LEs are demonstrated to exhibit avoided crossing and
level repulsion, qualitatively similar to the behavior of energy levels in quantum chaos. Recent results for the
coupling dependence of the LEs of two coupled chaotic systems are used to explain the phenomenon and to
derive an approximate expression for the distribution functions of LE spacings. The depletion of the level
spacing distribution is shown to be exponentially strong at small values. The results are interpreted in terms of
the random matrix theory.
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The Lyapunov exponent~LE!, which measures the insta
bility of dynamical trajectories, is a standard tool in the stu
ies of chaotic systems@1#. The positiveness of the maxima
LE serves as the criterion for chaos; the inverse LE i
characteristic time of mixing and of correlation decay. For
N-dimensional chaotic system,N LEs corresponding to dif-
ferent directions in the phase space can be defined.

There are different methods to calculate LEs numerica
if the equations of motion are known; in experiments one
use special techniques of data analysis to estimate at
some largest LEs from the observed data@2#. Several impor-
tant physical properties can be expressed in terms of L
e.g., the Lyapunov dimension@3# and the synchronization
threshold @4,5#. Whereas in chaos the largest LE is mo
important, in studies of disordered lattices~the Anderson lo-
calization problem@6–8#! the smallest, in absolute value, L
of the transfer matrix is important; it gives the inverse loc
ization length.

LEs can be considered as some kind of eigenvalues c
acterizing chaotic motion. Thus, it appears to be natura
perceive an analogy to other eigenproblems in physics
particular, to eigenfrequencies of linear oscillator syste
and to energy eigenvalues of quantum systems. This ana
has been shown to work for spatially extended chaotic s
tems. There the LEs can in the thermodynamic limit be
scribed with the spectral density@9,10#, similar to the usual
description of eigenmodes of lattices. In this paper we
the analogy with energy levels to investigate the proper
of LEs in disordered chaotic systems. It has to be emp
sized, however, that while energy levels and eigenfrequ
cies are directly observable quantities, LEs are defined
theoretical concept and can at most be measured in an
rect way.

A typical model here is a lattice or an ensemble
coupled chaotic systems whose parameters are randomly
tributed. Such systems, as has been shown in@11,12#, can
demonstrate rather unusual properties, e.g., disor
enhanced synchronization. Here we concentrate on the p
erties of LEs in disordered systems. The main observatio
that these properties resemble those of energy levels in
ordered quantum systems, but are quantitatively different
particular, we demonstrate that the LEs exhibit ‘‘avoid
crossing’’ when drawn in dependence on a parameter.
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second result concerns the statistics of ‘‘level spacings’’:
demonstrate that the distribution of the differences betw
the LEs has an exponentially strong depletion at small
ferences, in contrast to the Wigner~and similar! distributions
in the random matrix theory. We give a theoretical explan
tion for this depletion, based on the properties of LEs of t
coupled chaotic systems demonstrating extremely str
‘‘level repulsion’’ @13,14#. In order to demonstrate qualita
tive universality of the effects of avoided crossing and le
repulsion, we consider below different types of system
Hamiltonian and dissipative ones, and different couplin
global- and nearest-neighbor-type.

A. Numerical evidence for avoided crossing and level
repulsion

Our basic model is a system ofN coupled standard map
that are, in general, different;

I i~ t11!5I i~ t !1Ki sinu i~ t !1
«

N$ j % (
$ j }

sin@u i~ t !2u j~ t !#,

~1a!

u i~ t11!5u i~ t !1I i~ t11!, i 51, . . . ,N. ~1b!

Here I i(t) and u i(t) are the 2p-periodic state variables a
site i and timet, and« serves as the coupling parameter. T
coupling can be global if the sum on the right-hand side
over all elements in the ensemble, in this caseN$ j %5N
21. In the case of local coupling in a one-dimensional p
riodic lattice, the sum is over nearest neighbors andN$ j %
52. The parametersKi of all systems are, in general, differ
ent, their random distribution defines disorder in the mod
Below we take all parametersKi in the region of strong
chaos,Ki.7. The standard map used in Eq.~1! is the basic
model of Hamiltonian chaos@15#, it describes, in particular
a periodically kicked rotator.

The LEs are calculated with standard methods@7# as the
logarithms of the eigenvalues of the limiting matrix

V5 lim
T→`

@PT
†PT#1/2T, PT5)

t51

T

J~ t !, ~2!
©2001 The American Physical Society13-1
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where J(t) is the Jacobian of the mapping~1!. Since the
standard map is symplectic, it has~for chaotic trajectories!
one positive and one negative LE of the same absolute v
that depends on the parameterK.

To demonstrate the avoided crossing of LEs, the map
Eq. ~1! are now considered as depending on a common
rametertP@0,1# as

Ki5Ki~t!5Ki~0!1t@Ki~1!2Ki~0!#.

The parametersKi(0) andKi(1) are random numbers un
formly distributed in the interval 7<Ki<10. We present in
Fig. 1 the results of numerical calculations of the LEs o
particular realization of a system@Eq. ~1!# of six nearest-
neighbor-coupled standard maps. In Fig. 1~a!, the six posi-
tive LEsl i ( i 51, . . . ,6) areshown as functions of the com
mon parametert for the case«50, i.e., without coupling.
As can be expected for independent LEs, many crossings
observed. This is no longer the case when a small nea
neighbor coupling («51028) is introduced, as can be see
from Fig. 1~b!; the crossings are avoided, a behavior tha
well known for energy levels of quantum-mechanical s
tems. Note, however, a quantitative difference: Since the
are calculated from the eigenvalues of a product of rand
matrices, the avoided crossing is already observed for
tremely small~in absolute value! off-diagonal elements o
the single matrices.

A theoretical explanation for this strong repulsion of LE
will be discussed below, here we want to describe furt
numerical experiments showing that the picture above
quite universal. A qualitatively similar pattern of avoide
crossings has also been obtained for a lattice of stan
maps with global coupling. We have observed it also
dissipative systems, e.g., for globally coupled skew Berno
maps with parametersaiP(0,1) defining the location of the
discontinuity. Another dissipative system we studied is
Ikeda map for a complex amplitudeE,

E~ t11!5a1bE~ t !expS ic2
id

11uE~ t !u2
D ,

which describes a chaotic regime of light propagation in
ring cavity with a nonlinear element@16#. Coupling such

FIG. 1. Lyapunov exponentsl i ( i 51, . . . ,6) vsparametert
~see text! for six standard maps with parametersKi(t). ~a! Without
coupling crossings of LEs are possible.~b! Crossings are avoided
when nearest-neighbor coupling with coupling parameter«51028

is applied. The dashed lines correspond to avoided crossings of
two coupled maps, see text.
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systems can be achieved by overlapping the light fields~see,
e.g., the experiments@17#!. Below we describe the LEs in
coupled Ikeda maps, where the disorder is due to differ
values for the parametersdi of the different maps, while the
other parameters were kept constant (a51, b50.9, c
50.4). The Ikeda map has one positive and one nega
LE; we follow only the statistics of positive LEs.

Now we demonstrate that the consequence of the LE
pulsion is a particular statistics of LE spacings in disorde
systems of type~1!. We performed the numerical experime
with different kinds of coupled maps as follows. First, w
fixed the system sizeN and the expectation value«0 of the
coupling constant. Then, for each randomly chosen se
parameters~we used uniformly distributed parametersKi
P@7,10# for standard maps,aiP@0.2,0.3# for skew Bernoulli
maps, anddiP@7.5,8.5# for Ikeda maps! and coupling con-
stant « ~exponential distribution with expectation value«0
51025 for standard and skew Bernoulli maps,«051024 for
Ikeda maps!, we determinedN LEs, which correspond toN
21 spacingsD i5l i2l i 11. These spacings are consider
asN21 samples of a random distribution~for the standard
and Ikeda maps only the positive LEs are considered!. Per-
forming calculations for many sets of parametersKi ~or ai ,
or di) and«, we obtain a representative statistics for the L
spacings, see Fig. 2 where the distribution functionFD(z)
5Prob(D,z) is shown.

Examining Fig. 2 we see that the distribution of spacin
of coupled maps has a very strong depletion for smallz, not
only compared to the Poisson distributionF;z ~which oc-
curs in the absence of coupling!, but also compared to the
Wigner distribution for the Gaussian orthogonal ensemble
random matrices for whichF;z2 @18#.

To resolve this strong depletion, we present the data
Fig. 3 in scaled coordinates. The scaling is motivated by
theory~see below! and it shows that the distribution functio
is exponentially small for small spacings:FD(z);exp
(2z21). Note also that although the distribution functions a
qualitatively similar for different systems, they do not co
lapse on a single curve. This is an indication for nonuniv
sality of the LE spacing distribution.

ly

FIG. 2. Numerically estimated cumulative distribution functio
FD̃(z) for the normalized~in such a way that the mean spacing is!

LE spacingsD̃ of different systems~Standard and Bernoulli map
with average coupling parameter«051025, Ikeda maps with«0

51024) with different types of coupling~uncpd., uncoupled; NN,
nearest neighbor coupling; glob., global coupling!.
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B. Relation to other random matrix problems

As is clear from Eq.~2!, the problem we consider can b
formulated as a problem of the random matrix theory~with
the usual modeling of chaotic fluctuations with rando
ones!. Namely, we are interested in the eigenvalues of in
nite products of random matrices, having bothquenched
~time-independent! disorder anddynamic ~time-dependent!
noise. The quenched randomness comes from the dist
tion of the parameters in the disordered ensemble, e.g., f
the distribution of parametersKi of the standard maps. Th
dynamic noise comes from fluctuations due to chaotic e
lution ~e.g., in the standard map the local Jacobian depe
on the chaotic variablesI andu).

The two limiting cases, when our problem can be redu
to standard ones, are clear. In the case when the quen
disorder is absent~or if we consider just one realization o
parameters of the interacting chaotic systems!, we have a
standard problem of the calculation of LEs for a product
random matrices@7#. Another well-known situation appear
if the dynamic noise is absent, in this case all the matrice
the product are equal and the problem reduces to calcula
of the eigenvalues of this matrix. This problem has be
widely discussed, recently mainly in the context of quant
chaos~see, e.g.,@18#!. For chaotic systems the fluctuation
can vanish only in exceptional cases, e.g., for the skew B
noulli map this happens for the symmetric situationai51/2
only; for the standard map in the chaotic state and for
Ikeda map the fluctuations are always finite. Another limiti
case is that of uncoupled systems, here we have a produ
diagonal matrices with both quenched and dynamic rand
ness. The LEs simply follow the statistics of the quench
disorder.

C. Theory

Similar to the case of quantum-mechanical systems~see,
e.g., @19#!, the essential qualitative and quantitative char
teristics of LE repulsion can be acquired from the consid
ation of two coupled dissipative chaotic systems. We de
onstrate this with the following numerical experiment: w
calculate the LEs for two coupled maps of Fig. 1, switchi
off the interaction with other systems. The results for tw

FIG. 3. Cumulative distribution functions of Fig. 2 in scale
coordinates, cf. Eq.~6!.
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crossings are shown as dashed lines in Fig. 1. One can
that the behavior of the LEs remains at least qualitatively
same.

Daido @20# has first shown that two coupled identical ch
otic systems experience a singular repulsion of the LEsD
;u ln «u21, whereD is the difference between the LEs and«
is the coupling parameter. Using the Langevin approach~i.e.,
modeling the chaotic fluctuations by a random force w
appropriate mean and variance!, we have recently derived
@13# ~cf. @14#! a general expression forD that is also valid for
nonidentical systems,

D~ l ,«,s!5«
K12 l~«/s2!1K11 l~«/s2!

Kl~«/s2!
, ~3!

where s2 is the variance of the finite-time LE,l
5udLu/2s2 is proportional to the difference of the ‘‘bare’
~i.e., without coupling! LEs L1,2 of the interacting systems
andK are the modified Bessel functions@21#. Although Eq.
~3! was obtained in the continuous-time Langevin appro
mation where the fluctuations of the LEs are modeled w
Gaussian white noise~thus discarding all temporal correla
tions!, it very well describes the coupled standard maps~Fig.
4! as well as other chaotic systems@13,14#. Because expres
sion ~3! is rather inconvenient for further analysis, we use
hyperbolic approximation for it,

D2'~dL!21S 2s2

ln~«/s2!
D 2

. ~4!

The first term on the right-hand side corresponds to the li
dL→`, while the second term is based on an expansion
Eq. ~3! for dL50 and small«/s2 @13,14#. From Fig. 4 one
can see that this approximation is rather good.

Using Eq.~4! we can show that in a disordered system t
probability to observe tiny values ofD is exponentially
small. It is clear that only small values ofdL and« can give

FIG. 4. Dependence of the LE differenceD on the difference
dL between the ‘‘bare’’ LEs for two coupled standard maps w
coupling parameter«51025. Comparison of numerical result
~circles! with the analytical expression@Eq. ~3!, solid line, with
numerically calculated values fors2# and the hyperbolic approxi-
mation@Eq. ~4!, dashed line#. The dotted line depicts the LE differ
ence without coupling,D5udLu.
3-3
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small spacingsD. If we assume thatdL and« are indepen-
dent random numbers with constant densities near zero,
the distribution functionFD(z)5Prob(D,z) can be ap-
proximated by the integral over the areaA(z)5$(dL,«):
(dL)21@2s2/ln(«/s2)#2,z2% leading to

FD~z!;E E
A(z)

d~dL!d«

52s2E
2z

z

expS 2
2s2

Az22~dL!2D d~dL!. ~5!

Estimating this integral for 2s2@z gives the exponentia
depletion at small spacings

FD~z!;z3/2expS 2
2s2

z D . ~6!

The numerically calculated cumulative distribution functio
are in conformity with this result, as can be seen from Fig

The theoretical analysis above is, strictly speaking,
stricted to the case of two interacting chaotic systems. N
ertheless, we expect that it works at least qualitatively
large ensembles as well, because we have seen that th
repulsion is a ‘‘local’’ event, where only the two chaot
subsystems whose LEs are close to each other are invo
~cf. Fig. 1!.

Concluding, we have characterized numerically and th
retically the statistics of the Lyapunov exponents in dis
dered chaotic systems. Its main feature is the expone
depletion of the distribution function at small spacings b
tween the exponents. This follows directly from the effect
coupling sensitivity of chaos, according to which the rep
sion between the LEs is extremely strong. This repuls
,

J
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manifests itself also in the avoided crossing of LEs, cons
ered as dependent on a parameter. We have demonst
that the effects of level repulsion and avoided crossing
observed for chaotic systems of different natures, Ham
tonian and dissipative ones. Also the coupling can be of
ferent forms, in particular, qualitatively similar patterns
avoided LE crossings and of the LE spacing distributi
function are observed for global and nearest-neighbor c
plings in a lattice.

Our framework of consideration was motivated by t
analogy to the problem of level statistics in quantum cha
and complex quantum systems@22,19,18#. Qualitatively, the
behavior of LEs is quite similar to that of energy levels
quantum chaos. The main difference is that for disorde
chaotic dynamical systems we have two sources of rand
ness, one quenched due to the disorder and one dynamic
to the chaotic fluctuations. Thus, in contrast to the probl
of the distribution of eigenvalues of random matrices,
have the problem of the distribution of eigenvalues of t
product of random matrices. There are two limiting cas
when these two problems are equivalent. One is the c
without coupling, where the LEs remain independent rand
numbers and obey the Poissonian distribution. Another is
case of vanishing fluctuations of the local LEs~no dynamic
randomness!, here we have one random matrix whose eige
values give the LEs.

We thank P. Grassberger, F. Haake, W. Just, A. Po
and R. Livi for valuable discussions and the Institute f
Scientific Interchange in Torino, Italy, for hospitality durin
the workshop ‘‘Complexity and Chaos 1999’’ where part
this work was carried out. We further acknowledge financ
support from the Deutsche Forschungsgemeinschaft~SFB
555! and NATO ~Grant No. 973054!.
,

i-

,

@1# E. Ott, Chaos in Dynamical Systems~Cambridge University
Press, Cambridge, England, 1992!.

@2# A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano
Physica D16, 285 ~1985!.

@3# P. Fredrickson, J. L. Kaplan, E. D. Yorke, and J. A. Yorke,
Diff. Eqns. 49, 185 ~1983!.

@4# H. Fujisaka and T. Yamada, Prog. Theor. Phys.69, 32 ~1983!.
@5# A. S. Pikovsky, Z. Phys. B: Condens. Matter55, 149 ~1984!.
@6# I. M. Lifshitz, S. A. Gredeskul, and L. A. Pastur,Introduction

to the Theory of Disordered Systems~Wiley, New York,
1988!.

@7# A. Crisanti, G. Paladin, and A. Vulpiani,Products of Random
Matrices in Statistical Physics~Springer-Verlag, Berlin, 1993!.

@8# T. Kottos, F. M. Izrailev, and A. Politi, Physica D131, 155
~1999!.

@9# R. Livi, A. Politi, and S. Ruffo, J. Phys. A19, 2033~1986!.
@10# S. Lepri, A. Politi, and A. Torcini, J. Stat. Phys.82, 1429

~1996!.
@11# Y. Braiman, J. F. Lindner, and W. L. Ditto, Nature~London!

378, 465 ~1995!.
.

@12# Y. Braiman, W. L. Ditto, K. Wiesenfeld, and M. L. Spano
Phys. Lett. A206, 54 ~1995!.

@13# R. Zillmer, V. Ahlers, and A. Pikovsky, Phys. Rev. E61, 332
~2000!.

@14# F. Cecconi and A. Politi, J. Phys. A32, 7603~1999!.
@15# A. J. Lichtenberg and M. A. Lieberman,Regular and Chaotic

Dynamics~Springer, New York, 1992!.
@16# K. Ikeda, Opt. Commun.30, 257 ~1979!.
@17# R. Roy and K. S. Thornburg, Phys. Rev. Lett.72, 2009~1994!.
@18# T. Guhr, A. Müller-Groeling, and H. A. Weidenmu¨ller, Phys.

Rep.299, 189 ~1998!.
@19# L. E. Reichl,The Transition to Chaos in Conservative Class

cal Systems: Quantum Manifestations~Springer, New York,
1992!.

@20# H. Daido, Prog. Theor. Phys.72, 853 ~1984!.
@21# Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun~Department of Commerce
Washington, DC, 1964!.

@22# F. Haake,Quantum Signatures of Chaos~Springer-Verlag,
Berlin, 1990!.
3-4


