hops (Fig. 5) are due to feedback into the laser from the
interferometer and the collimating lens. As the laser warms
up the current levels at which mode hops occur changes
and an adjustment of the dc current can help to move them
to a point that allows for a better measurement of the
frequency (Figs. 6 and 7).

The best method for accuracy and resolution to date, is
one that uses a detailed signal analysis in the frequency
domain. This requires powerful computational techniques
and precise breakdown of the individual source character-
istics. Another shortcoming of the technique is the limited
operating distance due to the short coherence length of the
semiconductor laser. Linewidth narrowing through the use
of external cavities, or possibly, the use of gas lasers, may
increase the range to as high as a kilometer.® If the prob-
lems discussed here can be resolved, the FMCW ranging
technique shows much promise for a variety of applications
and warrants further research.
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In classical Hamiltonian dynamics for a system with a single degree of freedom a canonical
transformation is made to new canonical variables in which the new canonical momentum is
energy and its conjugate coordinate is called fempus. This canonical coordinate tempus
conjugate to the energy is not necessarily the time # in which the system evolves, but is a function
of the original generalized coordinate, the energy, and time ¢. For conservative systems fempus
reduces to the time ¢, and the equations reduce to the Hamilton—Jacobi equation for Hamilton’s
characteristic function. For periodic or almost periodic systems, the energy and tempus
canonical variables act as a bridge to the action and angle canonical variables. Hamilton’s
equations for the action and angle variables in the adiabatic limit involve a generalized Hannay
(or geometrical) angle. A pendulum with a length varying in time is treated as an example.

I. INTRODUCTION

The Hamiltonian formulation of classical mechanics has
the advantage that canonical transformations,'™ which
preserve the form of Hamilton’s equations, can be made
from one set of canonical variables to another set. A prob-
lem which may be difficult to solve in terms of the original
canonical variables may be easy to solve in terms of a new
set of canonical variables. After solving the problem in
terms of the new canonical variables, it is necessary to
transform back to the original coordinates to obtain the
solution to the original problem. Common examples of ca-
nonical transformations are the Hamilton—Jacobi theory,4
where the new canonical variables are constant, and the
action- angle variables.” Canonical transformations to the
free particle® and canonical transformatlons to bring the
Hamiltonian to a given form’ have also been given.

In this paper a new set of canonical variables is proposed
for systems with one degree of freedom. The energy E is
chosen to be the new canonical momentum. The canonical
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coordinate conjugate to the energy is called tempus and
denoted by 7. It has the dimensions of time, but is not
necessarily the time 7 in which the system evolves.’® In
general, tempus is a function of the old canonical coordi-
nate g, the energy E, and time ¢. The advantage of using the
energy E and tempus T as canonical variables is that a
problem may be easier to solve in terms of them. Hamil-
ton’s equations for these new variables must first be solved,
and then they must be transformed back to the original
generalized coordinate ¢g. The energy is also a quantity of
physical interest, and this method gives the energy directly.
For conservative systems Hamilton’s equations for the en-
ergy and tempus canonical variables are the same as given
by Hamilton—Jacobi theory in terms of Hamilton’s charac-
teristic function W.* For problems which are periodic or
almost periodic, the energy and tempus canonical variables
provxde a natural bridge to the action-angle canonical vari-
ables.” However, energy and tempus canonical variables
are not restricted to periodic or almost periodic systems,
and can be used for other problems.
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Hamilton’s equations for the energy E and fempus T
canonical variables are explicitly gauge invariant.'® Energy
is the time integral of the power transferred between the
system and its environment, and is gauge invariant (up to
an arbitrary additive constant).!! On the other hand, the
Hamiltonian describes the time development of the system,
and is gauge dependent. Therefore, a distinction is made
here between the Hamiltonian H and the energy E.!' In
some gauge the energy and the Hamiltonian are equal, but
not in general.

In Sec. II the canonical transformation to energy and
tempus canonical variables is made, and their Hamilton’s
equations are obtained. The method is applied in Sec. III to
conservative systems and compared with Hamilton—Jacobi
theory. In Sec. IV it is shown that for periodic or almost
periodic systems, the energy and tempus canonical vari-
ables act as a bridge to the action and angle canonical
variables. In the adiabatic limit Hamilton’s equation for
the angle variable gives a generalized Hannay (or geomet-
rical) angle. A pendulum with a time-varying length is
considered as an example in Sec. V. The conclusion is given
in Sec. VI. In Appendix A the arbitrariness in the gener-
ating function is discussed. In Appendix B a proof is given
of the gauge invariance of Hamilton’s equations for energy
and tempus. Appendix C discusses the action variable.

II. CANONICAL TRANSFORMATION TO ENERGY
AND TEMPUS VARIABLES

A, Hamiltonian and energy

A system with one degree of freedom is described by a
Hamiltonian H(g,p,t), where p is the canonical momentum
conjugate to the generalized coordinate ¢, and ¢ is time.
The Hamiltonian is obtained from a Lagrangian by the
canonical procedure. It describes the time development of
the system through Hamilton’s equations

Gg=0H/dp
and
p=—0H/dy, (2.2)

where the overdot denotes the total derivative with respect
to time . By eliminating the canonical momentum in Egs.
(2.1) and (2.2) the (second order) equation of motion for
the system may be obtained.

On the other hand, the energy of the time-dependent
system is not necessarily equal to the Hamiltonian. The
energy E=E(q,4,t) is a function of the generalized coor-
dinate ¢, the generalized velocity 4, and time ¢. The total
time derivative of the energy is the power P transferred
between the system and its environment,

dE/dt=P. (2.3)

From physical considerations of the problem the power
transferred is known and the energy can be determined.
The power, in general, is equal to the scalar product of the
nonconservative force and the velocity. Examples of non-
conservative systems that can be given a Hamiltonian for-
mulation are (1) a charged particle in a time-dependent
electromagnetic field,'! and (2) a damped harmonic oscil-
lator. In each case the energy is the sum of the kinetic
energy and the conservative potential energy, and depends
on the coordinates, velocities, and (possibly) the time. On
the other hand, the Hamiltonian is obtained through the

2.1
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canonical procedure from the Lagrangian. The Hamil-
tonian describes the dynamics of the system through
Hamilton’s equations (2.1) and (2.2). It is not gauge in-
variant, and consequently cannot in general be measured.
Energy differences can be measured in principle, by inte-
grating Eq. (2.3) for the power. Therefore, it is necessary
to make a distinction between the energy and the Hamil-
tonian.!!

B. Generating function

We shall make a canonical transformation with a gener-
ating function of the second type S(g,p’,t) which trans-
forms from the old canonical variables (g,p) to a new set of
canonical variables (q’,p’).1 We choose the new canonical
momentum p’ to be the energy p’ =E. The new generalized
coordinate ¢’ conjugate to it is called the canonical variable
tempus q' =T. The canonical variable tempus T conjugate
to E is in general different from the time ¢ in terms of which
the system evolves. Because the transformation is canoni-
cal, the ¥enerating function of the second type S(q,E,)
satisfies""™

p=1(95/9q)g,,
and the canonical coordinate tempus is obtained from
T=(dS/9E),,. (2.5)

The generating function S can be obtained by integrating
Eq. (2.4), which gives

(2.4)
110

q

S(g,Et)= J:) P(q.E,;1)dg+S(0,E1), (2.6)
where we need the old canonical momentum p as a func-
tion of ¢, E, and ¢. The function S(0,E,t) is arbitrary, but
does not change the dynamics. It can often be chosen to be
zero for convenience. The role of S(0,E,¢) in Eq. (2.6) is
discussed in Appendix A. From Hamilton’s equation in
Eq. (2.1) we have §=¢(g,p,t), and so the energy is
E=E(q,4,t)=E(q,4(q,p;t),t)=E(q,p,t), the latter being
of course a different function than E(g,q,t). Since canoni-
cal transformations must be invertible, we assume we can
solve the energy equation for p=p(q,E,t) and use this ex-
pression in Eq. (2.6) to obtain the generating function
S(q,E,t).

The tempus variable T=7T(q,E,t) is obtained from Eq.
(2.5) by partial differentiation of Eq. (2.6) with respect to
the energy. We assume T can be solved for the generalized
coordinate ¢g=¢(T,E,t), which gives the solution to our
problem if T and E are known as functions of time ¢. Since
T and E are canonical variables, they satisfy Hamilton’s
equations.

C. Hamilton’s equations for energy and fempus variables

Hamilton’s equations for the canonical variables (¢’,p’)
=(T,E) have the same form as Egs. (2.1) and (2.2), viz.,

T=(0H'/3E) 1, (2.7)
and
E=—(3H'/3T)g,. (2.8)
The new Hamiltonian H’ is!™
H' =H+(35/31) 4. (2.9)
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The energy E and the Hamiltonian H are not necessarily
equal, so we define ® to be their diﬁ‘erence,“

®=H-E, (2.10)

where the energy E=E(q,4,t), H=H(q,p,t), and ¢ and p
are related by Hamilton’s equation (2.1). The function ®
can thus be expressed in terms of ¢, p, and ¢£. When Eq.
(2.10) for H is used in Eq. (2.9), and the new Hamiltonian
is substituted into Egs. (2.7) and (2.8), the result is

T=1+[3(®+3S/3t)/3E 1, (2.11)
and
E=—[3(®+38/3t)/T | g, (2.12)

respectively. The function ®+dS/3d¢ must be expressed in
terms of E and T from Eqgs. (2.4) and (2.5) before the
partial differentiation with respect to £ and T in Egs.
(2.11) and (2.12), respectively, can be performed. Because
E and T are canonical variables, dE/dT=0. From Egq.
(2.3) the right-hand side of Eq. (2.12) is equal to the
power.

Equations (2.11) and (2.12) are shown to be invariant
under gauge transformations in Appendix B.

III. CONSERVATIVE SYSTEMS

We apply the formulation of Sec. II here to conservative
systems and show its relationship to Hamilton-Jacobi the-

ory.
A. Energy and tempus canonical variables

If the system is conservative, we can always choose a
gauge such that the generating function .S does not have
explicit time dependence, S/9¢=0, and the Hamiltonian
and the energy are equal, H=E.!! Hamilton’s equations in
Egs. (2.11) and (2.12) then reduce to the trivial equations

T=1 (3.1
and

E=0, (32)
respectively. The solutions to Eqs. (3.1) and (3.2) are

T=t—t,, (3.3)
and

E=E,, (3.4)

where #; and E; are arbitrary constants. Equation (3.3)
shows that in this case the canonical variable tempus T
reduces to the time difference t—¢,.

The solution to the original problem is obtained by solv-
ing T=T(q,E) in Eq. (2.5) for g, which gives g=¢q(E,T).
For conservative systems, g=¢(E,,t—1,) =¢(t) is the so-
lution for given values of the constants E; and f,,.

B. Hamilton-Jacobi theory

For conservative systems, Hamilton—Jacobi theory* re-
duces to this formulation in terms of energy and tempus
canonical variables. In Hamilton-Jacobi theory, a canoni-
cal transformation is ‘made from the canonical variables
(g,p) to the new canonical variables (gg;, Pyy) using a
generating function Sy;(g,py;,¢) such that the new Hamil-
tonian Hy;=0.
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If the Hamiltonian is time independent, then the gener-
ating function for Hamilton-Jacobi theory may be written
as

Swy(q.puy,t) = W(q,puy) —pwusrt, (3.5)

where W (q,pyy) is Hamilton’s characteristic function. The
old canonical momentum is

p=0Sy;/3qg=3W/dq (3.6)
and the new coordinate is

Because the new Hamiltonian Hy;; =0, Hamilton’s equa-
tions give the result that gy; and py; are constants. If we
choose for these constants

pii=E, qum=—1 (3.8)
then Eq. (3.7) becomes
OW/OE=t—1,. (3.9)

For conservative systems Egs. (2.4) and (2.5) become
Egs. (3.6) and (3.9), respectively, if the generating func-
tion S(q,E)=W(q,py;), Hamilton’s characteristic func-
tion. The T in Eq. (2.5) for a conservative system is £—1,
by Eq. (3.3). The generating function S in Eq. (2.6) is a
solution of the Hamilton-Jacobi equation for W. There-
fore, for conservative systems the energy and tempus ca-
nonical formulation is equivalent to the Hamilton-Jacobi
theory for Hamilton’s characteristic function.'? For energy
and tempus variables the equations are obtained directly,
while the Hamilton—Jacobi theory requires the separation
of variables in Eq. (3.5).

IV. ACTION AND ANGLE VARIABLES

For problems which are periodic or almost periodic, ac-
tion and angle variables can be used for simplification.’ For
these problems, the energy and tempus canonical variables
provide a bridge to the action and angle variables.

A. Transformation to action and angle variables

Some problems may be characterized by a (possibly time
dependent) angular frequency w=w(#). In these cases the
energy E and tempus T variables may be expressed in terms
of the angle 8 and the action J variables as (see Appendix
&)

E=0J, T=6/o. (4.1)
When Eq. (4.1) is substituted into Egs. (2.11) and (2.12),
the result is
0= (6/0)0+w+o{d[D+(3S/3t), £)/IE} 1,
and
J=—(&/0)]— o~ {3[®+(85/3t) ,£1/3T} g, )
4.

respectively. A new generating function S ,(g,J,t) in terms
of the action (hence the subscript 4) may be defined as
being equal to the generating function §$(q,E,t),

S4(gJt)=S4(q,E/w,t) =S(q,E,t). (4.4)

In Egs. (4.2) and (4.3) the partial derivative of S with
respect to ¢ at constant ¢ and E can be expressed in terms
of the generating function S, as

(4.2)

l
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(38/3¢t) 5= 38 4(g.E/0,1) /0t , i
= (084/0J) 4| 3(E/w)/3t] g+ (35,4/31) ;s
=0E(—a&/w*) + (38 4/t) ;. (4.5)

Since S 4(g,J,t) is the generating function for the new gen-
eralized coordinate 6 and the new canonical momentum J,
we have

0=(3S,/0) (4.6)

which can be obtained from Eq. (2.5) by multiplying by w.
Equation (4.6) is used in Eq. (4.5) to obtain the final line.
When Egs. (4.1) and (4.5) are used in Hamilton’s equa-
tions (4.2) and (4.3), we obtain

O=w+{3[ P+ (354/0t),,1/3]}4, (4.7)

and
J=—{3[®+(3S4/3t),;1/36} . (4.8)

respectively, where w=w(?#) may be a function of time.
The partial derivative of S, with respect to time is taken at
constant g and J. The first term on the right-hand side of
Egs. (4.2) and (4.3) is canceled by the appropriate deriv-
atives of the first term on the right-hand side of Eq. (4.5).
Equations (4.7) and (4.8) are Hamilton’s equations for
the angle and action variables, respectively.

B. Problems with no explicit time dependence in S,

In the class of problems where the time dependence is
only in the frequency, Hamilton’s equations (4.7) and
(4.8) may easily be solved. In these problems S(q,E,t)
=S ,(q,E/w), so that 3§ ,/8t=0 at constant ¢ and J. If, in
addition, the Hamiltonian is also the energy, H=ZE, then
@& =0 from Eq. (2.10). Therefore, Hamilton’s equations in
Eqs. (4.7) and (4.8) become

O=w(1) (4.9)
and
J=0, (4.10)
respectively. Integrating Eq. (4.9), we obtain
t
9(t)=f dt’ o(t') + 6y, (4.11)
0

where 6,=6(0). If @ is constant, Eq. (4.11) becomes
0=wt+6,. Integrating Eq. (4.10), we obtain

J=Jo, (4.12)

a constant. From Eq. (4.6) 6=6(q,J), so we can solve for
g in terms of 6 and J. The solution to our original problem
is g=¢(6,Jy) =¢q(t), using Egs. (4.11) and (4.12).

C. Adiabatic approximation

In general for periodic (or almost periodic) systems
Hamilton’s equations (4.7) and (4.8) may be difficult to
solve exactly. They can be rewritten by adding and sub-
tracting the angular average of the last term on the right-
hand side,

0=+ (3(DP+3S,/3t)/d]) + [d(®+3S,/3t) /0]
—(3(P+3S,/3t)/3])] (4.13)
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and
J=—(3(D+8S,/3t)/30) — [3(D+3S 4/t) /36
—(3(D+35,/31)/36) ], (4.14)

respectively, where the angular average is defined as

27

(- )y=Qm)! do - . (4.15)

In the adiabatic approximation the term in the brackets
in Egs. (4.13) and (4.14) can be neglected,13 and we have

O=w(t) +(3(D+3S /3t)/d]) (4.16)
and
J=0, (4.17)

since (I(P+3S,/3t)/30)=0. From Eq. (4.17) J is an
adiabatic invariant. Equation (4.16) can be integrated to
give
t
0(n)= f dt’ o(t')+A0y(1). (4.18)
0
The first term on the right-hand side of Eq. (4.18) is called

the dynamical angle and the second term is a generalized
Hannay angle'*

t
Aby(t)= f dr' (3(P+3S,/at')/dT). (4.19)
0

In Appendix B it is shown that the generalized Hannay
angle is invariant under gauge transformations. When
® =0 and the adiabatic time-dependent parameters are pe-
riodic with a Period t, Eq. (4.19) reduces to the usual
Hannay angle.>!

V. PENDULUM WITH VARIABLE LENGTH

The method developed in Sec. II is illustrated by con-
sidering a pendulum with a length varying in time. 8

A, Generating function

The Hamiltonian H for a pendulum with a small angular
displacement is
H=p*/2mP+imglg*=E, (5.1)

where p is the canonical momentum (angular momentum)
conjugate to the generalized coordinate (angle) g. The
mass of the bob is m, the acceleration due to gravity is g,
and the length /=1(z) of the pendulum varies in time. The
energy E is equal to the Hamiltonian, H=E, so from Eq.
(5.1) the canonical momentum p=p(q,E,t) is

p=[2mP(E—imglg*) 1"~ (5.2)

When Eq. (5.2) is substituted into Eq. (2.6) and inte-
grated, we obtain

S(q,E,t)=3ql[2m(E—imglg*)]1"*
+(I/g)2E sin~ [ (mgl/2E)%q], (5.3)

where we choose S(0,E,t) =0. From Eq. (2.5) the canon-
ical variable tempus T is obtained by differentiating Eq.
(5.3) with respect to E, which gives

T(q,E,t)=(1/g)"? sin~'[ (mgl/2E) *q]. (5.4)
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When this equation is solved for the generalized coordinate
g we obtain

q(t) = (2E/mgh)"/* sin[ (g//*T], (5.5)

which gives the solution when T and E are known as func-
tions of time.

B. Hamilton’s equations

Hamilton’s equations for T and E are given in Egs.
(2.11) and (2.12). In this case ®=0 because of Egs. (5.1)
and (2.10). The function dS/d¢ is obtained by differenti-
ating the time dependence of /(¢) in Eq. (5.3), which gives

3S(q.E,t)/0t=3qi[2m(E—}imglg*)]"*
+1(lg) ~V2IE sin~ [ (mgl/2E) " %q].
(5.6)

To use Eq. (5.6) in Hamilton’s equations (2.11) and
(2.12) it is necessary to express g as a function of £ and 7.
When Eq. (5.5) is substituted into Eq. (5.6), we obtain

3S/9t=—(3/2)(d In w/dt)o'E sin(20T)
—(dIn w/dt)ET,

where the time-dependent angular frequency
=(g/H"*

When Eq (5.7) is used in Hamilton’s equation for 7 in
Eq. (2.11), the result is

T=1—(dnw/d)T—(3/2)(d n o/dt)e ! sin(QwT).
(5.8)

When Eq. (5.7) is used in Hamilton’s equation for £ in Eq.
(2.12), the result is

(5.7

is o

E=(dn w/dt)E+3(d In 0/dt)E cos(20T).  (5.9)
Dividing Eq. (5.9) by E, we obtain
dIn(E/w)/dt=3(d In w/dt)cos(2aT). (5.10)

It is natural now to use the action and angle variables,
J=E/0w, 6=0T, (5.11)

from Eq. (4.1). In terms of these variables Eq. (5.10)
becomes

dInJ/dt=3(d In w/dt)cos(26). (5.12)

If Eq. (5.8) is multiplied by w, we obtain the equation for
the angle variable

O=w—(3/2)(d In w/dt)sin(20). (5.13)

Equations (5.12) and (5.13) are simpler than the corre-
sponding Egs. (5.9) and (5.8), respectively.

C. Adiabatic limit

In the adiabatic limit, the frequency o is slowly varying
50 d In w/dt is small. If we average the right-hand sides of
Egs. (5.12) and (5.13) over the angle 8 from O to 27 as in
Eq. (4.15), we have

J=0 (5.14)
and

b=, (5.15)
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respectively. Equation (5.14) shows that J=constant, so it
is an adiabatic invariant. The solution to Eq. (5.15) is

t
()= f dt o(t'), (5.16)
0
which is the dynamical angle. The Hannay angle in Eq.
(4.19) is zero in this case. When Eq. (5.11) is used in Eq.
(5.5) we have the solution ¢(?) in terms of the angle 6(¢),

q(2) =qmax()sin 6(1), (5.17)
where the amplitude is
Gmax (£) = (A2 /m*gP)V*, (5.18)

Since J is an adiabatic invariant by Eq. (5. 14), the ampli-
tude can be written in terms of the length as 18

Gmax(?) = [1(0)/1(£) 1¥/*gmax (0), (5.19)

which gives the dependence of the amplitude of the pen-
dulum in terms of its length /().

VI. CONCLUSION

We make a canonical transformation from old canonical
variables (g,p) to new canonical variables (g’,p’), where
the new canonical momentum p’=E is the energy and the
new canonical coordinate ¢’ =T is called tempus. The co-
ordinate fempus T conjugate to the energy E has dimen-
sions of time, but it is in general a function of ¢, E, and
time f. A problem may be easier to solve in terms of the
new canonical variables and then transformed back to give
the original coordinate g(¢)."> The energy of the system
may be of interest in its own right, and the solution of
Hamilton’s equations for the new variables gives the en-
ergy directly. For conservative systems, the formulation in
terms of energy and tempus canonical variables gives the
Hamilton-Jacobi equatlons in terms of Hamilton’s charac-
teristic function W.* For systems which are periodic or
almost periodic, the energy and fempus canonical varlables
provide a bridge to the action and angle variables,’ respec-
tively. Hamilton’s equations for the angle variable in the
adiabatic 11m1t involves a generalized Hannay (or geomet-
rical) angle.”"!7 A pendulum whose length depends on the
time is used to illustrate how the energy and tempus ca-
nonical variables provide a link to the action and angle

: canomcal variables in terms of which the problem is sim-

plified."

Approximation methods, like the adiabatic approxima-
tion used here, may be simpler or more accurate when
applied to Hamilton’s equations for energy and tempus.
Energy and fempus canonical variables may be applied to
other systems, not only periodic or almost periodic sys-
tems. Nonconservative systems can be treated as long as
they can be given a Hamiltonian formulation.’®?® The
method can perhaps be generalized to apply to one degree
of freedom in a system with many degrees of freedom.

Energy and tempus as canonical variables is another
technique for dealing with classical Hamiltonian problems.
The method can be applied to conservative systems and to
systems which are periodic (or almost periodic), where it
gives standard methods for dealing with these systems. An
advantage of the method is that it may be applied to any
one dimensional problem, as long as the required equations
are invertible. I am looking for problems that may be more
casily solved by using this method than by other methods.
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Apart from applications, however, it is instructive to have
another choice of canonical variables when teaching about
canonical transformations in classical mechanics.
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APPENDIX A: ARBITRARINESS IN THE
GENERATING FUNCTION

In Eq. (2.6) the function S(0,E,t) is arbitrary, since it is
the integration “constant” after integrating Eq. (2.4). If
the function S(0,E,t) is changed to a new function
S(0,E,t) Hamilton’s equations are form invariant, because
we are making a canonical transformation.

The generating function in Eq. (2.6) can be changed to

S(g,E,)=8(g,Et)+Q(Ex), (A1)

where Q(E,t)=S(0,E,t)—S(0,E,t). Equation (Al) is
similar to Eq. (BS), except that () is a function of the
energy E and time ¢, while A is a function of the general-
ized coordinate g and time ¢. The new generalized coordi-
nate fempus T obtained from Eq. (2.5) is

T(q,E,t)=(3S/3E) ,,= T +30/3E. (A2)

Equation (A2) may be inverted to gbtain ¢g=¢g(T,E,?),
which solves the problem for ¢(z) if T and E are known
functions of the time. The energy E, which depends only
on ¢, ¢ and ¢, is invariant under the change in the gener-
ating function in Eq. (Al).

Hamilton’s equations (2.11) and (2.12) can be written
in terms of

G=®+9d8/0r. (A3)

After changing the generating function as in Eq. (A1) we
have a new G defined as in Eq. (A3), which is

G=G+30/at. (A4)

If we change canonical variables from (T ,E) to (f,E ), Eq.
(2.11) becomes

T =1+ (8G/IE) 7+ (3G/dT) g (8 Q/IE?),
=1+ (3G/IE) 7 ,—d(30/IE)/dt. (A5)

Equation (A5) may be written in the same form as Eq.
(2.11)

T=1+3(d+85/0t)/3E (A6)
when Eq. (A2) is used. Likewise, under the same change
of variables Eq. (2.12) can be written as
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E=—(8G/3T) 5= —3(D+35/31) /3T, (A7)

in terms of the new tempus variable T. Equation (A7) is
the same form as Eq. (2.12). From Eqs. (A6) and (A7)
we see that the form of Hamilton’s equations is preserved,
as it should be for a canonical transformation.

The arbitrariness in S(0,E,¢) in Eq. (2.6) changes the
generalized coordinate tempus T to T=T+3dQ/3E ac-
cording to Eq. (A2), but does not change the conjugate
canonical momentum, the energy E. On the other hand,
the gauge transformation discussed in Appendix B changes
the canonical momentum p to p” =p+3JA/dq according to
Eq. (B2), but does not change the generalized coordinate
g" =g, according to Eq. (B3). The distinction between a
gauge transformation and the arbitrariness in the generat-
ing function is that ¢ and E are interchanged.

APPENDIX B: GAUGE INVARIANCE OF
HAMILTON’S EQUATIONS FOR ENERGY AND
TEMPUS

In classical mechanics a gauge transformation is a ca-
nonical transformation'® from the old canonical variables
(g.p) to the new canonical variables (¢”,p"”) with a gener-
ating function of the second type'

Fy(gp".t)=qgp”" —A(q,1), (B1)

where A(g,t) is an arbitrary differentiable function of ¢
and ¢. For Eq. (B1) to be a generating function of the
second type, it must satisfy

p=0F,/0q=p" —dA(q,t)/dq
and
q" =0dF,/dp" =q. (B3)

By Eq. (B2) the new canonical momentum p” =p+JdA/dg
is shifted from the old canonical momentum p. By Eq.
(B3) the generalized coordinate ¢ is unchanged. The new
Hamiltonian H"” for the new canonical variables (¢”,p") is

H"=H+9F,/dt=H—3dA/dt. (B4)

We now make another canonical transformation to the
energy E and tempus T canonical variables. The energy
E=E(q,4,t) is gauge invariant (up to a constant) because
it depends only on the coordinate ¢, the velocity ¢, and
time ¢ From Hamilton’s equation ¢=g(g,p",t), so
E=E(q,4,t)=E[q,4(q,p",t),f]1=E(q,p",t). We can solve
E=E(qp",t) for p”"=p"(q,E,t) and obtain the generating
function §” from Eq. (2.6) as

(B2)

q
S"(g.Ezt)= fo p"(q,E,t)dg+S"(0,E,t)

=S(q,E,t)+A(q,1), (B5)

where we use Eq. (B2) and choose S”(0,E,t) =S(0,E,¢t)
+A(0,2). From Eq. (2.5) the new tempus variable
T"=038"/0E=3S/3E=T from Eq. (B5). Hence both E
and T are gauge invariant.

The difference ®” in Eq. (2.10) between the new Hamil-
tonian H” in Eq. (B4) and the energy E is

" =H"—E=®—0dA/0t. (B6)
Hamilton’s equations for the canonical variables E and T
have the same form as Egs. (2.11) and (2.12),
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T=1+3(®”+3S"/3t)/0E (BT)

and

= —3(P” +38"/3t) /9T, (B8)
respectively. The function ®” 4 3S”/dt is, however, gauge
invariant

D" +38"/3t=(P—0A/dt)+I(S+A)/dt
= +3S/3t, (B9)

from Eqgs. (B5) and (B6). Therefore, Eqs. (B7) and (B8)
reduce to Eqs. (2.11) and (2.12), respectively, which
proves the gauge invariance of the formulation.

The Hannay angle Afy(¢) in Eq. (4.19) is also gauge
invariant. From Eq. (4.5) we have

@+ (3S/01) , g=D+ (3S,/3t) , j—OE&/a’.  (BIO)

From Eq. (B9) the left-hand side of Eq. (B10) is gauge
invariant, and 6, E, and o are also gauge invariant, so the
function ®+dS ,/dt, which appears in Eq. (4.19), is gauge
invariant.?!

APPENDIX C: ACTION VARIABLE J

We have taken Eq. (4.1) to be the definition of the
action J and angle 0 canonical variables. The action vari-
able is defined differently in Ref. 1 (p. 460). Here we show
that for one degree of freedom the two definitions are
equivalent.

When the generating function S(q,E,t) in Eq. (2.6) is
used in the definition of the canonical coordinate fempus in
Eq. (2.5), we obtain

d (q
=6_E'f0 P(fiyE,t)dq‘i‘ TO: (cn

where Ty=0S(0,E,t)/dE. When Eq. (C1) is multiplied by
the angular frequency o, and Eq. (4.1) is used, we have

d rv _ .
0—6():(0 .a_EJ.() P(q,EJ)dq, (CZ)

where 8y=wT,. For a complete cycle 8—0,=27 and Eq.
(C2) becomes

d
2r=0 %=

JE

When Eq. (C3) is integrated with respect to the energy E,
we obtain

p(q.E,t)dg. (C3)

E=w(2n)! § pdg, (c4)

where the (possibly time dependent) integration *“con-
stant” is chosen to be zero. When Eq. (C4) is compared
with Eq. (4.1), we see that the action J is

J=Q2m) ! ff pdy, (C5)

which agrees [up to a factor of (27) ~!] with the definition
in Ref. 1 (p. 460).
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THE STORY OF TWENTIETH-CENTURY SCIENCE

Twentieth-century science has a grand and impressive story to tell. Anyone framing a view
of the world has to take account of what it has to say ... It is a non-trivial fact about the world
that we can understand it and that mathematics provides the perfect language for physical
science: that, in a word, science is possible at all.
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