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We outline the properties of a symmetric random walk in one dimension in which the length of the
nth step equala”, with A <1. As the number of stedd—c, the probability that the end point is

at x approaches a limiting distributioR, (x) that has many beautiful features. Pox1/2, the
support ofP, (x) is a Cantor set. For 1#£A <1, there is a countably infinite set afvalues for
which P, (x) is singular, whileP, (x) is smooth for almost all othex values. In the most interesting
case ofA=g=(5—-1)/2, Py(x) is riddled with singularities and is strikingly self-similar. This
self-similarity is exploited to derive a simple form for the probability measi#éa,b)
Eng’g(X) dXx. © 2004 American Association of Physics Teachers.
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I. INTRODUCTION cussed, mostly in the mathematics literature, starting in the
1930s' Interest in such random walks has recently revived
This article discusses the properties of random walks iPecause of connections with dynamical systéfh&ecent
one dimension in which the length of tmgh step changes reviews of the geometric random walk can be found in Ref.
systematically witm. That is, at thenth step, a particle hops 9 Se€ also Ref. 10 for a review of more general iterated
either to the right or to the left with equal probability by a random maps. In contrast, there appears to be no mention of

distancef(n), wheref(n) is a monotonic but otherwise ar- ]E?:mggc;rpelt{lc random walk in the physics literature, aside
bitrary function. The usual nearest-neighbor random walk is Finally, the geometric random walk provides an instructive

recovered wheri(n) =1 for all n. set of examples that can be analyzed by classical probability
Why should we care about random walks with variabley,eqry and statistical physics tog 13 These examples can

step lengths? There are severalnrea_sons. First, fgabmet-  gorve as a useful pedagogical supplement to a student's in-

ric random walk where f(n)=A" with A<'1, a variety of  roduction to the theory of random walks. As we shall dis-

bgautlful and unantl_C|_pated featu_res afiséas illustrated in cuss, there are specific valuesiofor which the probability

Fig. 1. A very surprising feature is that the character of thegjstribution can be calculated by elementary methods, while

probability distribution of the walk changes dramatically asfor other\ values, there is meager progress toward an exact
A is changed by a small amount. Most of our discussion willsg|ytion, even though many tantalizing clues exist.

focus on this intriguing aspect. We will emphasize the case
A=g=(/56—1)/2, the inverse of the golden ratio, where the
probability distribution has a beautiful self-similar appear-!I- PICTURE GALLERY

ance. We will show how many important features of this The displacement of a one-dimensional random walk after
distribution can be obtained by exploiting the self-similarity, P

as well as the unique numerical propertiegof N+1 steps has the for_mNZEf’LOe“f(n)_’_ where eache,

There also are a variety of unexpected applications of rantakes on the values 1 with equal probability. Consequently,
dom walks with variable step lengths. One example is spedhe mean-square displacemefdi) can be expressed as
tral line broadening in single-molecule spectroscopiere >, f(n)2. If this sum is finite, then there is a finite mean-
the energy of a chromophore in a disordered solid reflects thequare displacement &— . In such a case, the end point
interactions between the chromophore and the molecules gfrobability distribution therefore approaches a fixed litfit.
the host solid. For a dipolar interaction potential and forHenceforth, we will focus on the case of geometrically
two-state host molecules with intrinsic energies, the en-  shrinking step lengths, that i§(n)=\" with A <1. We de-
ergy of the chromophore is proportional¥g+ erj’3, where  note the end point probability distribution afthr steps by
ry is the separation between the chromophore andjthe P,(x,N) and the limiting form liny_...P,(X,N) by P, (x).
molecule. This energy is equivalent to the displacement of &e will show thatP, (x) exhibits rich behavior a& is var-
geometric random walk witti(n)=n"3. ied.

Another example is the motion of a Brownian particle ina To obtain a qualitative impression &, (x), a small pic-
fluid with a linear shear flow, that is, the velocity field is tyre gallery ofP,(x) for representative values af>1/2 is
vy(y)=Ay. As a Brownian particle makes progressively given in Fig. 1. As we shall discuss, whan=1/2, P;,(X)
longer excursions in thery directions(proportional tot*?), =1/4 for |x|<2 andPy(x) =0 otherwise. Fon<1/2, the
the particle experiences correspondingly larger velocities isupport of the distribution is fractdbee below As \ in-
the x direction (also proportional tdl’z). This gives rise to0  creases from 1/2 to approximately 0.6, (x) develops a
an effective random walk process in the longitudinal direc-spiky appearance that changes qualitatively from multiple
tion in which the mean length of theth step grows linearly  |ocal maxima to multiple local minimésee Fig. 1 In spite
with n, that is,f(n)=n.® of this singular appearance, it has been proven by

Historically, the geometric random walk has been dis-SolomyaR® that the cumulative distribution is absolutely
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continuous for almost alk >1/2. On the other hand, Erdo  =2,3,.... As we shall discuss, the largest in this sequence,

showed that there is a countably infinite set)fvalues, X=g (the inverse of the golden rajioleads to especially
given by the reciprocal of the Pisot numbers in the rangeppealing behavior and the distributiBy(x) has a beautiful
(1,2 for which P,(x) is singular.[A Pisot number is an self-similarity as well as an infinite set of
algebraic numbefa root of a polynomial with integer coef- singularities%{3'7'l7'18

ficients all of whose conjugateghe other roots of the poly-

nomial) are less than one in modullf.It is still unknown, lll. GENERAL FEATURES OF THE PROBABILITY
however, if these Pisot numbers constitute all of the possibl®ISTRIBUTION
A\ values for whichP,(x) is singular. ForA>0.61, P,(x) For A<1/2, the support oP,(x), namely the subset of

rapidly smooths out and beyond=0.7, there is little visual the real line where the distribution is nonzero, is a Cantor set.
evidence of spikiness in the distribution at the $@esolu-  To understand how this phenomenon arises, suppose that the
tion scale of Fig. 1. first step is to the right. The maximum displacement of the
There is a simple subset af values for which singular subsequent walk is/(1—\). Consequently, the end point of
behavior can be expected on intuitive grounds. In particularthis walk necessarily lies within the region
consider the situations whehesatisfies N N
N [ -
1_2 \"=0. l—)\’l+ 1-\|

n=1 Since the left edge of this region is positive, the support of
This condition can be viewed geometrically as a walk whosé,(X) divides into two nonoverlapping regions after one step
first step(of length 1 is to the right andN subsequent steps (see Fig. 2 This same type of bifurcation occurs at each
are to the left such that the walker returegactlyto the  Step, but at a progressively finer distance scale so that the
origin afterN+ 1 steps. This positional degeneracy, in which support ofP, (x) breaks up into a Cantor set.
points are reached by different walks with the same number The evolution of the support of the probability distribution
of steps, appears to underlie the singularitie®jifx). The  can be determined in a precise way by recasting the geomet-

roots of the above equation give the solutibr g=(\/5 ric random walk into the random map,
—1)/2~0.618, 0.5437, 0.5188, 0.5087, 0.5041... far X'=x1+\X, 1)

1
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By restricting the magl) to these two subintervals, we find
that they are transformed into four nonoverlapping subinter-
vals after another iteration. If we continue these iteratimhs
infinitum, we obtain a support fok, that consists of a col-
lection of disjoint sets that ultimately comprise a Cantor'set.
On the other hand, fox=1/2, the map again transforms
J, into the two subintervals given in E¢6), but now these
subintervals are overlapping. Thus the suppor® pfills the

entire rangd — Xmax»Xmas)-

IV. EXACT DISTRIBUTION FOR A=2"¥m

Fig. 2. Fragmentation of the support of the probability distribution during  In this section, we deriv@x by Fourier transform meth-

the first two steps of the shrinking random walk whesi 1/2. Afterk steps, ods forN=2"Ym As we illustrate below. these cases turn

the support fragments intd2ntervals each of lengthi/(1-). out to be exactly soluble because of a set of fortuitous can-
cellations in the product form for the Fourier transform of
the probability distribution.

which describes how the position of a particle changes in For a general random walk process, the probability

single step. We can see that this map is equivalent to th (x,N)Stthat the end point of the walk is at at the
original random walk process by substitutingfor x on the ~ (N+1) 1 Step obeys the fundamental ~convolution
right-hand side of Eq(1) and iterating. Therefore the map is €dquation™
equivalent to the random sur¥=X e \". _ v N /

Similarly, the equation for the probability distribution at POGN) ; POEXEN=D)n(X), 0

the Nth step satisfies the recursion relafiof? wherepy(X) is the probability of hopping a distangeat the

x+1 Nth step. Equatioi(7) expresses the fact that to reachfter
T'N_l) : (N+1) steps the walk must first reach a neighboring point
x—x' after N steps and then hop from—x' to x at step
(N+1). The convolution structure of Eq7) cries out for
employing Fourier transforms. Thus we introduce

1
Py(X,N)= = T’N_l

2PA

+Py

Equation(2) states that for a particle to be atat the Nth
step, the particle must have been eitherat L)/\ or at
(x=1)/\ at the previous step; the particle then hopsxto
with probability 1/2. For any\ <1, the probability distribu-
tion necessarily approaches a fixed lirRif(x) for N—oo. .
ConsequentlyP, (x) remains invariant under the mapping p(k'N):j P(x,N)e'**dx, 9
given by Eq.(1) and thus satisfies the invariance condition —o

pr(k) = f :pN(X)e‘kxdx, ®)

1 x—1 x+1 and substitute these forms into E@). If the random walk is
Py (X)= > PA< x + Py N 3 restricted to integer-valued lattice points, these integrals be-
come discrete sums. The Fourier transform turns the convo-

BecauseP, (x) can have a singular appearance, it often islution in x into a product ink space’’ and therefore Eq(7)

more useful to characterize this distribution by irebabil- ~ becomes the recursion relation
ity measure M(a,b) defined by P(k,N)=P(k,N—1)py(K). (10)
M. (a.b)= fbdx P.(). ) We now iterate thElO) to obtain the formal solution
a
The integral in Eq(4) smooths out singularities iR, itself, PkN)= P(k,O)n];[O Pn(k)- (D

and we shall see that it is more amenable to theoreticall; I ider the situati here th d Ik
analysis. The invariance condition of H§) can be rewritten enerally, we consider the situation where the random wa

in terms of this measure as begins at the origin. ThuB(x,0)= 8, o and correspondingly
from Eq. (9), P(k,0)=1. To calculateP(x,N), we evaluate

a—-1 b—-1 a+1 b+1

—, |+ M,

the product in Eq.(11) and then invert the Fourier
NN NN

- O gransform*? To simplify the notation for the examples of this

] ) section, we defindl,(x) =P,-um(x). We explicitly con-
Equation(5) can now be used to determine the support ofgiger the casesi=1, 2, and 3. From these results, the quali-

M. Clearly, the support oM, lies within the interval  (5ive behavior for generan is then easy to understand.

= XmaxXmads WIth: Xpma,=1/(1=N). For A<1/2, the The single-step probability distribution at theh step is
map (1) transforms the interval, into the union of the two

nonoverlapping subintervalsee Fig. 2, Pr(X)= 3[S(x—\")+ S(x+AM],

ZM}\(a,b)=M)\
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and the corresponding Fourier transform is
Pn(k)= J Pn(x)e*dx=cog kr"). (12)

The Fourier transform of the probability distribution after
N+ 1 steps is the product of the Fourier transforms of the
single-step probabilitie¥*® Thus from Egs.(11) and (12)

we have

N
P,(k,N)=]] cogkaM. (13)

n=0

We now apply this exact solution to the illustrative cases

of A\=2"Y" FEqor the simplest case df=2_1, the step Fig. 3. Probability distributions of the geometric random walk for

—o—1m — P .
length systematically decreases by a factor of 2. By enumer=2  1©' M=1, 2, and 3(dotted, dashed, and solid lines, respectively

ating all walks of a small number of steps, it is easy to see

that the probability distribution is uniformly distributed on a

periodic lattice whose spacing shrinks by a factor of 2 at )

each step. This is a precursor of the uniform naturB gfx) _ J"” , " X=X

in the N— o limit. Algebraically, the product in Eq13) can Ma()= | dxTTy(xX)x V21T, va | (16

be simplified b ing the tri tric half-angle f I
toeysi'g%pl S By HSIG SIS HIQONOMEHIC HARSNgis OMHE aEither by this direct approach or by straightforward Fourier

inversion as given in the Appendix, the final resul{fay. 3

I1,(k,N)=cosk cogk/2)- - -cog k/2")

Csin2k) sink sinki2¥ Y 7z (IX<2-v2)
~ 2sink 2sinki2) 2 sin(ki2V
- " )- e Ma(9=1 1 1—ﬂ (2—v2<|x|<2+V2)
sin(2k) sin(2k) 4 243
= N g 2k aSNoe (14
0 (|x|>2+v2).
Thus the inverse Fourier transform gives an amazingly 17

simple result. The probability distribution is merely a square-tps the distribution is continuous, but its first derivative is

wave pulse, withll;=1/4 on the interval[—2,2] and  giscontinuous at the four poinis= +2+v2.

I1,=0 otherwise. Continuing this same train of logic, the solution for gen-
The distribution forh =22 can be calculated similarly. grgj)=2"1m s

The successive cancellation of adjacent numerators and de- _

nominators as in Eq(14) still occurs. These cancellations I, sin(2/™k)

become more apparent by separating the factors that involve I(k)= 2(m+D)Zm -

sin(/2)) and sink/2"1?). Then by following exactly the —173 : i it

same steps as those leading to 84), we obtain the Fourier For example, foh =2 the resulting probability distribu-

(18

transform tion in real space is
. . 1
TT,(k)= sin(2k) _S'n(ﬁk)_ (15) a(xi—xg—xi—xf—xz) (Ix[<xy)
2k Vak
2 2 2
This product form has a simple interpretation in real space. If @(X4_X3—X2—X2—2XX1) (X1 <|x| <x2)

we partition the walk into odd stef$4,3,5,..) and even steps

(2,4,6,..), then both the odd and even steps are separately Il3(x)=
geometrical random walks withk=2"1, but with the initial

step length of the odd walk equal to 1 and that of the even

1
52X X 2xX0u X)) (<X <xg)

walk equal to 2. In real space, the full probability distri- i(x—x4)2 (X3<|X|<X4)
bution forh =2~ 2is just the convolutions of the constituent 64
distributions for these odd and even walks. Thus in Fourier 0 (|x]>xa),
space, the full distribution is just the product of the constitu- (29
ent distributions, as given in EQL5). where

To invert the Fourier transform in Eq15) by a direct
approach is straightforward but unwieldy, and the details are  x,=—2+2%3+213~0.084 73, (203
given in the Appendix. Another approach is to use the fact 231 13
that the probability distribution is the convolution of two ~ Xp=12—-27"+2"°~1.6725, (20b)
rectangular-shaped distributions—one in the rahge,2] _ 2/3_ »1/3_
for the odd-step walks and the other [irv2,v2] for the Xg= 2427 27"=2.3215, (209
even-step walks. Thus Xa=+2+2%8+ 218~ 4.8473. (200
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This distribution contains both linear and quadratic segments

such that the first two derivatives df; are continuous, but 1 step

the second derivative is discontinuous at the joining points

x;, for j=1, 2, 3, 4(Fig. 3. Generally, forx=2"™, the 2 steps
distribution has continuous derivatives up to oraer-1, 3 steps
while the mth derivative is discontinuous atn? points. As

m—oo, the distribution progressively becomes smoother and 4 steps
ultimately approaches the Gaussian of the nearest-neighbor 5 steps
random walk. —

A final note about the Fourier transform method is that it 2¢"! g

prowdes a convenient way to calculate the moments, Fig. 4. First five steps of the golden walk enumeration tree. Notice that the

distance between adjacent end points can only dgied? 2g" 1.

(%)= [ xpyx0dx, @

for all values ofn.%° By expandingP, (k) in a power series A. Enumeration

for smallk, we have L . :
It is simple to specify all walks of a given number of steps.

ikx Each walk can be represented as a string of binary digits with
Pk(k):f dx Py(x)e 0 representing a step to the left and 1 representing a step to
the right. Thus we merely need to list all possible binary
zf dx Py (x)(1+ikx—K3x2/21+-++) numbers with a given number of digité to enumerate all
N-step walks. However, we need a method that provides the
K2(x2)  K4(x) end point location without any loss of accuracy to resolve the
=1- (220  fine details of the probability distribution.
2! 4! The basic problem of determining the end point locations

That is, the Fourier transform contains all the moments of thénay be illustrated by enumerating the first few steps of the
distribution. For this reason, the Fourier transform is oftenwalk and representing them as the branches of a tree, as
termed the moment generating function. shown in Fig. 4. Folh =g, neighboring branches of the tree

We take the Fourier transform of the probability distribu- may rejoin because of the existence of three-step walke
tion of the geometric random walk and expand this expresstep right followed by two steps left or vice veyghat form
sion in a power series ik to give closed loops. For larghl, the accuracy in the position of a

_ 5 walk is necessarily lost by roundoff errors if we attempt to
Px(k)=cosk cognk)cosA"k)- - evaluate the sum for the end point locatioty=3Ne,g",
k2 (\k)? directly. Thus the recombination of branches in the tree will
1- g*”} 1- T } eventually be missed, leading to fine-scale inaccuracy in the
' ' probability distribution.

However, we may take advantage of the algebra of the
golden ratio to reduce thWth-order polynomial inXy to a
first-order polynomial. To this end, we successively use the
defining equatioy?=1—g to reduce all powers dj to first
order. When we apply this reduction &', we obtain the
remarkably simple formulg"=(—1)"(F,_1—gF,), where
F, is the nth Fibonacci number (defined by
Fo=F,_ 1t+F,_» for n>2, with F;=F,=1). For the

(N%k)?
21

R R

o
k2

If we equate the two power seri¢22) and (23) term by
term, we obtain

<x2>= 1 (248 golden walk, we now use this construction to reduce the
1-\2’ location of each end point, which is of the forﬁﬂ'eng”, to
1 6\2 the much simpler fornrA+Bg, whereA and_B are integers
(x¥= 7| 1+ 2). (24bh  whose values depend on the walk. By this approach, each
1-A 1-x end point location is obtained with perfect accuracy. The

Moments of any order can be obtained by this approach. resulting distribution, based on enumerating the exact prob-
ability distribution forN=<29, is shown in Fig. 5 at various

spatial resolutions. AN=29 this distribution is exact to a
V. GOLDEN WALK resolution of 107.

Particularly beautiful behavior of,(x) occurs when B self-similarity

A =g [see Fig. 1d)]. Unfortunately, a straightforward simu- o o
lation of the geometric random walk is not a practical way to  Perhaps the most striking feature of the end point distri-
visualize fine-scale details of this probability distribution ac-bution is its self-similarity, as sketched in Fig. 6. Notice, for
curately because the resolution is necessarily limited by th&xample, that the portion of the distribution within the zeroth
width of the bin used to store the distribution. We now de-sSubintervall®=[ —g,g] is a microcosm of the complete dis-
scribe an enumeration approach that is exact up to the nuntdbution in the entire interval=[ —g~2,g~2]. In fact, we
ber of steps in the walk. shall see that the distribution withid? reproduces the full

595 Am. J. Phys., Vol. 72, No. 5, May 2004 P. L. Krapivsky and S. Redner 595



Fig. 6. Sketch of the symmetry and self-similarity Bf(x). The dashed
curve is the probability distribution when the first step is to the right. The
full probability distribution is the sum of the dashed curve and an identical
(but shifted curve that stems from the distribution when the first step is to
the left. The measures associated with each lob®,dk) (top) and the
spatial extent of each lobgottom are indicated. Notice that the left ex-
treme of the restricted distribution coincides with the first minimum of the
full distribution.

For example, the first higher-order symmetry is
3 Pg(1+Xx)=Pgy(1—x) (26)

for |x|<g?. Equation(26) expresses the symmetry Bf(x)
aboutx=1 for the subset of walks whose first step is to the
right. We can ignore walks whose first step is to the left
because the rightmost position of such walks is
—1+g+g?+---=g=1—g? Thus within a distance of?
from x=1, only walks with the first step to the right contrib-
ute to the distribution within this restricted range. The prob-
ability distribution must therefore be symmetric abaut 1
within this same range.

Continuing this construction, there are infinitely many
symmetries of the form

k
=Pg<nzo g”—x), (27

Fig. 5. Probability distribution of the golden walk for a 29-step enumerationWIt,h k= 1’2,' .., that represent reer_ctlon symmetry a,bOUt the
at spatial resolution &%, 10°3, and 10 (a)—(c), respectively. Inc), the  POINt that is reached when the firktsteps are all in one
line joining successive points is not shown so that details of the distributiordirection. The kth symmetry applies within the range
remain visible. |X| S h
We now exploit these symmetries to obtain a simple pic-
ture for the measure of the probability distributidvi,. We

C . 3 start by decomposing the full suppartinto the contiguous
distribution after rescaling the length by a facgpr® and the subintervals that span the successive lobes of the distribu-

probability by a factor of 3. Similarly, the distribution in the tion, as shown in Fig. 6. We label these subintervals as
first subintervald'=[g,1+ g?] reproduces the full distribu- J°=,(—g 9) J1=(1—.gzll+gz) 2=(1+g-g%1+g

tion after translation to the left by 1, rescaling the length by”_ &) et’c ) ihere are also ;'nirror i’mage intervals to t,he left of
g~ 4, and rescaling the probability by 6. A similar construc- the o}igin.:]‘kz 3K

tion applies for general subintervals. We now use the invariance condition of E§) to deter-

To develop this self-similarity, it is instructive to construct . h £ th fund | interd4lsF
the symmetries of the probability distribution. Obviously, r‘réme the measures ol these un _ame_nta intendalsFor
J”=(—g,9), this invariance condition yields

P4(x) is an even function ok. That is,

k
3 2 -1 0 1 2 3 Pg<209“+x
“—

Py(X)=Py(—X). (25) Mg(—9,9)= 3[Mg(—(2+9),—9)+My(g,2+9)]
—1lr1_— —
In fact, there is an infinite sequence of higher-order symme- =2[1-My(-9.9)], (28)
tries that arise from the evenness Bf(x) about the end where the second line follows because of left—right symme-
points after one step, two steps, three steps, etc. try and because the intervals (2+9),—9), (9,2+g), and
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(—9,9) comprise the entire support of a normalized distri- The same reasoning appligsitatis mutandisiear the ex-
bution. We therefore obtain the remarkably simple result thatreme points for general, leading to the asymptotic behav-
the measure of the central intervalNl,(—g,g)=1/3. Ifwe  ior P,(A)~A~**""2MAN " particular, this reason gives,
apply the same invariance condition 36, we find Mg(Jl) for the tail ofI1,,,, the limiting behavioA™ 1, in agreement
=%MQ(J°). By continuing this same reasoning to higher- with the exact calculation in Sec. Ill.

order intervalsJ¥, we find, in general, that the measure of

the kth interval is one-half that of the previous interake

Fig. 6). Thus we obtain the striking result

1
Mg(36) = L (29)  VI. DISCUSSION
C. Singularities We have outlined a number of appealing properties of ran-

Another intriguing feature oP(x) is the existence of a dom walks with geometrically shrinking steps, in which the
g A o

series of deep minima in the distribution. Consider, for ex_length O.f thenth step equa_lj& W.'th.)‘<.1' A very striking
ample, the most prominent minima &t =g (see Fig. 5. feature is that the probability distribution of this walk de-
The mechanism for these minima is essentially the same re ends sensitively on the shrinkage facigand much effort
son thatg is sometimes termed the “most irrational” real as been devoted to quantifying the probability distribution.
number—that is, most difficult to approximate by a rationalwe worked out the probability distribution for the special
number? In fac't, there is only a single trajectory of the casesh =2~ whgre a solution is pos§ible by e.'e'.’“e.r“ary
random walk in which the end point of the walk reaclges means. We also highlighted the beautiful self-similarity of

namely, the trajectory that consists of alternating the stepdhe probability distribution Whem:_(\/g_l)/z- Here, the
1-g+g2—g3+g*—.... If there is any deviation from this unique features of this number facilitate a numerically exact
alternating pattern, the end point of the walk will necessarilysnumeration method and also lead to very simple results for
be a finite distance away from=g. This dearth of trajecto- the probability measure.

: : - - . We close with some suggestions for future work. What is
ries with end points close to=g is responsible for the sharp . %> o
minimum in the probability distribution. the effect of a bias on the limiting probability distribution of

More generally, this same mechanism underlies each otpe walk? F_or example, suppose that stepg_t_o the left and
the minima in the distribution, including the singularity as Mght occur independently and with probabilitigs and 1
X—Xnay. FOr €ach local minimum in the distribution, the — P, respectively. It has been provérthat the probability
firstn steps of the walk must be prescribed for the end poinflistribution is singular fo <pP(1—p)*~P and is continu-
to be within a distance of the order gf to the singularity. ~©Ous for almost all larger values af This is the analog of the
However, specifying the first steps means that the probabil- transition at\ =1/2 for the isotropic case. What other mys-
ity for such walks can be no greater than™ It is this  teries lurk within the anisotropic system? o
reduction factor that leads to all the minima in the distribu- Are there interesting first-passage characteristics? For ex-
tion. ample, what is the probability that a walk, whose first step is

For simplicity, we focus on the extreme point in the fol- to the right, never enters the regior<O by thenth step?
lowing; the argument for all the singularities is similar. If the Such questions are of fundamental importance in the classi-
first n steps are to the right, then the maximum distance cal theory of random walks; and it may prove fruitful to
between the end point of the walk amg,,, arises if the extend these considerations to geometric walks. Clearly, for
remaining steps are all to the left. Therefore N <1, this survival probability will approach a nonzero value

_ as the number of step$— . How does the survival prob-
A:Xmax_(1+g+'"+gn)+gn+l+gn+2+'":29n3;' ability converge to this limiting behavior as a function of the
(30 number of steps? Are there qualitative changes in behavior as
Correspondingly, the total probability to have a random walk) is varied?
whose end point is within this range is simply 2 What happens in higher spatial dimensions? This exten-

For X nearXma, We make the fundamental assumptionsion was suggested to us by M. Baz&hiThere are two
that P, (X) ~ (Xmax—X)*. Although this hypothesis appears natural alternatives that appear to be unexplored. One natural
difficult to justify rigorously for general values of, such a way to construct the geometric random walk in higher di-
power law behavior arises far=2"™ as discussed in Sec. mensions is to allow the direction of each step to be isotro-
[1l. We assume that power-law behavior continues to hold fompically distributed, but with the length of theth step again
general\ values. With this assumption, the measure for aequal to\". Clearly, if A<1, the probability distribution is
random walk to be within the rangl =X, X Of Xpax IS concentrated within a spherical shell of radius 1 and thick-
M(A)~A**# However, because such walks have the first ness of the order of/(1—\). As \ is increased, the prob-
steps to the rightM(A) also equals 2". If we write InM ability distribution eventually develops a peak near the
=-nln2, InA=+(n—1)lng+In2, and eliminaten from  origin.* What is the nature of this qualitative change in the
these relations, we obtaM (A)~AM2"10) o, finally, probability distribution? Another possibild{ is to require

Pg(A)~A‘1+'” 2/n(1g) (31) :[It]r?t the steps are always aligned along the coordinate axes.
en for sufficiently smalk the support of the walk would
This power law also occurs at each of the singular points ofonsist of a disconnected set, while Xasncreases beyond
the distribution because the underlying mechanism is thé/2, a sequence of transitions similar to those found in one
same as that for the extreme points. dimension may arise.
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APPENDIX: FOURIER INVERSION OF THE
PROBABILITY DISTRIBUTION FOR A=2"%?

For =22 we write P, (k) in the form

sin(2k)sin(v2k)
M=

(e2ik_ e72ik)(e\/§ik_ ef\/§2ik)
27/2k2

[eikx2+ efikxz_ eikxl_ efikxl]
27/2k2 !

wherex;=2-v2 andx,=2+v2. The inverse Fourier trans-
form is

(A1)

1 (= .
My(x) = 5— f_xnz(k)e—'kXdk. (A2)

1 X A5
=) (A5)
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