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In his last memoir on mathematical physics, Henri Poincaré presented one of the most profound and
compelling proofs of the hypothesis of quanta. This highly original proof, which is actually three
separate proofs, is based on first principles and is full of physical insight, mathematical rigor, and
elegant simplicity. The memoir is refreshingly uncluttered by some of the conventional, and more
abstract concepts, such as temperature and entropy, that Planck and others relied on in their work.
Poincaré’s analysis is based on an ingenious physical model consisting of long-period resonators
interacting with short-period resonators. A unique formulation of statistical mechanics, based on the
calculus of probabilities, Fourier’s integral, and complex analysis, logically unfolds throughout the
memoir. Poincaré invents an “inverse statistical mechanics” that allows him to prove a crucial result
that no one had proved before: The hypothesis of quanta is both a sufficient and a necessary
condition to account for Planck’s law of radiation. In a separate, more universal proof, Poincaré
proves that the existence of a discontinuity in the motion of a resonator is necessary to explain any
observed law of radiation. Given the significant impact of Poincaré’s memoir on quantum theory
and statistical physics, it is surprising that most physicists are not aware of its valuable mathematical
and physical ideas. Poincaré’s tour de force proofs are presented here in a form suitable for use in
a standard course in quantum mechanics, statistical mechanics, or mathematical physics. © 71995

American Association of Physics Teachers.

I. INTRODUCTION

The year 1900 marked the beginning of the quantum
theory. In order to theoretically explain the observed law of
blackbody radiation, Max Planck introduced the “hypothesis
of quanta.” According to this hypothesis, the energy of the
radiators of light, or resonators, cannot be continuous, but
must vary in discrete amounts, called quanta. Naturally, this
bold, anticlassical hypothesis gained acceptance at a very
slow rate. Poincaré’s memoir was a decisive factor in achiev-
ing worldwide acceptance.

Are quanta absolutely necessary? This was the fundamen-
tal question that physicists were asking during the years
1900-1912. Planck’s analysis demonstrated that the hypoth-
esis of quanta was sufficient to account for Planck’s law of
radiation, which was the formula that best fit the experimen-
tal data. However, this sufficient condition is much weaker
than a necessary condition. Planck’s sufficiency proof does
not preclude the existence of other hypotheses that lead to
the same radiation law. Furthermore, one could imagine ra-
diation laws that differ from Planck’s law within the experi-
mental errors of observation, and which could be explained
classically. Before one undertakes a radical revision of the
time-honored classical ideas, it would be wise to first deter-
mine with certainty whether or not the observations could be
explained by some exotic, yet still classical (continuous)
mechanism.

It was Poincar¢ who went well beyond the sufficiency
condition to prove that the hypothesis of quanta was abso-
lutely necessary to explain Planck’s law of radiation. In a
separate, more universal proof, Poincaré completely dissoci-
ated himself from the specificity of Planck’s experimental
law. He proved that there cannot exist a classical theory,
based on continuity, that could account for Planck’s, or any
other experimental law of radiation, as long as the total ra-
diation energy is finite. This shattered all hopes of a classical
explanation. A quantum discontinuity is the one, and only
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one, dynamical mechanism that could explain the observed
phenomena. Thanks to Poincaré, quanta were inescapable.

Upon first encountering the strange quantum concept, a
curious physics student of the 1990s is prone to ask the same
basic question as a classical physicist of the 1900s: “But are
quanta, or energy discontinuities, absolutely necessary?”
Poincaré’s necessity proof and universality proof can provide
a definitive answer to this question, which can be especially
convincing and comforting to any quantum skeptics in the
class. Poincaré’s proofs, as presented here, can add a sub-
stantial amount of rigor, along with new physical and math-
ematical ideas, to the conventional approach of introducing
quanta via Planck’s sufficiency hypothesis.

In Sec. II, relevant historical background information is
provided. Section III discusses Poincaré’s physical model of
interacting resonators, and his basic statistical mechanical
formalism of the energy partition. In Sec. IV, Poincaré’s
three main proofs are given. Section V discusses the impact
of the memoir and Sec. VI concludes.

II. BACKGROUND TO THE MEMOIR
A. Poincare’s first encounter with quanta

As a mathematician, physicist, and philosopher, Henri
Poincaré (29 April 1854—17 July 1912) was a virtuoso. Ac-
knowledged as the greatest mathematician at the turn of the
20th century, he was the last “universalist” who excelled in
virtually all fields of mathematics, pure and applied.? At the
University of Paris, Poincaré held the titles of Professor of
Mathematical Physics and the Calculus of Probabilities, and
later Professor of Mathematical Astronomy and Celestial
Mechanics. At the Sorbonne, he lectured each year on a dif-
ferent topic, some of which included electricity, light, heat
conduction, potential theory, capillarity, elasticity, electro-
magnetism, hydrodynamics, thermodynamics, optics, celes-
tial mechanics, and probability. In physics, Poincaré is per-
haps best known for his work in theoretical dynamics (e.g.,
the Poincaré recurrence theorem, the Poincaré map, and the
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discovery of “chaos”), celestial mechanics (e.g., the three-
body problem), the theory of space and time (e.g., the prin-
ciple of relativity), and the dynamics of the electron.” Al-
though his pioneering contribution to the quantum theory is
lesser known today, it was well known in the early formative
years and had a significant impact.

Poincaré was a prolific writer, publishing over 30 books
and 500 research papers during his career. His trademark was
originality and universality. He was described as “a con-
queror, not a colonist.”* Much of his work involved invent-
ing new fields of mathematics and unifying existing fields.
Poincaré wrote several popular books on the nature of sci-
ence and mathematics.>® These books had a great impact on
the public’s perception of science, and influenced many sci-
entists and mathematicians.” They were read worldwide and
translated into six different languages. Under the influence of
Poincaré’s books, Louis de Broglie changed his major at the
University of Paris from history and law to science.® In ad-
dition to his numerous scientific honors, Poincaré received
the highest French honor for literature by being elected to the
literary section of the Institute of the French Academy.

Between 30 October 1911 and 3 November 1911, 18
physicists met at the Hotel Metropole in Brussels to partici-
pate in the first Solvay Conference. This was the first formal
meeting of a distinguished group of invited physicists whose
purpose was to elucidate the meaning of the hypothesis of
energy quanta and the kinetic theory of matter. Prior to this
meeting, the quantum ideas were still obscure and few physi-
cists took them seriously. In a 1910 letter to Walter Nernst
(the conference organizer), Max Planck wrote: “Among all
those (invited participants) mentioned by you, I believe that
other than ourselves, only Einstein, Lorentz, W. Wien, and
Larmor will be seriously interested in the topic.”® Based on
this belief, Planck urged Nernst to postpone the conference.
In spite of Planck’s skepticism, Nernst went ahead with the
meeting as planned.

Poincaré arrived at the Solvay Conference a newcomer to
the quantum ideas.'” Little did he know the impact that these
new ideas were to have on him. Given that Poincaré was a
connoisseur and a certified master of classical physics at the
age of 57, one would assume him to be an unlikely convert
to the quantum ideas. On the contrary, Poincaré exhibited
great enthusiasm and was one of the most active participants
in the discussions.!! Lorentz, in recollections of the confer-
ence, writes: “In the discussions, Poincaré displayed all the
vivacity and penetration of his mind, and one admired the
easiness with which he confidently entered into the more
difﬁcullzt questions of physics, even the ones that were new to
him.”

In the opening address to the Solvay Congress, Lorentz
still called blackbody radiation a “most mysterious phenom-
enon and a most difficult one to unveil.”'® He urged the
participants to “form as clear an idea as possible of the ne-
cessity and of the degree of probability of the (quantum)
hypothesis.””!* Participants at the Solvay Conference came to
the realization that some primitive foundations of the classi-
cal theory were in jeopardy. However, they did not agree on
what kind of reformulation of classical physics was neces-
sary. During the conference, Poincaré remarked: “The new
investigations discussed here do not only seem to question
the fundamental principles of mechanics, but also shake vio-
lently an assumption (of continuity) which was hitherto com-
pletely tied together with the concept of a natural law (of
dynamics). Can we still express these laws in the form of
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differential equations?”’!> Poincaré further says: “It is being
asked whether it is necessary to introduce discontinuities into
the natural laws, not apparent ones but essential ones.””'¢

These remarks by Poincaré summarized a basic, all-
encompassing question that permeated the conference: Was
the hypothesis of quanta necessary to explain the observed
phenomena? Planck and others had only proven that quanta
were sufficient: If the hypothesis of quanta is true, then the
law of radiation follows. They did not attempt to prove the
much more difficult, and stronger, necessary condition: If the
law of radiation is true, then the hypothesis of quanta fol-
lows. Poincaré was intrigued by the question of the necessity
of quanta and regarded it as the vital issue in need of a
rigorous proof.

B. Introduction to the memoir

While other physicists were tampering with the sacred
classical notion of continuity, Poincaré took it upon himself
to prove whether or not the quantum discontinuities were
absolutely necessary to explain the observed law of radia-
tion. Immediately after the Solvay Conference, Poincaré re-
turned to Paris and became totally occupied with the quan-
tum problem. On 4 December 1911, one month after the
conference, he g)resented his results to the Academy of Sci-
ences in Paris.!” The extended version of this work, entitled
“Sur la théorie des quanta,” appeared in the January 1912
issue of the Journal de Physique.'® In this memoir, Poincaré
proved conclusively that the hypothesis of quanta was both a
sufficient and a necessary condition for Planck’s law, or any
other law of radiation. The quantum discontinuity of nature
was thus essential and unavoidable.

The global structure of the memoir is as follows. Poincaré
begins with a physical model consisting of a system of Hert-
zian resonators interacting with a system of atoms. The at-
oms, by virtue of their collisions with the resonators, mediate
the exchange of energy between the resonators. For both
physical reasons and mathematical rigor, Poincaré felt that it
was necessary to clearly understand how a unique thermody-
namic equilibrium state could emerge from an explicit con-
sideration of some mechanism of interaction between the
resonators. He felt that the other theoretical studies of black-
body radiation were flawed because they neglected such an
interaction and their arguments included too many assump-
tions related to the existence of equilibrium. He focuses on
the partition of energy between the resonators and the atoms
in thermal equilibrium. Poincaré’s clever choice to study the
partition of energy allows him to avoid the usual arguments
based on entropy, temperature, and other equilibrium con-
cepts. From his formulation of statistical mechanics, Poin-
caré is able to relate this macroscopic partition of energy to
the microscopic dynamical behavior of a resonator. Having
established this basic micro—macro connection, he then de-
termines what kind of constraint must be imposed on the
motion (energetics) of the resonators in order to account for
the observed partition of energy (radiation law). In three
separate proofs, Poincaré discovers that this dynamical con-
straint is precisely the hypothesis of quanta.

Poincaré’s 30-page memoir, which is divided into ten sec-
tions, is difficult to read. It is highly mathematical and writ-
ten in French. The symbolism is quite unlike conventional
notation. In trying to summarize the memoir, Sir James Jeans
wrote: “Poincaré’s paper is of such an abstruse mathematical
nature, that it is impossible to do any sort of justice to it in an
abstract.”'® Given the high standards of rigor set by Poin-
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caré, together with the formidable task at hand, this complex-
ity is natural. Furthermore, when the memoir first appeared
in 1912, the fact that most physicists were unfamiliar with,
or misunderstood, the fresh ideas of quanta and statistical
mechanics, also contributed to the apparent complexity.

In what follows, [ present Poincaré’s memoir in a con-
densed and simpler form. In order to alleviate some of the
original complexity, I have reorganized the structure, synthe-
sized the main results, and modernized the arguments, con-
cepts, and notation. Some of Poincaré’s eloquent writing
style and arguments are inevitably lost in the translation from
French to English. Wherever appropriate, I have preserved
Poincaré’s exact reasoning and notation. Throughout, I have
attempted to convey the overall spirit of Poincaré’s mode of
thinking and to emphasize his originality, physical insight,
and impeccable logic.

II1. PHYSICAL MODEL AND PARTITION OF
ENERGY

A. Poincareé’s system of interacting resonators

Poincaré considers a system of resonators, or charged har-
monic oscillators. It was well known that such Hertzian reso-
nators, by virtue of their vibration, radiate Hertzian (electro-
magnetic) waves. Poincaré is extremely careful to address
the fundamental issue of thermodynamic equilibrium of this
system of resonators. He felt that this crucial issue was seri-
ously overlooked in previous studies.

Poincaré provides a lucid physical description of this con-
cept of equilibrium: “For a (equilibrium) distribution of en-
ergy to take place between the resonators of different wave-
length whose oscillations are the cause of the radiation, the
resonators must be capable of exchanging their energy. Oth-
erwise, the initial distribution would persist indefinitely and,
since this initial distribution is arbitrary, there could be no
(unique) law of radiation. But, a resonator can give off to the
ether and receive from it only light of an exactly determined
wavelength... . It could therefore exchange energy only with
resonators with which it was in perfect resonance, and the
initial distribution would remain unalterable.”?° Poincaré de-
scribes the same dilemma with Planck’s quantum resonators:
“A (Planck) resonator can yield energy to another only in
integral multiples of its quantum; the latter can receive en-
ergy only in integral multiples of its own quantum. Since the
two quanta are generally incommensurate, this is sufficient to
exclude the possibility of direct exchange.”?!

In reaction to other proofs of the quantum hypothesis (no-
tably Planck’s), Poincaré writes: “First of all, I wondered
what was the value of the proposed proofs. I noticed that
they were evaluating the probability of the various divisions
of energy by simply enumerating them since, thanks to the
given hypothesis, they were finite in number, but I could not
very well see why they were considered as equally probable.
Then, they were introducing the known relations between the
temperature, the entropy, and the probability. This assumed
the possibility of thermodynamic equilibrium since these re-
lations are proved by assuming this equilibrium to be pos-
sible. I know very well that experiment teaches us that this
equilibrium is realizable, since it is achieved. But this did not
satisfy me; it was necessary to show that this equilibrium is
compatible with the stated (quantum) hypothesis and even
that it is a necessary consequence of it. I did not exactly have
doubts, but I felt the need to see somewhat more clearly, and
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for this it was necessary to delve a little into the particulars
of the mechanism (to establish equilibrium).”%

Thus, in order to understand Planck’s law of radiation
from first principles, Poincaré is compelled to consider the
interaction between resonators that is necessary to establish
equilibrium. More specifically, Poincaré’s grandiose mission
is to start from a model which explicitly incorporates the
interaction between resonators, and then analyze this model
to prove that an equilibrium state exists, and that the hypoth-
esis of quanta is both a sufficient and a necessary condition
for the law of radiation.

He proposes two modes of interaction whereby the reso-
nators can exchange energy. First, the stationary resonators
can interact with each other indirectly via a medium of freely
moving atoms which collide with the resonators. This is a
mechanical interaction between resonators mediated by the
atoms which can move with a continuum of energies.
Poincaré’s second suggestion is that the resonators can ex-
change energy if they are in motion. This electromagnetic
interaction exists because radiation reflected from a moving
resonator changes its frequency according to the Doppler—
Fizeau principle.

In his memoir, Poincaré focuses on the mechanical inter-
action due to the collisions between resonators and atoms.
He emphasizes that this choice is somewhat arbitrary since
all modes of interaction should lead to the same equilibrium
law of radiation in accord with the second law of thermody-
namics. He writes: “...all methods of exchange must lead to
the same conditions of statistical equilibrium without which
Carnot’s principle would be lacking. This is necessary in
order to account for experience, but it is still necessary that
we be able to give a satisfactory explanation for this surpris-
ing concordance, that we not be forced to attribute it to some
sort of providential chance. In the older mechanics, this ex-
planation was completely known; it was the universality of
Hamilton’s equations. Shall we find something analogous
here? ... In Mr. Planck’s method of exposition, this duality of
methods of exchange does not appear, but is merely hidden;
and I thought it necessary to call attention to this fact.”?

Having emphasized the need to understand thermody-
namic equilibrium in the new mechanics of the quantum
theory, Poincaré considers a system of N resonators interact-
ing with a system of P atoms. All of Poincaré’s resonators
are one-dimensional, localized, simple harmonic oscillators.
In a very clever strategy, Poincaré considers each resonator

_ to have a short period of oscillation, and he models each

atom as a resonator with a long period. The long-period reso-
nators have a sufficiently large amplitude so that their motion
simulates the uniform rectilinear motion of an atom between
collisions. This ingenious idea of modeling the atoms as
long-period resonators serves two purposes. First, the sim-
plicity of harmonic motion makes the dynamical analysis
tractable. Second, the atoms can be described by classical
mechanics since it was well known that low-frequency radia-
tion obeys the classical Rayleigh—Jeans radiation law.?*
Hence, Poincaré’s model consists of a system of N short-
period (quantum) resonators interacting with a system of P
long-period resonators (classical atoms).

B. The weight function

The microscopic dynamical information necessary to un-
derstand the macroscopic thermodynamical behavior of the
system of resonators is contained in the weight function W.
Poincaré defines this function to be the “probability” density
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of finding the system in each microscopic state. Classically,
the microscopic state is specified by the set of coordinates
and momenta of each resonator. The collection of micro-
scopic states can be represented as geometric points in state
(phase) space. W is then the weight defined on this state
space. In dynamical terms, W is proportional to the fraction
of time the system spends in each microscopic state during
its temporal evolution. Since the equation of motion of a
quantum resonator is unknown, Poincaré focuses on the sta-
tistics, and not the more detailed dynamics, of the micro-
scopic states.

Poincaré’s ultimate goal, to derive an equation for the par-
tition of energy, requires him to know how the weight func-
tion W depends on energy. He proves that W for a system of
resonators depends only on their energy and can be ex-
pressed as a product of the weight functions of each resona-
tor. IfE,, E,,...,Ey denote the energies of the N resonators,
and Uy, U,,...,Up denote the energies of the P atoms, then
the weight function for the system is

W=W(EI)W(Ez)...W(EN)U(UI)U(Uz)...U(UP). (1)

Here, w(E;) represents the probability weight for a single
resonator, labeled i, to oscillate with energy E;, and v(U)) is
the probability weight for the ith atom to move with an en-
ergy U;. The probability that the system of resonators has a
set of energies E,...,Ey, U;,...,Up in the energy volume
element dE,...dEy dU,...dUp is proportional to
WdE,...dEy dU,...dUp.

Poincaré performs the transformation from phase space to
energy space using his expertise in theoretical dynamics. He
analyzes a system of harmonic oscillators interacting via a
collisional term to determine how the collision effects the
oscillators’s statistical/dynamical behavior in state space. In
particular, he uses the interpretation of the probability weight
as the ‘“‘last multiplier” of the dynamical equations of
motion.?> Even though the quantum dynamics is not known,
Poincaré argues that a last multiplier (equilibrium probability
weight) must exist if the concept of equilibrium, or more
generally, the second law of thermodynamics, is to make
sense. The proof that the weight function factorizes into a
product is nontrivial. It is based on an assumption that the
collisions are pairwise and occur on a rapid time scale.
Nowadays, such a proof that connects the dynamics with the
statistics would be considered to be in the difficult domain of
ergodic theory. In modern language, Poincaré’s result can be
understood more simply given the statistical mechanical as-
sumption of assigning the same (unit) weight to each acces-
sible state, together with the quantum mechanical interpreta-
tion of the weight function as the density of discrete states.

The weight function W is the fundamental dynamical ob-
ject of interest in Poincaré’s analysis. Together with the con-
servation of energy, the weight function contains the essen-
tial statistical/dynamical information on the motion of the
interacting resonators that is necessary to understand their
equilibrium behavior. All thermodynamic observables propa-
gate from the knowledge of W via a statistical analysis. In
particular, the observed equilibrium value for the energy of a
resonator is calculated by averaging over all the microscopic
energies using W as the weight.

Poincaré emphasizes that for a classical dynamical system
based on Hamilton’s equations of motion, the weight func-
tion is continuous and assumes a constant value of unity. In
other words, equal volumes in phase space are given equal
weights. This fact is consistent with Liouville’s theorem ap-
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plied to a system in equilibrium, and is equivalent to Boltz-
mann’s postulate of “equal a priori probability” for the clas-
sical continuum of microstates accessible to an isolated
system.”® It also leads to the well-known equipartition
theorem,?’ whereby the total energy of the system is parti-
tioned equally (on average) among the constituent resona-
tors. This classical theory leads not to Planck’s law of radia-
tion, but to the Rayleigh—Jeans law.?* The Rayleigh—Jeans
law does not completely agree with observation, but predicts
the well-known “ultraviolet catastrophe” whereby the radia-
tion energy diverges for the high-frequency components.

Poincaré assumes that the system of atoms obeys classical
mechanics. Recall that his atoms are modeled as resonators
of long period and large amplitude which provide the inter-
action mechanism, via collisions with the quantum resona-
tors, needed for the system to reach equilibrium. Since low-
frequency radiation is well described by classical mechanics
(Rayleigh—Jeans law), Poincaré is justified in treating his
atoms (low-frequency resonators) classically. Thus, the
weight function for the system of classical atoms is uniform
and equal to unity. The weight function in Eq. (1) for the
system of resonators and atoms then becomes

W=w(E|)w(E;)...w(Ey). (2)

One of Poincaré’s primary goals is to find the weight w of
a quantum resonator that is both sufficient and necessary to
explain the observed law of radiation. This is equivalent to
finding the unique energy spectrum of a resonator. Poincaré
was soon to discover that such a function is pathologically
nonclassical. It must exhibit discontinuities of the quantum
kind: w is zero for most energies except for a discrete set of
values.

C. The basic partition of energy equation

I now derive a general equation that determines the parti-
tion of energy between the quantum resonators and the clas-
sical atoms in terms of their microscopic motion. The deri-
vation is based on Poincaré’s reasoning, but the final result is
expressed in a somewhat different form. In order to relate the
microscopic behavior to the macroscopic observable, Poin-
caré performs a statistical mechanical analysis of his system
of interacting resonators and atoms. The weight function
contains the crucial dynamical information on the motion of
the resonators and the atoms that determines their energy
partition.

In focusing on energetics, three energies can be defined:

EEE1+E2+"’+EN, (Ba)
UEU1+U2+"'+UP, (3b)
H=FE+U. (3¢)

Thus, E is the total energy of the subsystem of N resonators,
U is the total energy of the subsystem of P atoms, and H is
the total conserved energy of the isolated system of resona-
tors and atoms. The interaction due to the collisions is con-
sidered a weak perturbation to the total energy.

The energy of the system of resonators observed in an
experiment is the average energy, denoted (E). The observed
energy of the system of atoms is denoted (U). These equi-
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librium observables are calculated from the weight function
W according to the standard definition of average value in
mathematical statistics:

H+dH...[ EW dE,...dEy dU,...dUp

= 4
\E)=~frvam [y 4k, ...dEy U, ..dUp (4a)
H+dH...[{ UW dE,...dEy dU,...dUp )
()= JE+dH...{ W dE,...dEy dU,...dUp

The limits on the integrals denote that the integration is per-

|

formed over the domain of positive energies consistent with
the conservation of energy:

H<E +--+Ey+U + - +Up<H+dH. ©)

In other words, the energies that the resonators and the atoms
can move with are constrained so that their total energy
E+U is between H and H+dH. With the explicit expres-
sions for W, E, and U from Eqgs. (2) and (3), the ratio of
observable energies in Eq. (4) assumes the form

(E) [HYH...[(E\+- +EyW(E,)..w(Ex)dE,...dEy dU,...dUp

U JEF (U + -+ Up)w(Ey)... wEN)dE, ...dEy dU, ...dUp’

Poincaré denotes the average energy of one resonator by
the symbol y, and the average energy of one atom by the
symbol x. Since the total energy is additive over the N reso-
nators, and the P atoms,

(E)=Ny . and (U)=Px. V)]

Poincaré’s quest is to find the partition of energy in the form
of y as a function of x, i.e., y(x).

The integration in Eq. (6) can be simplified by partitioning
the integral into a resonator term and an atom term. The
partial integration over the atom variables can be performed:

U+dU yr-1t
JU "'del...dUp—'m_—lﬂdU. (8)

This result, implicit in Poincaré’s memoir, is valid for
dU<U, and can now be found in some standard texts on
statistical mechanics.”® The partial integration over the reso-
nator energies cannot be performed explicitly since the un-
known weight function depends on these energies. Instead, it
is convenient to define a function g(E,N) by

J'EE+dE' ‘ 'f W(El)...W(EN)dEl...dENEg(E,N)dE. (9)

The quantity g(E,N) represents the total weight function for
the whole system of N resonators given that the system en-
ergy (E;+---+Ey) is between E and E +dE. In the modern
language describing a quantum mechanical system, it speci-
fies the countable number of microscopic (quantum) states
accessible to the resonator system when it is in the macro-
scopic state of energy between E and E +dE. Planck later
called g(E,N) the “thermodynamic probability” to distin-
guish it from the mathematical probability to which it is
proportional. Planck also postulated that this total statistical
weight g(E,N), which counts states, is the precise object to
use in Boltzmann’s expression for the entropy
S=k In g(E,N), where k is Boltzmann’s constant.”’ How-
ever, since such a postulate had not been rigorously estab-
lished, Poincaré does not use the concept of entropy in his
memoir and only mentions it in a critical remark. Also recall
that Poincaré wanted to avoid any assumptions about equi-
librium which are implied in the relations between entropy,
temperature, and probability. His partition of energy analysis
was specially designed to be entropy-free. This is in sharp
contrast to the other pioneering work in this field in which

343 Am. J. Phys., Vol. 63, No. 4, April 1995

(6)

the concept of entropy was central to the arguments.
Finally, the resonator/atom energy ratio in Eq. (6) can be
written, using Egs. (3), (7), (8), and (9), as

Ny JUEg(EN)H-E)"!dE
Px  [Tg(E,NYH-E)F dE

(10)

This is the basic partition of energy equation that describes
how the total energy is partitioned among the interacting
resonators and atoms. Poincaré did not write it in this form,
but tended to work with separate equations, one for x and
one for y, such as those found in Egs. (4a) and (4b). Our Eg.
(10) determines the relationship between the average energy
y of a resonator and the average energy x of an atom, given
that a total energy H is distributed among N resonators and
P atoms. It represents the fundamental connection between
the macroscopic partition of energy y(x), and the micro-
scopic motion of the resonator, as embodied in the statistical/
dynamical weight function g(E,N).

In the modern language of statistical mechanics, this par-
tition of energy equation can be derived (with less rigor) by
starting from the fundamental postulate of “equal a priori
probability” applied to thé isolated system composed of two
subsystems (resonators and atoms) in thermal interaction.*
The probability of finding a particular partition of energy (E
and U=H —E) between the resonators (R) and the atoms
(A) is proportional to the number of discrete microstates
accessible to the isolated system which is equal to
gr(E,N)g,(H—E,P). Summing over all possible energy
partitions leads to Eq. (10).

Temperature is one of those superfluous concepts that
Poincaré avoids because it is inessential to the analysis.
However, he does note the fact that for a classical system,
and hence one that gbeys the equipartition theorem, the av-
erage energy of each constituent particle is proportional to
the absolute temperature of the system. Hence, it is implicit
in Poincaré’s memoir that the average energy x of an atom is
equal to the absolute temperature of the system, in appropri-
ate energy units. In other words, the system of atoms serves
as a thermometer. The function y(x) then represents the av-
erage energy of a resonator as a function of temperature.

Poincaré provides a rigorous proof of the equipartition
theorem using his formalism. If the system of resonators
obeys classical mechanics, then its weight function W is
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unity. Similar to the result for classical atoms in Eq. (8), the
total statistical weight of a system of classical resonators
from Eq. (9) can be written explicitly as

N-1

(N—1)!

The basic partition of energy [Eq. (10)] can now be inte-
grated exactly to yield the equipartition result>!

y=x. (12)

This expresses the classical fact that the total energy of the
system is partitioned equally among its constituent degrees
of freedom so that the average energy y of each resonator is
equal to the average energy x of each atom.

g(E,N)dE= dE. (11)

IV. THE THREE PROOFS
A. List of Poincaré’s main results

We have so far established Poincaré’s basic statistical/
dynamical formulation of a system of quantum resonators
interacting with a system of classical atoms. This formula-
tion, which culminated in Eq. (10), provides the connection
between the macroscopic partition of energy within the
whole system and the microscopic dynamics of a single reso-
nator. Armed with this formalism, Poincaré derives many
results that are scattered throughout the memoir. To consoli-
date Poincaré’s main results, I identify and extract four of his
most important results and rephrase them as the following
propositions:

P1 Existence of a unique equilibrium state:

The partition of energy y(x) is independent of the number
of resonators (N) and atoms (P) in the thermodynamic limit
N-—oo P—oo N/P finite.

P2 Sufficient condition for Planck’s law:
If the hypothesis of quanta is true, then y(x) is Planck’s
partition of energy.

P3 Necessary condition for Planck’s law:
If y(x) is Planck’s partition of energy, then the hypothesis
of quanta is true.

P4 Existence of a universal quantum discontinuity:

Given any radiation law, if the total energy of radiation is
finite, then there exists a discontinuity in the energy of a
resonator.

Prior to Poincaré, physicists focused exclusively on propo-
sition P2. The three new propositions proved by Poincaré
were vital to the new quantum theory. The proof of P3 and
P4 settled once and for all the basic controversy regarding
the uniqueness of the hypothesis of quanta. Poincaré proved
that the known experimental facts can be accounted for by
one and only one dynamical hypothesis of an essential quan-
tum discontinuity in the energy.

Poincaré’s strong convictions on the fundamental signifi-
cance of proposition P1 are described succinctly in his mem-
oir: “Except in very exceptional circumstances, the relation
between y and x depends on. the integers N and P; but one
should consider the case where these integers are very large;
even so, it is not at all evident a priori that this relationship
is independent of the ratio N/P.”3? “If this independence
was not true, then thermodynamic equilibrium would not be
possible; all the theorems of Boltzmann, which postulate the
possibility of this equilibrium would not be true; even the
notion of entropy would no longer make any sense. To the
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extent that this independence is not established, it would cast
doubt on the reasoning of M. Planck, who relies upon the
existence of entropy and the theorems of Boltzmann. That
suffices to justify the work that I have presented here,”*
Indeed, our basic partition of energy [Eq. (10)] shows that
y(x) depends on N and P. Sir James Jeans, in his objection
to Planck’s method, also said: “as the ratio (N/P) would
vary from one substance to another, there would be no defi-
nite law of radiation—the same for all substances—such is
demanded by observation.”*

In the remainder of this paper, these four propositions will
be proved in the spirit of Poincaré’s original mode of think-
ing. As discussed before, the arguments and notation will be
modified or refined for the sake of simplicity and to make
contact with conventional methodology. I divide Poincaré’s
mathematical analysis into three basic methods which I label
as “scaling function proof,” “Fourier function proof,” and
“finite energy proof.”

B. Scaling function proof of P1 and P2

Poincaré assumes that the statistical weight of the resona-
tor system has the following functional form for large N:

g(E,N)=CFN(E/N)6(E/N), (13)

where F and @ are some functions of the energy per resona-
tor variable E/N, and C is a constant which depends only on
N.Icall F(E/N) the “scaling function” since it depends on
the scaled energy variable E/N. Poincaré proceeds to prove
that this scaling conjecture is the most general functional
form that will insure that the partition of energy y(x) is
independent of N and P, and thus is sufficient for the exist-
ence of a unique equilibrium state, independent of the
amount of matter. With this scaling representation of
g(E,N), the basic partition of energy, Eq. (10), becomes
y  Jo[(H-E)*F(E/N)1V6(E/N)E/(H~E)dE

x JE(H-E)*F(E/N)]¥0(E/N)dE ’
(14)

where k is defined to be the ratio of the number of atoms to
the number of resonators:

k=P/N. (15)

Being an expert in the calculus of probabilities, Poincaré
realizes that for large N and nonzero k, the expression raised
to the power N in both integrands of Eq. (14) has a pro-
nounced maximum which dominates the integrals. This
maximum determines the most probable value of E, which
Poincaré identifies with the equilibrium state. If the integrals
in Eq. (14) are approximated by their maximum term, then
the most probable E is identical to the average E. Thus, the
average energy of a resonator y is determined by the equi-
librium condition

(H—Ny)*F(y)=maximum, (16)

Upon setting the (logarithmic) derivative equal to zero to
find the maximum, Eq. (16) is equivalent to

Nk F'(y) _
H-Ny F(y) 7
where F'(y) denotes the derivative of F(y). Using conser-

vation of energy, H=Ny+ Px, and the definition k=P/N,
Eq. (17) becomes

17)
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F(y)
F'(y)
This is Poincaré’s basic equation that implicitly deter-
mines the macroscopic partition of energy y(x) in terms of
the scaling function F(y) representation of the microscopic
statistical weight g(E,N). Note that all dependence on k has
vanished. Thus not only has Poincaré found a simple relation
between y(x) and g(E,N), but he has also found the general
functional form of g(E,N) that is sufficient for the concept
of equilibrium to make sense in the thermodynamic limit.
Poincaré devotes a section of his memoir to using his scal-
ing function formulation to derive Planck’s law from the
hypothesis of quanta. Accordrng to the quantum hypothesis,
the energy of a resonator is a multrple of the quantum of
energy €, which is a constant.’® Thus, the weight function
w(E) for one resonator of energy E is zero for all values of
E that are not a multiple of €. Poincaré further concludes
that if £, is a multiple of €, then w(E ;) diverges to infinity
in such a way that the integral

=x. (18)

ij(El)dEr (19)

is equal to the number of multiples of € between a and b.
This is Poincaré’s translation of Planck’s guantum hypothesis
into the language of his weight function.

Poincaré uses this quantum weight function w(E ) for one
resonator to calculate the statistical weight g(E,N) for the
total system of N resonators. He notes that for this quantum
weight function, the integral expression defining g(E,N) in
Eq. (9) turns into a finite sum which merely counts the num-
ber of ways N integers (positive or zero) can sum to the
value E/e. With this interpretation, Poincaré immediately
writes the formula

(E/e+N—1)!

8(E, )_(E/ N1

(20)
In modern quantum words, this is the classic combinatoric
problem of distributing E/€ indlstinguishable quanta among
N distinguishable resonators Thus Poincaré’ s entropy -free
analysis recovers Planck’s “entropic” result’’ with much
more rigor. The thermodynamic limiting form of g(£,N) for
large N and large E/€ can be found upon approx1mat1ng the
factorials in Eq. (20) using Stirling’s formula.’® One finds
that g(E,N) has precisely the scaling form necessary for
equilibrium, as postulated in Eq. (13), where the scaling
function assumes the specific form>

€ yle

142

F(y)= " (1)

Having calculated this scaling function based on the quan-
tum hypothesis, the equilibrium partition of energy is gener-
ated from F(y) by taking its logarithmic derivative accord-
ing to the general rule in Eq. (18). The result is

€

y= qe/x_ 1 . (22)
This is Planck’s energy partition formula. Note that this par-
tition of energy is entirely different from the classical equi-
partition result y=x. The classical result can be recovered
from Eq. (22) in the continuum limit e—0. Thus, based on
the quantum hypothesis and the scaling assumption,
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Poincaré’s statistical/dynamical theory of interacting resona-
tors and atoms leads to Planck’s law.

C. Fourier function proof of P1, P2, and P3

In his memoir, Poincaré calls this section his “second
method.” He is aware of the limitations of his first (scaling

| function) method, and still wants to know: ‘(1) if the law of

partition is independent of the ratio N/P for any function w;
(2) if the hypothesrs (of quanta) is the only one that leads to
the law of Planck.”*’ Poincaré’s quest is to develop a more
general formalism that will allow him to answer these ques-
tions with complete rigor. He writes: “To answer these two
questions, I will use another mode of calculation, based on
the integral of Fourier.”* Poincaré introduces a function ®
defined by

<I>(a)EJ:W(E1)€_"E1 dEy, (23)

where « is a complex variable whose real part is positive,
and w(E ) is the weight function of one resonator of energy
E, . This equation can be inverted to give*!

[

1 a+io
w(E{)= 5mi f . d(a)et1 da, (24)
a—i|xo

where i is \/——_1 , and the integration path in the complex a
plane is the vertical line Re @=a such that a is any real
positive number. Note that Poincaré refers to this method as
due to Fourier, because the inversion of Eq (23), which is a
Laplace transform in modern language, *! is based on Fouri-
er’s integral. I call Poincaré’s ® function the “Fourier func-
tion.”

Poincaré sets out to find the relation between the equilib-
rium partition of energy y(x) and his Fourier function ®(a).
If Eq. (23) is multiplied by itself N times, then

cDN(a)=JOw---f: W(EL).. w(Ey)

Xe @Bt +ENGE  dEy. (25)

By virtue of the definition of g(E,N) in Eq. (9) and the
definition of E in Eq. (3a), this can be simplified to

dN(a)= f:g(E,N)e‘“E dE. (26)

Thus the Fourier function for the whole system of N resona-
tors [right-hand side of Eq. (26)] is simply the product of the
Fourier functions of each resonator (left-hand side). The in-
version of Eq. (26) yields the statistical weight for the system
of N resonators of total energy E:

1 .
g(E,N)= Tt jCCDN(a)e“E da, 27

where C denotes the vertical-line contour described above in
conjunction with Eq. (24). Using this Fourier representation
of the statistical weight, the basic partition of energy Eq. (10)
becomes

Y_, SH [(H—E)*e“E" & (a)VE/(H~E)d o dE
x T (H=E)e™ & (a)"da dE

(28)

Jeffrey J. Prentis 345



where £ is the ratio P/N. It is instructive to compare Eq. (28)
to the analogous equation (14) based on the scaling function
method.

As before, Poincaré identifies the equilibrium state with
the most probable state. For large N, the integrals in Eq. (28)
are dominated by the pronounced maximum of the same
term in their integrands that is raised to the power N. Thus,
the equilibrium condition is

(H—~Ny)fe® ®(a)=max. 29)

Upon setting the (logarithmic) differential equal to zero, one
finds that the most probable y and « are determined by

( Nk
*"H-Ny

Jor+ gy +3ae
dy+| ey +7 |de=0. (30)

Using the conservation of energy, H=Ny + Px, and the defi-
nition k= P/N, it follows that the equilibrium condition that
determines the resonator energy y and the atom energy x is

@ 1 N
r= d(a)’ T (31)

These are Poincaré’s basic equations that implicitly deter-
mine (by eliminating ) the macroscopic partition of energy
y(x) in terms of the Fourier function ®(a) representation of
the microscopi¢ weight function w(E,). Note that the equi-
librium partition of energy is independent of k. Poincaré’s
physical model and mathematical machinery provide clear
and explicit insight into this disappearance of k. This justifies
the assumption of equilibrium made by Planck and others. It
represents Poincaré’s rigorous proof of P1.

Poincaré’s Fourier methodology is a general and powerful
statistical mechanical formalism. Unlike the scaling function
method, it is exact, since it involves no assumptions about
the functional form of g(E,N). It is computationally simple,
since the Fourier function ®(e) is determined by one reso-
nator, unlike g(£,N) which depends on the whole system of
N resonators constrained by energy conservation. The crucial
mathematical feature of Poincaré’s Fourier method, that is
tailor-made for his purpose, is the invertibility of the Fourier
integral, i.e., the uniqueness of the Fourier transform pair of
functions ($ and w). Given one of these functions, the other
is uniquely determined.

The classical equipartition theorem can be proved with
elegant simplicity using Poincaré’s new method. If the
weight function w(E,)=1, then the Fourier function is

qa(a)=f:e—a5 dE=§, (32)

and hence the partition of energy from Eq. (31) is simply
y=x. (33)

Thus, the total energy of a system of classical resonators in
equilibrium is partitioned equally (on average) among the
constituent resonators.

Of course, Poincaré’s primary application of his new
theory is to understand the connection between the observed
(nonclassical) partition of energy and the hypothesis of
quanta. If the quantum hypothesis is true, then the discon-
tinuous weight function defined in Eq. (19) transforms the
Fourier integral of Eq. (23) into the geometric series
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d(a)=2, e ", (34)
n=0

which sums exactly to
1
(D( o ) = W . (35)

The partition of energy can easily be generated from this
explicit form of the Fourier function according to the general
equation (31). The result is

€
Y= gidi_q- (36)
This is Planck’s formula. Thus the hypothesis of quanta is a
sufficient condition for Planck’s law to be true. Although
Poincaré was not the first to prove this sufficiency, his proof
was based on first principles, and it was one of the simplest
and the most convincing. It was distinguished from the other
proofs by its mathematical rigor, its explicit physical consid-
eration of the interaction between resonators, and its focus
on the partition of energy. Furthermore, it made no assump-
tions on equilibrium, counting states, or probability, and did
not rely on the concepts of entropy or temperature.

Poincaré identifies his Fourier parameter a with 1/T only
in a passing remark. This is due to the fact that Poincaré’s
classical resonators (atoms) have an average energy x=1/a
according to Eq. (31). However, as we have stressed before,
Poincaré focuses on the partition of energy and avoids any
extraneous concepts that would distract from the essential
logic.

Poincaré was most interested in proving what no one had
proved before, namely, that the hypothesis of quanta was a
necessary condition for Planck’s law. Given the power and
versatility of his Fourier formalism, Poincaré proves the ne-
cessity of quanta in one paragraph. He writes: “When the
law that connects y and x is given, the logarithmic derivative
®'/® is also known; it is therefore the same as the function
& to within a constant factor, and as a consequence [by Eq.
(24)], the same w. The hypothesis of quanta is therefore the
only one that leads to the law of Planck.”** In other words,
Poincaré’s Fourier formalism allows him to simply invert the
sufficiency proof (w—®—y) to arrive at the necessity proof
(y—>®—w).

Poincaré’s wise decision to work in Fourier space was
fruitful for several reasons. The exponential function
exp(— aE) in the Fourier integral has wonderful algebraic
properties. It is responsible for the partitioning of the Fourier
function for the whole system of resonators into a product
over the Fourier functions of each constituent resonator as
shown in'Eq. (26). In modern statistical mechanical lan-
guage, this exponential function is called the Boltzmann
factor.*® Poincaré is the first to simply introduce it as the
kernel of an integral transform. The unique connection be-
tween the transform pair of functions (® and w) is the pow-
erful trademark of the Fourier theory that allows Poincaré to
prove both the sufficiency and the necessity of the quantum
hypothesis. Poincareé is also the first to invent this general
statistical mechanical formalism that allows one to derive the
microscopic dynamical behavior, given the macroscopic
thermodynamical behavior. Since this is the inverse of the
usual program that derives macroscopic output from micro-
scopic input, I call Poincaré’s formalism an “inverse statis-
tical mechanics.”
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D. Finite energy proof of P4 (universality proof)

The last section of Poincaré’s memoir is devoted to a gen-
eral proof that a quantum discontinuity is necessary to ex-
plain the blackbody phenomena, independent of the specific
form of the radiation law. In particular, Poincaré proves that
for any observed radiation law, the mere physical fact that
the total radiation energy must be finite requires that there
exist a discontinuity in the dynamical motion (energetics) of
a resonator. The motivation for this proof is clearly described
by Poincaré: “An experimental law is never more than an
approximation; could we then imagine laws whose differ-
ence from Planck’s law would be within the errors of obser-
vation and which would lead to a continuous function
w(E,)?”* In this universality proof, which is based on his
Fourier formalism, Poincaré does not make any reference to
Planck’s law or any other specific law of radiation. However,
he does assume the validity of a general thermodynamical
result (due to Wien) and a general electrodynamical result
(due to Planck).

Poincaré begins with the well-known relation,* estab-
lished by Planck, between the spectral energy density u, of
radiation of wavelength A and the average energy y of a
resonator of the same frequency, that are in thermal equilib-
rium with each other:

K
=33y (37)

The quantity u, d\ is the energy of radiation per unit vol-
ume contained in the wavelength interval between A and
A+dA, and K is a constant. Using Eq. (31), this energy
density can be generated from the Fourier function ® accord-
ing to

K ,dlog®
N i (38)

Poincaré next analyzes the general functional form of ® as
it depends on x and A. He utilizes the well-known displace-
ment law of Wien* which states that the general functional
form of the energy density is

1
ur=335 FNT), (39)

where F is some unspecified function of the product of
wavelength A and absolute temperature 7. Identifying the
average energy x of an atom (classical long-wavelength reso-
nator) with the temperature T, Egs. (38) and (39) yield

F(\x) dx

Kxx x°
Note that the right-hand side of this equation is invariant
upon changing x to ux and \ to N/u, where u is a constant.

This means that ® must be a function of a single variable
which is the product Ax, and thus*®

dlog @ dlog ®
x =X\ .

d log &=

(40)

dx d\ “1)
The spectral energy density in Eq. (38) becomes*’
x dlog ®
DR T “2)

Hence, the total radiation energy is determined by the Fou-
rier function ® according to
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® d log ®
f u), dh=Kx . (43)
0 A
This equation could predict an absurd nonphysical result of
an infinite radiation energy whenever the integral on the
right-hand side diverges due to the behavior of the integrand
near A=0. The ® function near A=0 holds the crucial infor-
mation about the overall behavior. This short-wavelength re-
gime corresponds to the radiation emitted by Poincaré’s
short-period (quantum) resonators. It is precisely these non-
classical resonators that he has analyzed so carefully, based
on their interaction with the long-period (classical) resona-
tors.

Poincaré therefore focuses his attention on the analytic
behavior of the ® function in the pathological domain near
A=0. Since he does not assume any specific form for the
radiation law, this Fourier function is also unknown. How-
ever, using an ingenious argument, Poincaré establishes an
upper bound on @ at A=0. He first partitions the definition of
® in Eq. (23) into two integration domains:

@(a)=f0E°w(E)e—aE dE+f:w(E)e_"E dE, (44)

where E is any value, and for convenience 1 have denoted
the energy of one resonator £, by E. Since « is positive, the
first integral, denoted I, satisfies

Ey
I,< fo w(E)dE. (45)

In the second integral, denoted I,, let a=ay+a’ where ay is
a constant, and then note that

12<e“"'50f w(E)e™ % dE<e_“'E0<I)(a0). (46)
Egy
Together, these inequalities imply that

<I>(a)<f

0

EOw(E)dE+e‘“'EOCI>(a0). (47)

The behavior of ® at a= (or equivalently a’=») is iden-
tical to its behavior at A=0 since ® is a function of the
product Ax=X\/a. Thus the ultraviolet Fourier function is
bounded according to

E

¢(x=0)<j "W(E)dE, (48)

0
where E can assume any value.

This bound on ®(\=0) provides the crucial information
that determines what kind of constraint must be imposed on
the motion of a resonator to insure that the total radiation
energy is finite. If w(E) is continuous, then ®(A=0)=0,
since the Fourier integral in Eq. (23) tends to zero as « tends
to infinity. This also follows from Eq. (48) by letting E,,
which is arbitrary, tend to zero. But if ®=0, then log ®
diverges and hence the total energy from Eq. (43) diverges
even more rapidly. More specifically, in the ultraviolet re-
gime (near A\=0), the energy integral diverges like
log ®(\)/A>. This is the explicit realization of the “ultraviolet
catastrophe.” Thus, if w(E) is continuous, then the total en-
ergy of radiation is infinite. In order for the total energy to be
finite, ® cannot be zero for A=0. If ®(A=0)#0, then
Poincaré’s inequality in Eq. (48) implies that w(E) cannot be
continuous. In his memoir, Poincaré’s logical conclusion is
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that “if ®(\) remains finite for A=0, and that will happen
whenever the law of radiation is such that the total radiation
energy is finite, then the integral [ g"w(E)dE must remain
finite when E, tends to zero; that is to say that the function
w(E) must exhibit for E=0 the same kind of discontinuity
as in the hypothesis of Planck, and that excludes the possi-
bility of representing the phenomena by differential
equations.”*

Poincaré has thus proved that for any radiation law, the
physical fact that the total energy of radiation is finite re-
quires that the motion of the resonator, as described by
w(E), must exhibit a discontinuity of the quantum kind. Al-
though his proof was quite general, Poincaré does remark
that there remains some doubt about its complete rigor since
it utilized the result of Planck in Eq. (37) that is based on
classical electrodynamics.

V. IMPACT OF THE MEMOIR

Poincaré’s proof of the necessity of quanta played a sig-
nificant role in the development of quantum theory, primarily
because of its strong influence on the scientific community. It
convinced many skeptical scientists, clinging to the cher-
ished classical ideas, to finally believe in the quantum ideas.
Poincaré’s mathematical machinery, clever reasoning, and
concrete physical model of interacting resonators, combined
to produce a compelling proof. The international reputation
and unquestioned authority of this renowned mathematical
physicist also helped to influence the skeptics. Unlike the
work of others during these early years of the quantum
theory, most notably Einstein and Ehrenfest, Poincaré’s pa-
per did not go unnoticed and was an often cited memoir.*’ de
Broglie wrote: “Historically, the conclusions of Poincaré
have played a large role in the development of the quantum
theory...to show the existence of a quantum discontinuity.”*°

Prior to 1911, the domain of quantum theory was almost
exclusively in Germany. Poincaré’s publication helped to
propagate the quantum ideas and gain their acceptance be-
yond Germany’s borders. Indeed, after the January 1912
publication date of the memoir, the French publications on
quantum topics increased and remained continuous.>!

Poincaré’s proof had the most dramatic impact in Great
Britain.>> The British scientists were some of the strongest
opponents of the quantum theory. The most influential
among these opponents were Sir Jeans, Sir Thomson, and
Lord Rayleigh. On September 12, 1913, the British Associa-
tion held a meeting in Birmingham in order to discuss the
quantum ideas. It was the British version of the Solvay Con-
ference in Brussels. In Brussels, Jeans presented strong argu-
ments against the quantum theory. In Birmingham, Jeans
publicly announced his complete acceptance of the quantum
theory. Poincaré’s proof was clearly the reason for his con-
version. “Mr. Jeans regarded the work of Poincaré as
conclusive.”>* In the opening address, Jeans announced that
because of Poincaré, he felt “logically compelled to accept
the quantum hypothesis in its entirety.”>* Subsequently,
Jeans became the British authority and spokesperson on the
quantum theory. In 1914, he published the book entitled Re-
port on Radiation and the Quantum Theory,55 in which
Poincaré’s influence was clearly evident. This 90-page book
was the first comprehensive textbook on the subject of quan-
tum mechanics. For ten years, it served as the standard En-
glish language source on the subject. Thus Poincaré’s direct
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influence on Jeans resulted in the quantum education of a
vast mimber of English-speaking scientists during the forma-
tive years of the quantum theory.

In addition to its role in converting quantum skeptics to
quantum believers, Poincaré’s memoir had substantial reper-
cussions on the subject of statistical mechanics. In particular,
Poincaré’s memoir helped make the statistical mechanical
ideas familiar to physicists in the early decade of the 20th
Century.*S Boltzmann’s original papers and Gibbs’ pioneer-
ing book’ remained rather obscure because of the difficul-
ties inherent to the subject. Furthermore, Gibbs’ book was
considered difficult to understand by scientists, including
Einstein®® and Poincaré.® Both Einstein and Poincaré were
well aware of the fundamental importance of statistical me-
chanics and devoted much effort to reformulating it more
clearly. A wonderfully refreshing, personalized version of
statistical mechanics, based on the calculus of probabilities
and the theory of Fourier, permeates the memoir. Poincaré’s
version comes close to the modern-day presentation of the
subject.®’ In this modern language, Poincaré’s g function is
the multiplicity function and his Fourier function ® is the
partition function. The Fourier variable « is the inverse tem-
perature. His scaling function method corresponds to the mi-
crocanonical formulation. His Fourier function method cor-
responds to a unique hybrid formulation that convolutes the
microcanonical (g for the classical atoms) and the canonical
(® for the quantum resonators) methods. Poincaré’s tech-
nique of generating observables (average values) from loga-
rithmic derivatives of g or @ is now a standard trademark of
modern statistical mechanical methodology.

Stimulated by Poincaré’s statistical mechanical formalism,
Planck was the first to call Poincaré’s Fourier function & the
“Zustandsintegral” (integral-over-states), or the “Zustand-
summe” (sum-over-states), in his 1921 paper entitled “Henri
Poincaré und die Quantentheorie.”® Planck, like Poincaré,
realized that this function was the fundamental object of the
theory because it contained the complete microscopic infor-
mation necessary to generate all equilibrivm thermodynamic
observables. In 1924, Planck introduced the symbol Z for
this function.%” This notation and the central role of Z in the
subject of statistical mechanics have remained ever since.

In 1921, Fowler refined Poincaré’s mathematical treatment
of quantum discontinuities using a generalized Fourier inte-
gral, known as the Stieltjes’ integral®® Strictly speaking,
Poincaré’s manipulation of a nonanalytic weight function
within the framework of Fourier theory was not legitimate,
since the rigorous mathematics of such discontinuous (gen-
eralized) functions was not developed until much later. One
can only speculate that Poincaré was well aware of this pa-
thology and was confident in his analysis without comment-
ing on the intricacies. In 1926, Dirac, who was at the time
Fowler’s Ph.D student at Cambridge, introduced the delta
function for use in quantum physics. In mathematics, this
function was not considered a well-defined mathematical en-
tity until 1945.%* With the Dirac delta-function representation
of quantum .discontinuities, Poincaré’s Fourier method was
completely justified.

Poincaré introduced complex variables and Fourier inte-
gral methods into the subject of statistical mechanics,
thereby creating an “inverse statistical mechanical theory.”
This theory allows one to derive the microscopic behavior of
the constituent particles of matter from the observed macro-
scopic phenomena. This is the inverse of the conventional
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path of logic in statistical mechanics whereby the macro-
scopic behavior is derived from the microscopic behavior.

In 1922, Fowler, together with Darwin (the grandson of
evolutionist Charles Darwin), developed a powerful statisti-
cal mechanical formalism that also used complex variables
and contour integrals.65 Like Poincaré, they focused on the
partition of energy, but their formalism was more general. In
particular, their complex variable technique was designed to
calculate average values, not most probable values, and
could be applied to any atomic system that obeyed the laws
of quantum dynamics. They were the first to introduce the
terminology “partition function” for the fundamental object
of their theory that was equivalent to Poincaré’s Fourier
function and to Planck’s Zustandsumme, or to Gibbs’ phase
integral for classical systems. In 1929, Fowler published his
classic Statistical Mechanics®® which was the first compre-
hensive textbook on statistical mechanics that incorporated
the new quantum mechanics as the mechanical foundation. A
section of the book is devoted to Poincaré’s inverse statistical
mechanical theory.5’

VI. CONCLUSIONS

Thanks to Poincaré, quanta were inescapable. Continuity,
which was the trademark of classical physics, must be re-
placed by one of discontinuity in the new quantum physics.
Poincaré’s proof was unique among the other pioneering
studies of the hypothesis of quanta. It was the first to provide
a concrete physical understanding of the existence of a
unique thermodynamic equilibrium state of the system of
Hertzian resonators from an explicit analysis of an interac-
tion mechanism (atomic collisions). It was free of tempera-
ture, entropy, and the second law, since Poincaré’s partition
of energy analysis allowed him to bypass these concepts. It
was the first proof of the necessity of quanta, demonstrating
that the hypothesis of quanta was the only hypothesis that
could account for Planck’s law of radiation. The finite energy
proof demonstrated that a quantum discontinuity was essen-
tial to natural dynamical law. It was the most universal proof,
making no reference to any particular law of radiation. To
accomplish these necessity proofs, Poincaré invented an ““in-
verse statistical mechanics.” This general formalism allows
one to operate the traditional statistical mechanical machin-
ery in reverse, so that the microscopic dynamics can be de-
rived from the macroscopic thermodynamics. In spite of the

mathematical nature of the memoir, Poincaré’s attention to °

physical details (interaction mechanism), flawless logic
(mathematical rigor), and keen focus on the essentials
(avoiding temperature and entropy) endow the proof with a
clarity and a power that render it absolutely convincing. In-
deed, the memoir played a pivotal role in the development of
both quantum mechanics and statistical mechanics.
Poincaré’s memoir is full of fresh physical and mathemati-
cal ideas that are as rare and innovative today as they were in
1912. Most notable of these are the physical model of short-
period resonators interacting with long-period resonators, the
focus on the partition of energy, the simple proofs of the
equipartition theorem, the use of Fourier theory/complex
analysis in statistical mechanics, the inverse statistical me-
chanical theory, and finally, the scaling, necessity, and uni-
versality proofs themselves. This unique blend of physical
and mathematical ideas, when incorporated into a course on
quantum mechanics, statistical mechanics, or mathematical
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physics, can augment and enhance the standard presenta-
tions, while providing a substantial boost in the amount of
convincing rigor.

Poincaré’s celebrated proof was his first excursion into the
realm of quantum theory following a life-long devotion to
classical physics. It was also his last memoir on mathemati-
cal physics. Poincaré died on 17 July 1912, just six months
after the publication of his proof. This last memoir, which
marked the end of Poincaré’s life, also marked the end of the
classical era of continuity in natural law.

In the introduction to his memoir, Poincaré writes: It is
hardly necessary to remark how much this concept (of
quanta) differs from what we imagine to be true up to this
point; physical phenomena would cease to obey the laws
expressed as differential equations and this would undoubt-
edly be the greatest and the most profound revolution that
natural philosophy has undergone since Newton.”®® Indeed,
Poincaré believed that the notion of continuity in the math-
ematical description of nature was one of the most funda-
mental hypotheses of mathematical physics. He wrote that
the hypothesis of continuity is one of the “last that ought to
be abandoned.”® He also writes “a belief (in continuity)
would be difficult to justify by apodeictic reasoning, but
without which all science would be impossible.””” In spite of
these strong convictions, Poincaré did in fact abandon this
precious classical idea to which he had devoted himself most
of his life. Planck, in his publication “Henri Poincaré und die
quantentheorie,””" wrote “The old man will be inclined to
ignore the hypothesis, the enthusiast will welcome it uncriti-
cally, the skeptic will seek grounds to reject it, the productive
man will test it, and if possible, fructify it. Poincaré, in the
profound paper which he dedicated to the quantum theory,
proved himself youthful, critical, and productive.”
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