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Renormalization is the technique used to eliminate infinities that arise in quantum field theory.
This paper shows how to renormalize a particularly simple model, in which a single mass
counterterm of second order in the coupling constant suffices to cancel all divergences. The
model serves as an accessible introduction to Feynman diagrams, covariant perturbation theory,
and dimensional regularization, as well as the renormalization procedure itself.

1. INTRODUCTION

Quantum field theory—in particular, quantum
electrodynamics—has produced by far the most exacting
predictions in all of physics. The magnetic dipole moment
of the electron, for example, has been calculated to 14
significant digits, and the result confirmed in the laboratory
with exquisite precision.' And yet, a straightforward appli-
cation of the basic rules leads to nonsensical infinities
which must be circumvented before intelligible results can
be obtained. This process, which is known as “renormal-
ization,” stands as one of the greatest triumphs of theoret-
ical physics.? Unfortunately, renormalization is generally
considered too difficult and sophisticated for most graduate
students, let alone undergraduates. Part of the problem is
that “realistic” field theories are burdened by distracting
features such as spin and gauge invariance, and even arti-
ficial “textbook” examples (the so-called ¢* and ¢* theo-
ries)? involve diverting technical complications.

Our aim in this paper is to present a reasonably complete
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and self-contained treatment of renormalization* for a very
simple model: the “ABC theory.”> We hope that this study
will be accessible to advanced undergraduates and to non-
specialists who would like to know (in something more
than a merely qualitative sense) what renormalization is all

time

Fig. 1. The basic vertex in ABC theory.
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Fig. 2. AB scattering: A+B-A+B.

about, and at the same time will serve as a useful introduc-
tion to the subject for graduate students embarking on a
first course in quantum field theory.

In Sec. II we describe the model and develop the “Feyn-
man Rules” for calculating lifetimes and scattering cross
sections (the quantities of preeminent interest to particle
physicists).® In Sec. III we discover that stralghtforward
application of the Feynman Rules leads to a divergent in-
tegral, and we explore the physical significance of this re-
sult. In Sec. IV we exploit the method of “dimensional
regularization” to isolate and “tame” the infinity, and in
Sec. V we show how an astute modification of the Feyn-
man Rules eliminates it altogether. Finally, in Sec. VI we
demonstrate that repeated application of the same tech-
nique removes all the infinities that arise in the ABC
model.

I1. THE FEYNMAN RULES FOR ABC THEORY

Imagine a world populated by just three kinds of parti-
cles: the A (mass m 4, the B (mass mg), and the C (mass
mc). They carry spm zero, and each is its own antiparticle
(like the 7° meson ).’ Their only interaction is represented
diagrammatically 1n Fig. 1; by convention, time runs up-
ward on the page,® so this dlagram reads “A converts into
B plus C:”

A-B+C.

If the A is heavy enough (m, > mg+mc), this describes
the decay of the A. More complicated processes are ob-
tained by making replicas of the fundamental vertex, twist-
ing them around, and linking them together—always join-
ing two lines of the same type. Thus, Fig. 2 describes the
collision (scattering) of an A and a B:

A+B-A4B.

A A
C

B B
C

A A

Fig. 3. AA scattering: A+ A—-A-+A.
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Fig. 4. Another diagram representing AB scattering.

(An A and a B went ir, an A and a B came out; the C in
this case is an unobserved ‘“virtual” particle, which serves
only to “mediate” the interaction between A and B.) Sim-
ilarly, Fig. 3 represents the scattering of two A’s:

A+A-A+A

(this time there are two virtual B’s and two virtual C’s).

But Fig. 2 is not the only diagram corresponding to the
process A+ B— A+B; Figs. 4 and 5 also do the job. Now,
every “Feynman diagram” (as these figures are called)
stands for a particular (complex) number: the “ampli-
tude,” .#, for the process in question. We will see in a
moment how this amplitude is actually calculated; once
this has been done we add the amplitudes for all the dis-
tinct diagrams with the appropriate set of external legs.
For example, if we wish to determine the cross section for
AB scattering, we add the amplitudes for Figs. 2, 4, 5,...ev-
erything we can make by gluing together replicas of the
fundamental vertex (Fig. 1) with the generic structure of
Fig. 6. Of course, there are infinitely many such diagrams.
However, as we shall see, each vertex introduces a factor of
the “coupling constant,” g (the parameter which fixes the
overall strength of the interaction), and if g is small, the
more complicated diagrams, incorporating more and more
vertices, contribute less and less to the total. In this case it
is reasonable to hope that a good approximation to the AB
cross section would be obtained by including only dia-
grams 2 and 4, since these are the only two-vertex dia-
grams for the process. If a more precise answer is required,
we would include the four-vertex diagrams (such as Fig.
5). Thus the Feynman diagrams with N vertices generate
the N"-order term of a perturbation expansion in the cou-
pling constant g.

The protocol for determining the amplitude .# associ-
ated with a given Feynman diagram is as follows:®

A B
c

B A
c

A B

Fig. 5. A fourth-order diagram for AB scattering.

P. Kraus and D. J. Griffiths 1014



Fig. 6. Generic diagram for AB scattering.

(1) Notation. Label the incoming and outgoing 4-
momenta’ p,,p,,*,p, (Fig. 7). Label the internal mo-
menta ¢,,g,,... . Put an arrow on each line, to indicate the
“positive” direction (arbitrarily assigned, in the case of
internal lines).

(2) Vertex Factor. For each vertex, write down a factor
of —ig, where g is the coupling constant.!

(3) Propagator. For each internal line, write a factor

1
2
;—mjc

where g; is the 4-momentum of the (virtual) particle, and
m; is its mass. 1

(4) Conservation of Energy and Momentum. For each
vertex, include a factor

(2m)*8* (k1 +ky+k3),

where the k’s are the three 4-momenta coming info the
vertex (if the arrow points outward, then k is minus the
4-momentum). The delta-function'? imposes conservation
of energy and momentum at the vertex—it vanishes unless
the sum of the incoming momenta equals the sum of the
outgoing momenta.'?

(5) Integration over Internal Momenta. For each inter-
nal line, write down a factor

1
(2m)° d'q)

and integrate over all internal momenta.'

Fig. 7. Labeling a diagram.
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Fig. 8. The simplest diagram, with momenta labeled.

(6) Cancel the Overall Delta-Function. The result will
contain a factor
Qm)*8* (py+py+ - —py)

enforcing overall conservation of energy and momentum.
Erase this factor, and what remains is —i.#.

Consider, for example, the simplest diagram of all, Fig.
1. Labeling the lines, in accordance with Rule 1, yields Fig.
8. There are no internal lines; there is one vertex, from
which we pick up a factor —ig (Rule 2), and a delta-
function '

(27)*8*(p1—p2—p3)

(Rule 4), which we promptly discard (Rule 6), obtaining
—iM =-—ig, or

M=g. (n

A more substantial example is AB scattering (Fig. 9). In
this case there are two vertices (hence two factors of —ig),
one internal line, with the propagator

1
S -
q —mec?
two delta-functions

[(2m)*6* (p1—p3— ) 11 (27)*6* (02 +9—pa) ],
and one integration

1
G d'q.

Rules (1) through (5), then, yield
1
—i(2m)* f_-'_f—64 —p3—
(2m)'g ez (P1—P3—9)

X 8%(py+g—ps)d'q.

aYo

Fig. 9. Momentum-labeled diagram for AB scattering.
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Fig. 10. The other second-order diagram for AB scattering.

The first delta-function serves to pick out the value of ev-
erything else at the point g=p,—p,, leaving

1
] 4s4
- - - .

ig (P1—.p3)2—mc7c2(27r) 8" (p1+P2—P3—p4)

As promised, there is one remaining delta-function, which
we erase (Rule 6); the result is

1=, 2 21
(p1—p3)*—mec?
But that’s not the whole story. As we mentioned earlier,

there is another second-order diagram (Fig. 10), for which
we obtain

g
./[ 2=_"—_2 3 3
(Pr1+p2) —mec
Evidently the total amplitude for AB scattering, to order
, 18

.//=./ﬂ1+./”2
1 1
= . 2
g ((p,—p3)2—méc2+(p,+pz>2—méc2) @

For the sake of completeness we indicate briefly how one
gets from the amplitude (.#) to the quantities of physical
interest: the lifetime () or the scattering cross section (o).
The connection is provided by Fermi’s “Golden Rule;”
schematically,

. 27 )
transition rate=7|/ |“p,

where p is the density of final states, or “phase space”
available." Specifically, if particle 1 (at rest) disintegrates
into particles 2, 3,...,n:

1-2+3++n

the decay rate is given by'®

s |
r=ﬁm_: | A |2 (2m)*8* (p1—Pr—p3— " —Pw)
n d4p '
2 .2.2y0( 0 ]
X jl;Iz (m(p,- mic*)6(p] )W), (3)

and the lifetime is 7==1/T". If there are just two particles in
the final state, the integrals can be carried out explicitly:!’
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Fig. 11. A simple loop diagram.

I'= PR (4)
1

where p is the 3-momentum of either outgoing particle. For
example, if mg=m-=0 in the ABC model, the lifetime of
the A, to lowest order [Eq. (1)], is

161him, s
T= gz . (5

Similarly, if two particles collide
the cross section is given by!®

SH
g=
4(py - )P — (mymyc?)?

X f |-/”|2(277')454(P1+P2“P3—P4—""‘Pn)

. at
2 2 0\ 2 Pj
><jl;[3 (2776(pj mjf)G(pj)W . (6)
Again, the general formula simplifies considerably if there
are only two particles in the final state; in this case the
differential scattering cross section, in the center-of-
momentum frame is!
do (fic\* S|#|* |py| 7
dQ—(STT (E1+E2)2 Ip:|’
where p; is either outgoing momentum and p; is either
incoming momentum. For example, if mg=m=0 and the
incident momentum is small compared to m,c, the cross
section for AB scattering, to lowest order [Eq. (2)], is
1/ figh \?
(o) ®)

T\ 2myc

III. LOOP DIAGRAMS

So far, so good. The difficulty arises when we attempt to
evaluate more complicated diagrams, containing loops. For
example, consider the diagram in Fig. 11.'8 Rules (1)-(5)
yield

i i
(—ig)zj e g 3 mécz(Z‘lT)“tS‘(Pl—-‘h—‘h)
2 _

P. Kraus and D. J. Griffiths 1016



Im{g°)
x +8
L . Re(q®)
-8 b ¢
Fig. 12. The cbmplex 4" plane.
d441 d4€2
4c4
X (2m)76 (q1+Qz—P2)(21r)4 @t
e o
= P1—P2 qf—mlzgcz (pl—ql)z—mécz 91
(9)
and hence
ig* 1
= d%q.
APV =7y J @—miA) [o—g)—mi] ¢ |
(10

[The delta-function in Eq. (9) fixes p,=p,, and there is
only one ¢ left, so we can drop the subscripts with impu-
nity.]

Integrals of this kind are easiest to compute in four-
dimensional polar coordinates (one radius and three an-
gles). Unfortunately, ¢°= (¢°)?— ¢’ is not the square of the
radius—in fact, it need not even be positive. There is a trick
(called “Wick rotation”) for handling this problem; we
illustrate the method first on a somewhat simpler integral:

1
(11)

(at this point it is important to restore the small imaginary
term in the propagator).!! The ¢° integral is

o 1
0 1
f_m O —f—m P+ ic dg. (12)
Its integrand has poles, in the complex ¢°-plane, at
== \[q§+mzci—i£g=l: [ Jq7+m7c2—i5] (13)

where

€

6=2;]q5+m?

is a small positive quantity. These singularities are shown
in Fig. 12, together with the path of integration (the real
axis). Now consider for a moment the “figure-8” contour
in Fig. 13. Cauchy’s theorem tells us that since this path
encloses no singularities the integral must be zero. If we
allow the radius R of the two quarter-circles to increase
without limit, their contribution to the integral must go to
zero (the arc length increases like R, but. the integrand
goes like 1/R?). It follows that
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Fig. 13. “Figure-8” contour.

i dqo

© dqo o v (14)
J-_w _mitie f_w,- @—mPcttie’

Now let ¢°=ig*, so that

i dqo
f_wi (¢°Y —q* —m’?+ie

@ idq4

=f_w —(q4)2—q2—m2c2+ie
(= 44

= f_w F+mi’

where 7= (¢')*+(¢°)*+(¢')*+ (¢*)* and we drop the ¢,
because we are no longer integrating in the vicinity of a
pole. Thus the integral [Eq. (11)] is equal to

(15)

(we use the overbar to indicate that the coordinates are
labeled 1, 2, 3, 4, and the metric is Euclidean; 62 really s
the square of the radial coordinate).

The same Wick rotation technique, applied to the inte-
gral in Eq. (10), yields'®

: & 1 _
A== f (@+mze?) [ (p=9) +mEc?] 74
(16)

where p*=—ip". Unfortunately, it is now clear that this
integral blows up.?’ For in polar coordinates d'q=rdrd*Q
(where d*Q) stands for the four-dimensional solid angle),
and the denominator goes like #* at large r. Thus the upper
end of the radial integral has the form
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A

B C
A

B c
A

(a) (b) (c)

Fig. 14. Fourth-order diagrams for A—A.

(17)

o 1
J- ?;Pdr:lnrl“’—»oo.

In the following sections we shall see how to handle the
divergence in Eq. (16). But before we come to that we
need to explore the physical significance of diagrams like
Fig.11, which have only two external lines. An A comes in,
and an A goes out:

A-A.

Nothing much of interest here, it would appear. However,
this diagram does suggest that the A particle—even if it is
not actually colliding with anything—is not quite the same
as it would have been absent any coupling to the B and C.
In colorful language, it has the possibility of splitting into
a B and a C, which then recombine in flight. This process
(which occurs even if m, < mg+mc, since the B and C are
virtual particles) changes the effective mass of the A, as we
will see in a moment.

Of course, Fig. 11 is not the only diagram that contrib-
utes to A — A. There are, for example, four 4% order dia-
grams (Fig. 14), and an infinite hierarchy of even more
complicated higher-order ones. In this collection, some di-
agrams, like the first one in Fig. 14, have the property that
snipping a single internal line breaks them into two sepa-
rate pieces; we call these “one-particle reducible” dia-
grams. Suppose we let a shaded bubble (Fig. 15) represent
the set of all one-particle ir-reducible diagrams (not count-
ing the unadorned line itself), and let 2(p) stand for the
sum of all their amplitudes (putting aside for a moment the
inconvenient fact that most of these are infinite!). Then the
collection of all A— A diagrams can be represented sche-

Fig. 15. Bubble representing all one-particle-irreducible diagrams.
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Fig. 16. Set of all diagrams representing A — A.

matically by Fig. 16. In particular, if the A line is mternal
to some larger diagram, then the simple propagator i/ (p*
—m3c?) is embellished by all these higher-order processes
to become

i i i i

P m:‘;c2 P— micz\_l )p2 m?,,‘cz—*_p2 mAc
(%)= %)
X(—1 P —mle —1 'pz—mic2+

A m,ic2 nz 0 (p mAcz)
i 1
TP —mAA =3/ (pP—mi?) pPP—mict—3

(18)

The effect of all these diagrams, then, is to replace the
“bare” mass (m,) in the propagator with the “renormal-
ized” mass

my(p) = ymi+2(p)/c (19)

Here m, is the mass one actually measures in the labora-
tory; notice that it is a function of p(')—though as it turns
out this variation is typically rather slight.”! At this stage it
is also m{‘imte, but we are going to take care of that in a
moment.

IV. REGULARIZATION

Now that we understand the physical significance of di-
agram 11 (and its higher-order cousins), let us return to
the essential problem: the divergence of the associated am-
plitude, Eq. (16). Our first task is to “regularize” the in-
tegral: rewrite it in such a way as to isolate the infinity.
Since the trouble occurs at large r, we might, for example,
truncate the radial integral at some “cutoff” value R, sep-
arate out the R-dependent part of the ansyer, and save for
later the question of what to doas R— . 23 A more elegant
way of accomplishing essentlally the same purpose is to
multiply the mtegrand by R*/(g*+R?); this gives us two
extra factors of r in the denominator of Eq. (17), and thus
renders the integral finite. Again, the “correct” (infinite)
value would be the limit R — «. But there is a much nicer
way to regularize integrals of this kind, wh1ch was intro-
duced by ’t Hooft and Veltman in 1972?* and is called
“dimensional regularization:” we do the calculation in 4
— € dimensions, and at the very end of the problem, when
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we have isolated and neutralized the term that blows up,
take the limit €—0.%

To begin with it is useful to get the angle dependence (in
the term p+q) out of the integrand by exploiting a famous
trick of Feynman’s. Noting that

dx
AB~ Jo [A(1—x)+Bx]?
(which is easily proved by direct integration) we obtain
1
(@ +mp) [(p=4)*+me]

(20)

1 dx
=fo U@ +mpe) (1—-x) + [ (p=9) +me1x)
1 dx
- |, @ 2D
where ¢’ =¢—px and
[N(x)]2Eﬁzx(l—-x)+m§c2(l—x)+méc2x.
Thus the amplitude [Eq. (16)] can be written®

A= (—27f f(q+N)

We propose to evaluate the amplitude in (4—e€) dimen-
sions. This means replacing

(22)

(23)

d'g 1 X
by
d'=q 1

— —€ 3—€
(217')4—6_(217')4?6’3 drd Q.

Meanwhile,?’ g carries the dimensions of momentum to the
power (1+€/2); to keep track of this, let us write

g=8o(Mc)!*¢2, (25)

where M is some convenient reference mass (say, the av-
erage of m,, mg, and m¢), and g, is now a dimensionless
coupling constant. Then

(24)

go(Mc)*+e P o
T enFE f f (P +N?)? '
(26)
Now, the integral over all angles in » dimensions is well
known:*
. 2,”.'1/2
fd Q_I‘(n/Z)' 27)

(For example, in two dimensions we have [ 0”d¢=21r, and
in three dimensions f3"d¢S7 sin 6d0=41.) That, of course,
is for integer values of n, but we shall extend the formula to
the case of (4—e€) dimensions [indeed, this—together with
Egs. (24) and (25)—is what we mean by evaluating the
amplitude in (4—¢) dimensions]:

dS—eQ 2,",2—6/2
J r(2—e/2)’

As for the radial integral, it can be found in any table of
definite integrals; assuming €> 0,

(28)
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0 ’3_5
fo —rz—_{j\,—z?dr 2N€F(€/2)F(2 —€/2).

(29)
Thus we are left with
( )2+e 1
M= &z)a-)—razl‘(eﬂ)f N—¢dx. (30)
0

We are interested eventually in the limit €e-0, so let us
expand in powers of €. The only singular term is the
gamma function:*

1
F@) = —r+()z+( )24 (31)

(where y=0.577216...is the Euler—Mascheroni constant).
For the rest we use the expansion

1
z‘=e‘1“=1+61nz+562(lnz)2+--- (32)

Collecting like powers of €, we find:
2

goMc\?3[2 1 N
PRNTS  VE

+()E+|.

(33)

The x integral can be evaluated in closed form (though the
result is not terribly illuminating):

1 ‘52x(1—x)+m 21— x)+mcclx
XEJ;) ln( 41T(MC)2 )d

mBmC) (m,%—mf;)c2

=—2+ln(4ﬂM7 ;z* In(mc/mg)

: (EZHm%eré)cz_a), (34)

—;7 In 2’"13"1CC2
where

a= P+ 20 (mh+mZ) A+ (my—m2) .

Regularization does not change anything—the ampli-
tude [Eq. (33)] is still infinite in the real world of 4 dimen-
sions (€—0). But it does cleanly zsolate the smgulanty it’s
the 2/€ term in the square brackets.’* Now our job is to
eliminate this singularity altogether.

V. RENORMALIZATION

Suppose we introduce a new “self-interaction” of the
form A—A ( F1g 17),3! with the associated “vertex factor”

goMc

4 e’
and agree to do all calculations in (4 —¢€) dimensions, tak-
ing the limit €—0 only at the very end of the process, after
adding all amplitudes of a given order. Notice that this
“mass insertion” (or “mass counterterm”) is second order
in the coupling constant—the same as .#, [Eq. (33)];
whenever an A line contains a loop of the form Fig. 11,
there will be another diagram of the same order, with a
“X” in place of the loop. The combined amplitude is the
sum of the two, and the coefficient in Eq. (35) has (obvi-
ously) been carefully chosen so as to cancel the singular

(35)
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A

Fig. 17. Mass insertion.

term coming from the loop [Eq. (33)]. We can now take
the limit €0, and the result is perfectly finite. In partic-
ular, for A— A, we have (to second order),

(55 e [ ol

In Fig. 18 we have plotted the resulting renormalized mass
[Eq. (19)] as a function of momentum.?

From a technical point of view removing the infinity in
Eq. (33) has been absurdly easy—we simply introduced a
new coupling tailor-made to eliminate the offending term.
But how are we to justify this seemingly ad hoc procedure?
The essential idea is as follows: The parameter m, enters
the theory via the propagator (Rule 3), but although we
have called it “the mass of the A particle,” there is no a
priori guarantee that it represents the physical mass of the
A, as we would measure it in the laboratory—on the con-
trary, we have already seen [Eq. (19)] that it is not. By
introducing the mass counterterm (Fig. 17) we have in
effect added a constant (dependent on ¢, to be sure, but not
on the momentum)>® to the mass of the A. Since the
“bare” mass (m,) is not observable anyway, it can hardly
matter how we apportion it between the propagator and
the counterterm—all that matters is the final physical mass,
and that includes both of them. Of course, it is awkward
that the counterterm blows up as €—0, but then, exactly
the same thing happens in classical electrodynamics, where
the infinite potential energy of a point charge obliges us to

(36)

107

—

200 200 600 800

1000

Fig. 18. Renormalized mass as a function of momentum, for the case
mg=mc. Speclﬁcally, what is plotted is y(x), where (m})?==(constant)
— (Mgy/4m) 2y(x) and x= _2/(2ch)
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introduce a (negative!) infinite counterterm to make the
physical mass come out finite.

V1. OTHER DIVERGENT DIAGRAMS

But we are not quite done yet, for the simple loop (Fig.
11) is not the only divergent diagram in ABC theory. The
integrals we encounter [such as Eqgs. (10) and (11)] are of
the form

fF(f)d‘q—» IF(—rz)rjdrdﬂ—» Jw Pdr.  (37)

The integrand goes like some power (D) of r, at large 7,
and the integral is convergent only if D is less than —1. [In
Eq. (11), D=+1, and the integral is quadratically diver-
gent; in Eq. (10), D= —1, and the integral is logarithmi-
cally divergent.) Now, the generic Feynman diagram has
E external lines, I internal lines, and V vertices. Every
external line attaches to one vertex, every internal line con-
nects two vertices, and every vertex joins three lines, so

E421=3V. (38)

There is a propagator ( «<g~2) associated with each inter-
nal line, so these contribute —2I to D. Each internal mo-
mentum introduces a factor of d'g, but each vertex brings
in a delta-function, and this enables us to perform V' —1 of
the integrals (the last delta involves external momenta
only, so it does not count). Thus integration over the in-
ternal momenta contributes 3[7/— (V' —1)] to D. All told,
then, D= —2/+3(/—V+1), or, using Eq. (38) to elimi-
nate [,

Vv
2
If D> —1, the diagram is certainly divergent; on the
other hand, if D < —1 the diagram is not necessarily con-
vergent, for we have not distinguished the different inte-
gration variables g; that go into calculating the amplitude.
It may be that one of the integrals diverges (D;> —1) even
though the fotal D is in the convergent range. In general, a
Feynman diagram is convergent if it and alI its subdia-
grams have D < —1; otherwise it is dlvergent (A subdi-
agram is any piece of the original that can be separated out
by cutting lines.) But according to Eq. (39), D> —1 im-
plies
3V+ELS, (40)

and since E is at least 2, this means V'<2. Apart from the
trivial case ¥'=1, E=3 (which is the primitive vertex it-
self, and is certamly not d1vergent), the only solution is
V=E=2, which is precisely the one-loop diagram we stud-
ied earlier. So as it turns out the only divergent diagrams in
ABC theory are those that contain simple loops (Fig. 11)
as subdiagrams.’’ As indicated earlier, all such diagrams
are rendered finite by the associated mass counterterms.

It is of interest to see explicitly how this mechanism
works in higher orders. Consider, for example, the fourth-
order contributions to A - A (Fig. 14)—to which we must
now add five mass-counterterm diagrams (Fig. 19). Dia-
gram (d) is finite (it contains no simple loops or mass
insertions). The infinities in (a) are exactly canceled by
those in (e), (f), and (i) as we now demonstrate. The
amplitude for (a) breaks into a product,

D=3— (39)

) by
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Fig. 19. Fourth-order mass counterterm diagrams for A—A.

M?
=3 41
"la p2 _ mAC2 ’ ( )

where .# is the single-loop amplitude Eq. (10), which we
evaluated in Eq. (33):

) e}

€
and J=y+X+()e+--- is finite (as €-0). The ampli-
tudes for (e) and (f) are equal:

/:-( (42)

gMc\*2 A
jg:jf:( A ) € pPP—mic’ (43)
and the amplitude for (i) is
goMc\*4 1
In the sum,
goMC 4 2 2
Mot MM M= (7»_77—) (E—J)
4/2 7 4 1
—6(6— )+?]P2—’"A02
(45)

the terms in 1/€ and 1/€* cancel out, as promised.
This leaves only the pairs [(b), (g)] and [(c¢), (h)] to
worry about. The amplitude for (g) is easily calculated:

2 4
=i 7;) (%’:ic—) o), (46)
where
d'q
0= | G-

Notice that this integral (with D= —3) is finite.’® Mean-
while, diagram (b) yields

1 (goMc\* d*qy
“”'F—?( 4 ) f (¢1—mc?)[(p—q1)> —mc?
d'q,
X(f (q%—micz)[(ql—qz)z—méczl)‘ e

(47)
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Fig. 20. Tadpole diagram in ¢* theory.

The ¢, integral is, of course, the one we encountered
earlier—it comes from the simple loop subdiagram. Ac-
cording to Eq. (10) this integral is equal to [(2m)*/
ig?)# (q,), where # is given by Eq. (33) with m, in place
of my; thus

L (aMe ZJ‘ A (q)d'q
”_?( 4r ) (@ —mgc®)* [ (p—q)* —mc’] '9)
. (4

Isolating the divergent term in .# [as in Eq. (42)] we
obtain

2 4
-/b='—i('7;2;) (g(::l:c) Q(p)
i (goMc “J J(q)d'q
+?( 4 ) (F—mye?) [ (p—g)2—mic?]

(50)

The first term cancels .#, [Eq. (46)], and the second is
finite.> Thus the mass counterterm, which was designed to
remove this infinity in second order, automatically removes
all infinities in fourth order as well.

In other theories the situation if not so simple, because
there exist two or more species of divergent (sub)dia-
grams. For example, in six dimensions diagram (d) in Fig.
14 is divergent, and one must introduce another counter-
term (of order g*) to kill it. In ¢3‘ theory (which amounts
to making the A, B, and C particles identical) there is a
divergent *“tadpole” diagram (Fig. 20). In quantum elec-
trodynamics the triangle diagram (Fig. 21) is divergent
(electron propagators go like 1/g, not 1/¢%); elimination of
this infinity requires renormalization of the coupling con-

Fig. 21. Triangle diagram in QED.
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stant. More subtle and insidious things can happen, too. In
Eq. (50) the second term is finite, even though J(gq) itself
blows up at large g [it goes like In(q), but there are enough
powers of ¢ in the denominator to overcome the loga-
rithm].* The reason is that the infinity in (b) comes from
the simple loop, and that is covered by the first term in Eq.
(50). But if we had a diagram with D> —1, which also
contained a divergent subdiagram (something that cannot
occur in ABC theory, but does in other models), then the
analog to the second term in Eq. (50) would itself blow up,
and we would need a further counterterm (of order g4) to
fix it.

Typically, then, the mass counterterm becomes a com-
plicated infinite series in powers of g, and the coupling
constant itself must be renormalized in a similar manner. It
may even happen that no set of counterterms renders the
theory finite (this is the case, for example, for ABC theory
in more than six dimensions). In that event the theory is
said to be “nonrenormalizable;” such theories are presum-
ably unacceptable as models of the real world, since they
do not yield intelligible predictions. The model we have
explored here (ABC theory in four dimensions) is the sim-
plest possible example of renormalization, in the sense that
a single mass counterterm, of order &, suffices to render
the theory finite.”
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S For the purposes of this paper the Feynman rules will be taken as
axiomatic. They can be derived from the underlying quantum field
theory, once the Lagrangian for the system has been specified. See C.
Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill, New
York, 1980), Chap. 6, or Ref. 5, Chap. 11. The Feynman rules are
somewhat different, of course, for other theories (quantum electrody-
namics, weak interactions, chromodynamics, etc.), but their basic
structure is similar.

"It goes without saying that the ABC particles have no electric charge;
their only interaction is the one represented by Figure 1.
$Many authors let time run to the right; it is a matter of taste. By the
way, the horizontal dimension (for us) has no spatial connotation; for
example, Figure 2 does nor mean to suggest that the force is repulsive—
maybe it is, and maybe it isn’t.

9The four-momentum of a particle of (rest) mass m and velocity v is
7= P \p5p’) = (E/cpop,p,), where E=ymd is the relativistic en-
ergy of the particle and p=(p,,p,p,) is its relativistic momentum: p
=ymv. Here ¥ = 1/1—(v/c)? and ¢ is the speed of light.

°In ABC theory the coupling constant has the dimensions of momen-
tum; a dimensionless coupling parameter can be defined by dividing
through by Mc, where M is some convenient reference mass (say, the
average of m,, my, and m).

UThe “square” of a four-vector is defined as follows: ¢*=(¢°)>—(¢')?
—(g")*—(g*)2 1t is positive for a “timelike” four-vector, and negative
for a “spacelike” four-vector. For a real particle, the square of the
four-momentum must obey the equation p’=(E/c)’>—pp=(mc)>
However, “virtual” particles (which begin and end within a Feynman
diagram) do not satisfy this constraint, and hence the propagator—in
spite of appearances—does not imply division by zero. When necessary
to resolve ambiguities of integration a term + /¢ is added to the denom-
inator, where ¢ is a small positive number that is taken to zero at the
end of the calculation.

2The Dirac delta function is discussed in Appendix A of Ref. 5. For our
present purposes it is enough to know that §f(x)6(x—a)dx=f(a), for
any function f(x), provided the domain of integration includes the
point a. The four-dimensional delta-function is simply the product of
four one-dimensional deltas: 8*(k) =8(k%)8(k")8(k2)8(K).

BNotice that the Feynman rules rigorously enforce conservation of en-
ergy and momentum at every step. The only sense in which virtual
particles are kinematically anomalous is that they do not “lie on their
mass shell”—see Ref. 11.

YThis is a fourfold integral over each internal momentum:
d*'q=dq"dg'dg’dq’, and all integrals run from — oo to 4 . Notice that
every & is accompanied by a factor of (2#7), and every d carries a factor
of (2m)~L

153, 3. Sakurai, Advanced Quantum Mechanics ( Addison-Wesley, Read-
ing, 1967), pp. 41 and 312; Ref. 5, Sec. 6.2.

168 is a product of statistical factors: (1/1) for each group of j identical
particles in the final state. The step function, 8(x), is 0 (when x <0)
and 1 (when x> 0). The “dot product” of two 4-vectors is pq=p°¢°

"The details are given in Ref. 5, examples 6.6 and 6.7. If there are three
or more particles in the final state, the outgoing momenta are not
kinematically determined, and we need to know the specific functional
form of .# before the integration can be performed.

13We shall for the moment think of Fig. 11 as a free-standing Feynman
diagram, with p, and p, as external momenta, constrained to lie on the
mass shell of particle A [i.e., p}=p2= (myc)?]. Later on, however, the
same figure will be used to represent a piece of a larger diagram, in
which case p, and p, become unconstrained internal momenta, perhaps
even spacelike (if the figure appears in the horizontal orientation).

The integrand in Eq. (10) has poles at ¢° = =*[\gq+ (mpc)’
~ i8] and at §° = p° £ [J(p—q)*(p—a) + (mcc)? — i8], where
5,=¢/[2\Jaq+ (mge)?] and 8,=¢/[2 Jip—a)(p—q)+ (mee)?] are
small positive numbers. To ensure that all four poles lie in the second
and fourth quadrants (as required for the Wick rotation argument) we
shall assume that p°=0. More precisely, we assume that p* is spacelike,
and adopt the Lorentz frame in which p°=0 (see Ref. 18). The case of
timelike p* is a good deal more complicated, and we shall not pursue it
here. (Incidentally, there is a sound physical reason why the timelike
case is more difficult: at sufficiently high energy it is possible to create
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real B and C particles, not merely virtual ones, and this gives the
amplitude a much richer analytic structure.)

20f course, the integral 7 [in Eq. (11)] also diverges, and hence the
Wick rotation argument [leading to Eq. (15)] is suspect. If this disturbs
you, cube the integrand in Eq. (11) and run the same argument with
the resulting finite integral. The point is that if the original (Minkowski
metric) integral is finite, then it is equal to the Wick-rotated ( Euclidean
metric) version, and conversely, if the latter diverges, so too must the
former. But it is easier to test for convergence in the Euclidean form—
indeed, it can usually be done by inspection, simply counting the pow-
ers of ¢ in the numerator and the denominator.

2The renormalized mass is not to be confused with the so-called “rela-
tivistic mass” (my=vym), which involves a purely kinematic depen-
dence of inertia on velocity. It is somewhat analogous to the “effective
mass” of electrons in a solid; see D. Park, Introduction to the Quantum
Theory (McGraw-Hill, New York, 1974), 2nd ed., Sec. 13.2. A similar
dynamical mass correction occurs in classical electrodynamics, where
the energy associated with the electromagnetic fields of a charged par-
ticle contributes (via Einstein’s formula E=m¢c?) to its inertia; see D.
J. Griffiths and R. Owen, “Mass renormalization in classical electro-
dynamics,” Am. J. Phys. 51, 1120-1126 (1983).

ZIncidentally, the mass correction for a point charge in classical elec-
trodynamics (Ref. 21) is also infinite, because the electrostatic poten-
tial energy diverges. Perhaps what this means is that there is no such
thing as a point charge in classical electrodynamics.

ZThere is an “uncertainty principle” sense in which large momenta cor-
respond to short distances. One might argue that the infinity in Eq.
(10) is an artifact of our ignorance about the small-scale structure of
the particles, and the cutoff is simply a crude way of acknowledging
this ignorance. Such an interpretation is close in spirit to the classical
resolution proposed in Ref. 22,

%G, *t Hooft and M. Veltman, “Regularization and renormalization of
gauge fields,” Nucl. Phys. B 44, 189-213 (1972). See also Refs. 2, 3,
and 4.

BIn terms of Eq. (17), the three regularization procedures suggested
amount, respectively, to (i) lowering the upper limit of the integral,
(ii) increasing the power of r in the denominator, and (iii) reducing
the power of r in the numerator.

%In the change of variables (g—¢’ we have shifted the ¢* axis up to
(¢')*=¢"+ip°x, which is permissible only if the integrand has no sin-
gularities in the intervening strip. As before (see Ref. 19) we avoid the
problem here by assuming p°=0. This also guarantees that N? is pos-
itive definite.

YA simple way to determine the units of g is to recalculate the lifetime
of the A(A—~B+C) in 4—e€ dimensions. The amplitude is still g [Eq.
(1)], but in the Golden Rule (3) 8*(p)—8*<(p)~p~ =9 and
d'p-d*~p~p*~¢, whereas 8(p*)~p~? is unchanged. Thus 1/7
=TI~ (g*/#im) (mc) ~¢, and hence g ~ (fim/T)mc*~ (mc)**e.

%The volume of an n sphere is calculated in many calculus books; for

example, T. M. Apostol, Calculus, Vol. II (Wiley, New York, 1969),
2nd ed., p. 411. The surface area can be found by differentiating this
formula with respect to the radius, and the solid angle is then obtained
by setting the radius equal to 1.

BFor a derivation of this formula see Ryder (Ref. 3), Appendix 9B.

%The singularity in .#, looks like a simple pole at €=0, but this is
deceptive. Equation (29) is false for negative ¢; in fact, the integral
diverges for € <0, and the amplitude is infinite—as was clear already
from the power-counting argument in Eq. (17).

3The Feynman rules for this self-interaction are the same as before,
except that the delta-functions enforcing conservation of energy and
momentum are of the form 6*(k, + k,). Incidentally, we must of course
do exactly the same thing for B and C as we do here explicitly for A.

2 4 [in Eq. (36)] is the lowest-order contribution to Z; our result,
therefore, is correct only to second-order in g, Note that p*=(p%)?
—pp= _1—72 is a negative number, because we are assuming the mo-
mentum is spacelike (see Ref. 19).

3We could “soak up” the other constant terms in Eq. (33), while we are
at it, by adding the appropriate constants to the 2/¢€ in Eq. (35). But we
cannot add anything that depends on p, for that would not amount to
reapportioning the mass, but would describe an entirely different the-
ory. (Actually, that last statement is a little too strong: we could add a
term proportional to p?, for this can be combined with the first term in
the propagator, and the resulting overall factor absorbed into a renor-
malized coupling constant. In more complicated theories this is in fact
necessary, but we do not need such a term in the ABC model.)

4See Ref. 22 and the last citation in Ref. 21. Michael Hans (Ref. 4)
likens renormalization to changing the reference point for electrostatic
potential, in those situations for which using the “point at infinity”
gives rise to a divergent integral, and we are obliged (formally) to
subtract an infinite constant in order to compensate for our poor initial
choice of reference point.

3This is a particular instance of “Weinberg’s theorem,” which is dis-
cussed in Ref. 3.

3t is true that D=0 for this case, but since there is no integration
involved, the amplitude is still finite.

3"We have not included mass counterterm diagrams in this discussion,
for the obvious reason: any diagram containing such a term is diver-
gent, because of the factor 1/€ in the coupling [Eq. (35)).

3¥We are only concerned with the infinite terms, at this point, so we have
used g=gyMc and done the integral (47) in four dimensions.

3In truth, there is a lacuna in this argument, since Eq. (50) obliges us to
integrate over all ¢, and we have only worked out J(g) for spacelike

0A theory in which a finite number of counterterms is needed, each of
finite order in the coupling constant, is sometimes called “super-
renormalizable”’—see Collins, Ref. 3, section 5.7.3. The ABC model
(requiring just one) is about as super-renormalizable as a theory can
get.
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