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We outline the properties of a symmetric random walk in one dimension in which the length of the
nth step equalsln, with l,1. As the number of stepsN→`, the probability that the end point is
at x approaches a limiting distributionPl(x) that has many beautiful features. Forl,1/2, the
support ofPl(x) is a Cantor set. For 1/2<l,1, there is a countably infinite set ofl values for
which Pl(x) is singular, whilePl(x) is smooth for almost all otherl values. In the most interesting
case ofl5g[(A521)/2, Pg(x) is riddled with singularities and is strikingly self-similar. This
self-similarity is exploited to derive a simple form for the probability measureM (a,b)
[*a

bPg(x) dx. © 2004 American Association of Physics Teachers.
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I. INTRODUCTION

This article discusses the properties of random walks
one dimension in which the length of thenth step changes
systematically withn. That is, at thenth step, a particle hops
either to the right or to the left with equal probability by
distancef (n), where f (n) is a monotonic but otherwise ar
bitrary function. The usual nearest-neighbor random walk
recovered whenf (n)51 for all n.

Why should we care about random walks with variab
step lengths? There are several reasons. First, for thegeomet-
ric random walk, where f (n)5ln with l,1, a variety of
beautiful and unanticipated features arise,1–4 as illustrated in
Fig. 1. A very surprising feature is that the character of
probability distribution of the walk changes dramatically
l is changed by a small amount. Most of our discussion w
focus on this intriguing aspect. We will emphasize the c
l5g[(A521)/2, the inverse of the golden ratio, where t
probability distribution has a beautiful self-similar appea
ance. We will show how many important features of th
distribution can be obtained by exploiting the self-similari
as well as the unique numerical properties ofg.

There also are a variety of unexpected applications of r
dom walks with variable step lengths. One example is sp
tral line broadening in single-molecule spectroscopy.5 Here
the energy of a chromophore in a disordered solid reflects
interactions between the chromophore and the molecule
the host solid. For a dipolar interaction potential and
two-state host molecules with intrinsic energies6e, the en-
ergy of the chromophore is proportional to( j6er j

23 , where
r j is the separation between the chromophore and thej th
molecule. This energy is equivalent to the displacement
geometric random walk withf (n)5n23.

Another example is the motion of a Brownian particle in
fluid with a linear shear flow, that is, the velocity field
vx(y)5Ay. As a Brownian particle makes progressive
longer excursions in the6y directions~proportional tot1/2),
the particle experiences correspondingly larger velocities
the x direction ~also proportional tot1/2). This gives rise to
an effective random walk process in the longitudinal dire
tion in which the mean length of thenth step grows linearly
with n, that is, f (n)5n.6

Historically, the geometric random walk has been d
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cussed, mostly in the mathematics literature, starting in
1930s.1,2 Interest in such random walks has recently reviv
because of connections with dynamical systems.7,8 Recent
reviews of the geometric random walk can be found in R
9; see also Ref. 10 for a review of more general itera
random maps. In contrast, there appears to be no mentio
the geometric random walk in the physics literature, as
from Ref. 11.

Finally, the geometric random walk provides an instructi
set of examples that can be analyzed by classical probab
theory and statistical physics tools.12,13 These examples ca
serve as a useful pedagogical supplement to a student’
troduction to the theory of random walks. As we shall d
cuss, there are specific values ofl for which the probability
distribution can be calculated by elementary methods, w
for otherl values, there is meager progress toward an ex
solution, even though many tantalizing clues exist.

II. PICTURE GALLERY

The displacement of a one-dimensional random walk a
N11 steps has the formxN5(n50

N enf (n), where eachen

takes on the values61 with equal probability. Consequently
the mean-square displacement^xN

2 & can be expressed a
(nf (n)2. If this sum is finite, then there is a finite mea
square displacement asN→`. In such a case, the end poin
probability distribution therefore approaches a fixed limit14

Henceforth, we will focus on the case of geometrica
shrinking step lengths, that is,f (n)5ln with l,1. We de-
note the end point probability distribution afterN steps by
Pl(x,N) and the limiting form limN→`Pl(x,N) by Pl(x).
We will show thatPl(x) exhibits rich behavior asl is var-
ied.

To obtain a qualitative impression ofPl(x), a small pic-
ture gallery ofPl(x) for representative values ofl.1/2 is
given in Fig. 1. As we shall discuss, whenl51/2, P1/2(x)
51/4 for uxu<2 andP1/2(x)50 otherwise. Forl,1/2, the
support of the distribution is fractal~see below!. As l in-
creases from 1/2 to approximately 0.61,Pl(x) develops a
spiky appearance that changes qualitatively from multi
local maxima to multiple local minima~see Fig. 1!. In spite
of this singular appearance, it has been proven
Solomyak15 that the cumulative distribution is absolute
591© 2004 American Association of Physics Teachers



Fig. 1. Simulated probability distributionPl(x) for l
50.53, 0.58, 0.61, 0.64, 0.67, and 0.74@~a!–~f!#. The
data for eachl is based on 108 realizations of 40 steps
at a spatial resolution 1023.
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continuous for almost alll.1/2. On the other hand, Erdo¨s2

showed that there is a countably infinite set ofl values,
given by the reciprocal of the Pisot numbers in the ran
~1,2! for which Pl(x) is singular. @A Pisot number is an
algebraic number~a root of a polynomial with integer coef
ficients! all of whose conjugates~the other roots of the poly
nomial! are less than one in modulus.16# It is still unknown,
however, if these Pisot numbers constitute all of the poss
l values for whichPl(x) is singular. Forl.0.61, Pl(x)
rapidly smooths out and beyondl*0.7, there is little visual
evidence of spikiness in the distribution at the 1023 resolu-
tion scale of Fig. 1.

There is a simple subset ofl values for which singular
behavior can be expected on intuitive grounds. In particu
consider the situations wherel satisfies

12 (
n51

N

ln50.

This condition can be viewed geometrically as a walk who
first step~of length 1! is to the right andN subsequent step
are to the left such that the walker returnsexactly to the
origin afterN11 steps. This positional degeneracy, in whi
points are reached by different walks with the same num
of steps, appears to underlie the singularities inPl(x). The
roots of the above equation give the solutionl5g[(A5
21)/2'0.618, 0.5437, 0.5188, 0.5087, 0.5041... forN
592 Am. J. Phys., Vol. 72, No. 5, May 2004
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52,3,... . As we shall discuss, the largest in this sequen
l5g ~the inverse of the golden ratio!, leads to especially
appealing behavior and the distributionPg(x) has a beautiful
self-similarity as well as an infinite set o
singularities.2,3,7,17,18

III. GENERAL FEATURES OF THE PROBABILITY
DISTRIBUTION

For l,1/2, the support ofPl(x), namely the subset o
the real line where the distribution is nonzero, is a Cantor
To understand how this phenomenon arises, suppose tha
first step is to the right. The maximum displacement of t
subsequent walk isl/(12l). Consequently, the end point o
this walk necessarily lies within the region

F12
l

12l
,11

l

12lG .
Since the left edge of this region is positive, the support
Pl(x) divides into two nonoverlapping regions after one st
~see Fig. 2!. This same type of bifurcation occurs at ea
step, but at a progressively finer distance scale so that
support ofPl(x) breaks up into a Cantor set.

The evolution of the support of the probability distributio
can be determined in a precise way by recasting the geo
ric random walk into the random map,

x85611lx, ~1!
592P. L. Krapivsky and S. Redner
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which describes how the position of a particle changes i
single step. We can see that this map is equivalent to
original random walk process by substitutingx8 for x on the
right-hand side of Eq.~1! and iterating. Therefore the map
equivalent to the random sumx5(n

`enln.
Similarly, the equation for the probability distribution a

the Nth step satisfies the recursion relation12,13

Pl~x,N!5
1

2 FPlS x21

l
,N21D1PlS x11

l
,N21D G .

~2!

Equation~2! states that for a particle to be atx at theNth
step, the particle must have been either at (x11)/l or at
(x21)/l at the previous step; the particle then hops tox
with probability 1/2. For anyl,1, the probability distribu-
tion necessarily approaches a fixed limitPl(x) for N→`.
Consequently,Pl(x) remains invariant under the mappin
given by Eq.~1! and thus satisfies the invariance conditio

Pl~x!5
1

2 FPlS x21

l D1PlS x11

l D G . ~3!

BecausePl(x) can have a singular appearance, it often
more useful to characterize this distribution by theprobabil-
ity measure Ml(a,b) defined by

Ml~a,b!5E
a

b

dx Pl~x!. ~4!

The integral in Eq.~4! smooths out singularities inPl itself,
and we shall see that it is more amenable to theoret
analysis. The invariance condition of Eq.~3! can be rewritten
in terms of this measure as

2Ml~a,b!5MlS a21

l
,
b21

l D1MlS a11

l
,
b11

l D . ~5!

Equation~5! can now be used to determine the support
Ml . Clearly, the support ofMl lies within the interval
Jl5@2xmax,xmax#, with xmax51/(12l). For l,1/2, the
map ~1! transforms the intervalJl into the union of the two
nonoverlapping subintervals~see Fig. 2!,

Fig. 2. Fragmentation of the support of the probability distribution dur
the first two steps of the shrinking random walk whenl,1/2. Afterk steps,
the support fragments into 2k intervals each of length 2lk/(12l).
593 Am. J. Phys., Vol. 72, No. 5, May 2004
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1

~12l!
,2

~122l!

~12l! G , F ~122l!

~12l!
,

1

~12l!G . ~6!

By restricting the map~1! to these two subintervals, we fin
that they are transformed into four nonoverlapping subin
vals after another iteration. If we continue these iterationsad
infinitum, we obtain a support forMl that consists of a col-
lection of disjoint sets that ultimately comprise a Cantor se1

On the other hand, forl>1/2, the map again transform
Jl into the two subintervals given in Eq.~6!, but now these
subintervals are overlapping. Thus the support ofPl fills the
entire range@2xmax,xmax#.

IV. EXACT DISTRIBUTION FOR lÄ2À1Õm

In this section, we derivePl by Fourier transform meth-
ods for l5221/m. As we illustrate below, these cases tu
out to be exactly soluble because of a set of fortuitous c
cellations in the product form for the Fourier transform
the probability distribution.

For a general random walk process, the probabi
P(x,N) that the end point of the walk is atx at the
(N11)st step obeys the fundamental convolutio
equation12,13

P~x,N!5(
x8

P~x2x8,N21!pN~x8!, ~7!

wherepN(x) is the probability of hopping a distancex at the
Nth step. Equation~7! expresses the fact that to reachx after
(N11) steps the walk must first reach a neighboring po
x2x8 after N steps and then hop fromx2x8 to x at step
(N11). The convolution structure of Eq.~7! cries out for
employing Fourier transforms. Thus we introduce

pN~k!5E
2`

`

pN~x!eikxdx, ~8!

P~k,N!5E
2`

`

P~x,N!eikxdx, ~9!

and substitute these forms into Eq.~7!. If the random walk is
restricted to integer-valued lattice points, these integrals
come discrete sums. The Fourier transform turns the con
lution in x into a product ink space,19 and therefore Eq.~7!
becomes the recursion relation

P~k,N!5P~k,N21!pN~k!. ~10!

We now iterate Eq.~10! to obtain the formal solution

P~k,N!5P~k,0!)
n50

N

pn~k!. ~11!

Generally, we consider the situation where the random w
begins at the origin. ThusP(x,0)5dx,0 and correspondingly
from Eq. ~9!, P(k,0)51. To calculateP(x,N), we evaluate
the product in Eq. ~11! and then invert the Fourie
transform.12 To simplify the notation for the examples of th
section, we definePm(x)5P221/m(x). We explicitly con-
sider the casesm51, 2, and 3. From these results, the qua
tative behavior for generalm is then easy to understand.

The single-step probability distribution at thenth step is

pn~x!5 1
2 @d~x2ln!1d~x1ln!#,
593P. L. Krapivsky and S. Redner
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and the corresponding Fourier transform is

pn~k!5E
2`

`

pn~x!eikxdx5cos~kln!. ~12!

The Fourier transform of the probability distribution aft
N11 steps is the product of the Fourier transforms of
single-step probabilities.12,13 Thus from Eqs.~11! and ~12!
we have

Pl~k,N!5 )
n50

N

cos~kln!. ~13!

We now apply this exact solution to the illustrative cas
of l5221/m. For the simplest case ofl5221, the step
length systematically decreases by a factor of 2. By enum
ating all walks of a small number of steps, it is easy to s
that the probability distribution is uniformly distributed on
periodic lattice whose spacing shrinks by a factor of 2
each step. This is a precursor of the uniform nature ofP1(x)
in theN→` limit. Algebraically, the product in Eq.~13! can
be simplified by using the trigonometric half-angle formu
to yield

P1~k,N!5cosk cos~k/2!¯cos~k/2N!

5
sin~2k!

2 sink

sink

2 sin~k/2!
¯

sin~k/2N21!

2 sin~k/2N!

5
sin~2k!

2N11sin~k/2N!
→ sin~2k!

2k
as N→`. ~14!

Thus the inverse Fourier transform gives an amazin
simple result. The probability distribution is merely a squa
wave pulse, withP151/4 on the interval@22,2# and
P150 otherwise.

The distribution forl5221/2 can be calculated similarly
The successive cancellation of adjacent numerators and
nominators as in Eq.~14! still occurs. These cancellation
become more apparent by separating the factors that inv
sin(k/2j ) and sin(k/2j 11/2). Then by following exactly the
same steps as those leading to Eq.~14!, we obtain the Fourier
transform

P2~k!5
sin~2k!

2k

sin~&k!

&k
. ~15!

This product form has a simple interpretation in real space
we partition the walk into odd steps~1,3,5,...! and even steps
~2,4,6,...!, then both the odd and even steps are separa
geometrical random walks withl5221, but with the initial
step length of the odd walk equal to 1 and that of the e
walk equal to 1/&. In real space, the full probability distri
bution forl5221/2 is just the convolutions of the constitue
distributions for these odd and even walks. Thus in Fou
space, the full distribution is just the product of the consti
ent distributions, as given in Eq.~15!.

To invert the Fourier transform in Eq.~15! by a direct
approach is straightforward but unwieldy, and the details
given in the Appendix. Another approach is to use the f
that the probability distribution is the convolution of tw
rectangular-shaped distributions—one in the range@22,2#
for the odd-step walks and the other in@2&,&# for the
even-step walks. Thus
594 Am. J. Phys., Vol. 72, No. 5, May 2004
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P2~x!5E
2`

`

dx8P1~x8!3&P1S x2x8

&
D . ~16!

Either by this direct approach or by straightforward Four
inversion as given in the Appendix, the final result is~Fig. 3!

P2~x!55
1

4
~ uxu,22& !

1

4 S 12
uxu

21&
D ~22&,uxu,21& !

0 ~ uxu.21& !.
~17!

Thus the distribution is continuous, but its first derivative
discontinuous at the four pointsx5626&.

Continuing this same train of logic, the solution for ge
eral l5221/m is

Pm~k!5
) j 51

m sin~2 j /mk!

2(m11)/2km . ~18!

For example, forl5221/3, the resulting probability distribu-
tion in real space is

P3~x!5

¦

1

64
~x4

22x3
22x2

22x1
22x2! ~ uxu,x1!

1

64
~x4

22x3
22x2

22x222xx1! ~x1,uxu,x2!

1

64
~x4

22x3
222x~x11x2!! ~x2,uxu,x3!

1

64
~x2x4!2 ~x3,uxu,x4!

0 ~ uxu.x4!,
~19!

where

x1522122/3121/3'0.084 73, ~20a!

x2512222/3121/3'1.6725, ~20b!

x3512122/3221/3'2.3275, ~20c!

x4512122/3121/3'4.8473. ~20d!

Fig. 3. Probability distributions of the geometric random walk forl
5221/m for m51, 2, and 3~dotted, dashed, and solid lines, respectively!.
594P. L. Krapivsky and S. Redner



n
t
int

n
hb

t i

th
te

u-
es

.

-
to
c
th
e
u

s.
ith

p to
ry

the
the

ns
the
, as
e

a
to

ill
the

the

the

the

ach
he
ob-

tri-
or
th
-

the
This distribution contains both linear and quadratic segme
such that the first two derivatives ofP3 are continuous, bu
the second derivative is discontinuous at the joining po
xj , for j 51, 2, 3, 4~Fig. 3!. Generally, forl5221/m, the
distribution has continuous derivatives up to orderm21,
while the mth derivative is discontinuous at 2m points. As
m→`, the distribution progressively becomes smoother a
ultimately approaches the Gaussian of the nearest-neig
random walk.

A final note about the Fourier transform method is tha
provides a convenient way to calculate the moments,

^x2k&5E x2kPl~x!dx, ~21!

for all values ofl.20 By expandingPl(k) in a power series
for small k, we have

Pl~k!5E dx Pl~x!eikx

5E dx Pl~x!~11 ikx2k2x2/2!1¯ !

512
k2^x2&

2!
1

k4^x4&
4!

1¯ . ~22!

That is, the Fourier transform contains all the moments of
distribution. For this reason, the Fourier transform is of
termed the moment generating function.

We take the Fourier transform of the probability distrib
tion of the geometric random walk and expand this expr
sion in a power series ink to give

Pl~k!5cosk cos~lk!cos~l2k!¯

5F12
k2

2!
1¯GF12

~lk!2

2!
1¯G

3F12
~l2k!2

2!
1¯G¯

512
k2

2
~11l21l41¯ !1O~k4!. ~23!

If we equate the two power series~22! and ~23! term by
term, we obtain

^x2&5
1

12l2 , ~24a!

^x4&5
1

12l4 S 11
6l2

12l2D . ~24b!

Moments of any order can be obtained by this approach

V. GOLDEN WALK

Particularly beautiful behavior ofPl(x) occurs when
l5g @see Fig. 1~d!#. Unfortunately, a straightforward simu
lation of the geometric random walk is not a practical way
visualize fine-scale details of this probability distribution a
curately because the resolution is necessarily limited by
width of the bin used to store the distribution. We now d
scribe an enumeration approach that is exact up to the n
ber of steps in the walk.
595 Am. J. Phys., Vol. 72, No. 5, May 2004
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A. Enumeration

It is simple to specify all walks of a given number of step
Each walk can be represented as a string of binary digits w
0 representing a step to the left and 1 representing a ste
the right. Thus we merely need to list all possible bina
numbers with a given number of digitsN to enumerate all
N-step walks. However, we need a method that provides
end point location without any loss of accuracy to resolve
fine details of the probability distribution.

The basic problem of determining the end point locatio
may be illustrated by enumerating the first few steps of
walk and representing them as the branches of a tree
shown in Fig. 4. Forl5g, neighboring branches of the tre
may rejoin because of the existence of three-step walks~one
step right followed by two steps left or vice versa! that form
closed loops. For largeN, the accuracy in the position of
walk is necessarily lost by roundoff errors if we attempt
evaluate the sum for the end point location,XN5(n

Nengn,
directly. Thus the recombination of branches in the tree w
eventually be missed, leading to fine-scale inaccuracy in
probability distribution.

However, we may take advantage of the algebra of
golden ratio to reduce theNth-order polynomial inXN to a
first-order polynomial. To this end, we successively use
defining equationg2512g to reduce all powers ofg to first
order. When we apply this reduction togn, we obtain the
remarkably simple formulagn5(21)n(Fn212gFn), where
Fn is the nth Fibonacci number ~defined by
Fn5Fn211Fn22 for n.2, with F15F251). For the
golden walk, we now use this construction to reduce
location of each end point, which is of the form(n

Nengn, to
the much simpler formA1Bg, whereA andB are integers
whose values depend on the walk. By this approach, e
end point location is obtained with perfect accuracy. T
resulting distribution, based on enumerating the exact pr
ability distribution forN<29, is shown in Fig. 5 at various
spatial resolutions. AtN529 this distribution is exact to a
resolution of 1027.

B. Self-similarity

Perhaps the most striking feature of the end point dis
bution is its self-similarity, as sketched in Fig. 6. Notice, f
example, that the portion of the distribution within the zero
subintervalJ05@2g,g# is a microcosm of the complete dis
tribution in the entire intervalJ5@2g22,g22#. In fact, we
shall see that the distribution withinJ0 reproduces the full

Fig. 4. First five steps of the golden walk enumeration tree. Notice that
distance between adjacent end points can only be 2gn or 2gn21.
595P. L. Krapivsky and S. Redner
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distribution after rescaling the length by a factorg23 and the
probability by a factor of 3. Similarly, the distribution in th
first subintervalJ15@g,11g2# reproduces the full distribu
tion after translation to the left by 1, rescaling the length
g24, and rescaling the probability by 6. A similar constru
tion applies for general subintervals.

To develop this self-similarity, it is instructive to constru
the symmetries of the probability distribution. Obvious
Pg(x) is an even function ofx. That is,

Pg~x!5Pg~2x!. ~25!

In fact, there is an infinite sequence of higher-order symm
tries that arise from the evenness ofPg(x) about the end
points after one step, two steps, three steps, etc.

Fig. 5. Probability distribution of the golden walk for a 29-step enumerat
at spatial resolution 1022, 1023, and 1024 ~a!–~c!, respectively. In~c!, the
line joining successive points is not shown so that details of the distribu
remain visible.
596 Am. J. Phys., Vol. 72, No. 5, May 2004
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For example, the first higher-order symmetry is

Pg~11x!5Pg~12x! ~26!

for uxu,g2. Equation~26! expresses the symmetry ofPg(x)
aboutx51 for the subset of walks whose first step is to t
right. We can ignore walks whose first step is to the l
because the rightmost position of such walks
211g1g21¯5g512g2. Thus within a distance ofg2

from x51, only walks with the first step to the right contrib
ute to the distribution within this restricted range. The pro
ability distribution must therefore be symmetric aboutx51
within this same range.

Continuing this construction, there are infinitely man
symmetries of the form

PgS (
n50

k

gn1xD 5PgS (
n50

k

gn2xD , ~27!

with k51,2,..., that represent reflection symmetry about t
point that is reached when the firstk steps are all in one
direction. The kth symmetry applies within the rang
uxu,gk11.

We now exploit these symmetries to obtain a simple p
ture for the measure of the probability distribution,Mg . We
start by decomposing the full supportJ into the contiguous
subintervals that span the successive lobes of the distr
tion, as shown in Fig. 6. We label these subintervals
J05(2g,g), J15(12g2,11g2), J25(11g2g3,11g
1g3), etc.; there are also mirror image intervals to the left
the origin,J2k52Jk.

We now use the invariance condition of Eq.~5! to deter-
mine the measures of these fundamental intervalsJk. For
J05(2g,g), this invariance condition yields

Mg~2g,g!5 1
2 @Mg~2~21g!,2g!1Mg~g,21g!#

5 1
2 @12Mg~2g,g!#, ~28!

where the second line follows because of left–right symm
try and because the intervals (2(21g),2g), (g,21g), and

n

n

Fig. 6. Sketch of the symmetry and self-similarity ofPg(x). The dashed
curve is the probability distribution when the first step is to the right. T
full probability distribution is the sum of the dashed curve and an ident
~but shifted! curve that stems from the distribution when the first step is
the left. The measures associated with each lobe ofPl(x) ~top! and the
spatial extent of each lobe~bottom! are indicated. Notice that the left ex
treme of the restricted distribution coincides with the first minimum of t
full distribution.
596P. L. Krapivsky and S. Redner
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ne
(2g,g) comprise the entire support of a normalized dis
bution. We therefore obtain the remarkably simple result t
the measure of the central interval isMg(2g,g)51/3. If we
apply the same invariance condition toJ1, we find Mg(J1)
5 1

2Mg(J0). By continuing this same reasoning to highe
order intervalsJK, we find, in general, that the measure
the kth interval is one-half that of the previous interval~see
Fig. 6!. Thus we obtain the striking result

Mg~Jk!5
1

3•2uku . ~29!

C. Singularities

Another intriguing feature ofPg(x) is the existence of a
series of deep minima in the distribution. Consider, for e
ample, the most prominent minima atx56g ~see Fig. 5!.
The mechanism for these minima is essentially the same
son thatg is sometimes termed the ‘‘most irrational’’ rea
number–that is, most difficult to approximate by a ration
number.21 In fact, there is only a single trajectory of th
random walk in which the end point of the walk reachesg,
namely, the trajectory that consists of alternating the ste
12g1g22g31g42... . If there is any deviation from this
alternating pattern, the end point of the walk will necessa
be a finite distance away fromx5g. This dearth of trajecto-
ries with end points close tox5g is responsible for the shar
minimum in the probability distribution.

More generally, this same mechanism underlies each
the minima in the distribution, including the singularity a
x→xmax. For each local minimum in the distribution, th
first n steps of the walk must be prescribed for the end po
to be within a distance of the order ofgn to the singularity.
However, specifying the firstn steps means that the probab
ity for such walks can be no greater than 22n. It is this
reduction factor that leads to all the minima in the distrib
tion.

For simplicity, we focus on the extreme point in the fo
lowing; the argument for all the singularities is similar. If th
first n steps are to the right, then the maximum distanceD
between the end point of the walk andxmax arises if the
remaining steps are all to the left. Therefore

D5xmax2~11g1¯1gn!1gn111gn121¯52gn21.
~30!

Correspondingly, the total probability to have a random w
whose end point is within this range is simply 22n.

For x near xmax, we make the fundamental assumpti
that Pl(x);(xmax2x)m. Although this hypothesis appea
difficult to justify rigorously for general values ofl, such a
power law behavior arises forl5221/m, as discussed in Sec
III. We assume that power-law behavior continues to hold
generall values. With this assumption, the measure fo
random walk to be within the rangeD5xmax2x of xmax is
M (D);D11m. However, because such walks have the firsn
steps to the right,M (D) also equals 22n. If we write lnM
52n ln 2, lnD51(n21)lng1ln 2, and eliminaten from
these relations, we obtainM (D);D ln 2/ln(1/g) or, finally,

Pg~D!;D211 ln 2/ln(1/g). ~31!

This power law also occurs at each of the singular points
the distribution because the underlying mechanism is
same as that for the extreme points.
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The same reasoning appliesmutatis mutandisnear the ex-
treme points for generall, leading to the asymptotic behav
ior Pl(D);D211 ln 2/ln(1/l). In particular, this reason gives
for the tail ofPm , the limiting behaviorDm21, in agreement
with the exact calculation in Sec. III.

VI. DISCUSSION

We have outlined a number of appealing properties of r
dom walks with geometrically shrinking steps, in which th
length of thenth step equalsln with l,1. A very striking
feature is that the probability distribution of this walk d
pends sensitively on the shrinkage factorl, and much effort
has been devoted to quantifying the probability distributio
We worked out the probability distribution for the speci
casesl5221/m where a solution is possible by elementa
means. We also highlighted the beautiful self-similarity
the probability distribution whenl5(A521)/2. Here, the
unique features of this number facilitate a numerically ex
enumeration method and also lead to very simple results
the probability measure.

We close with some suggestions for future work. What
the effect of a bias on the limiting probability distribution o
the walk? For example, suppose that steps to the left
right occur independently and with probabilitiesp and 1
2p, respectively. It has been proven22 that the probability
distribution is singular forl,pp(12p)12p and is continu-
ous for almost all larger values ofl. This is the analog of the
transition atl51/2 for the isotropic case. What other my
teries lurk within the anisotropic system?

Are there interesting first-passage characteristics? For
ample, what is the probability that a walk, whose first step
to the right, never enters the regionx,0 by thenth step?
Such questions are of fundamental importance in the cla
cal theory of random walks,13 and it may prove fruitful to
extend these considerations to geometric walks. Clearly,
l,1, this survival probability will approach a nonzero valu
as the number of stepsN→`. How does the survival prob
ability converge to this limiting behavior as a function of th
number of steps? Are there qualitative changes in behavio
l is varied?

What happens in higher spatial dimensions? This ext
sion was suggested to us by M. Bazant.23 There are two
natural alternatives that appear to be unexplored. One na
way to construct the geometric random walk in higher
mensions is to allow the direction of each step to be iso
pically distributed, but with the length of thenth step again
equal toln. Clearly, if l!1, the probability distribution is
concentrated within a spherical shell of radius 1 and thi
ness of the order ofl/(12l). As l is increased, the prob
ability distribution eventually develops a peak near t
origin.14 What is the nature of this qualitative change in t
probability distribution? Another possibility24 is to require
that the steps are always aligned along the coordinate a
Then for sufficiently smalll the support of the walk would
consist of a disconnected set, while asl increases beyond
1/2, a sequence of transitions similar to those found in o
dimension may arise.
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APPENDIX: FOURIER INVERSION OF THE
PROBABILITY DISTRIBUTION FOR lÄ2À1Õ2

For l5221/2, we write Pl(k) in the form

P2~k!5
sin~2k!sin~&k!

23/2k2

52
~e2ik2e22ik!~e& ik2e2&2ik!

27/2k2

[2
@eikx21e2 ikx22eikx12e2 ikx1#

27/2k2
, ~A1!

wherex1522& andx2521&. The inverse Fourier trans
form is

P2~x!5
1

2p E
2`

`

P2~k!e2 ikxdk. ~A2!

To evaluate the integral, we extend it into the complex pla
by including a semi-circle at infinity. The outcome of th
inverse transform depends on the relation betweenx andx1 ,
x2 .

For x.x2 , we must close the contour in the lower ha
plane for each term, so that the semi-circle contribution
zero. We must also indent the contour around an infinitesi
semi-circle about the origin to avoid the singularity atk
50. If x.x2 , the residues associated with each term in
integrand cancel, and we obtainP2(x)50.

For 0,x,x1 , we must close the contours in the upp
half-plane for the first and third terms, and in the lower-h
plane for the complementary terms. The contribution of
first integral is proportional to

R eik(x22x)

k2 dk5 ipResFeik(x22x)

k2 GU
k50

52p~x22x!.

~A3!

Similarly, the contributions of the remaining three integra
are2p(x21x), 2p(x12x), and2p(x11x), respectively.
As a result, we find, for 0,x,x1 ,

P2~x!5
~x22x!1~x21x!2~x12x!2~x11x!

29/2 5
1

4
.

~A4!

Finally, for x1,x,x2 , we must close the contour in th
upper half-plane for the first two terms in Eq.~A2! and in the
lower-half plane for the latter two terms. Evaluating each
the residues, we now obtain, forx1,x,x2 ,
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