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The variational methods of classical field theory may be applied to any theory with an action that
is invariant under local gauge transformations. What is the significance of the resulting Noether
current? This article examines such currents for both Abelian and non-Abelian gauge theories
and provides an explanation for their form and limited range of physical significance on a level
accessible to those with a basic knowledge of classical field theory. Several of the more subtle
aspects encountered in the application of the residual local gauge symmetry found by Becchi,
Rouet, Stora, and Tyutin are also considered in detail in a self-contained manner.

L INTRODUCTION

The continuous symmetries of classical field theories
along with the equations of motion for the fields imply the
existence of conserved currents from which one can con-
struct conserved charges. This is usually called Noether’s
theorem,'~"" which in both its classical and operator forms
is very important for classifying the general physical char-
acteristics of quantum field theories.>™!" A brief review of
the theorem is given in Sec. II. Nevertheless, the theorem
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does not seem to apply in a straightforward manner when
the symmetry of interest is local gauge invariance.”'"!
Why this is so is not explored in any of the standard texts
on field theory that almost exclusively confine themselves
to global gauge transformations when applying Noether’s
theorem. ' Brandt'* and Jackiw,'! for example, have deter-
mined the Noether currents for Abelian and non-Abelian
local gauge transformations, but their treatments are not
readily accessible to students at the introductory level of
field theory. In the present article, we present a simple and
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self-contained discussion of the implications of Noether’s
theorem for local gauge transformations associated with
Abelian and non-Abelian internal symmetries. This is in-
tended to supplement the standard expositions available in
introductory works on quantum field theory. Several unu-
sual features of the general Noether currents and charges
corresponding to local gauge transformations are pointed
out in Sec. III that are of interest even though the physics
implicit in a gauge theory can be extracted only after intro-
ducing constraints that destroy the gauge symmetry.

In the classical case, gauge fixing is required in order to
integrate the equations of motion for the electromagnetic
potentials. The quantization of a gauge field theory can
only be achieved after the gauge degrees of freedom are
suitably restrained. In this last instance, however, a re-
markable residual local gauge symmetry'® has been a use-
ful technical device for the analysis of the physical content
of such theories. Noether’s theorem will, of course, yield
the current and charge corresponding to what is referred to
as Becchi, Rouet, Stora, and Tyutin (BRST) symmetry.'?

The implications of Noether’s theorem in the case of
BRST symmetry are certainly well known.'?'*'® How-
ever, the application of the relevant formalism in this case
is sufficiently subtle as to warrant the introductory exposi-
tions we carry out in Secs. IV and V. We point out several
unusual, but important, aspects of both the Noether and
Lagrangian formalisms in this case. We also compare the
BRST current with the usual current resulting from gauge
symmetry and the source current in the field-tensor equa-
tion of motion. A summary is presented in Sec. VL.

II. NOETHER’S THEOREM

Let us consider a classical field theory characterized by a
Lagrangian density . [¢ (x),0,4,(x)] 1nvolv1ng the
fields ¢, (x) at the space-time pomt x = (x%x) and their
first-order space-time derivatives. For the sake of simpli-
city, we ignore any explicit dependence of .# on x. Here,
the index @ enumerates the different field types including
reference to their transformation properties with respect to
the Lorentz group (scalar, spinor, vector, etc.). Also,
d, = d/dx*, where u = 0,1,2,3, and we employ the diag-
onal metricgy, = — g; = + 1,j = 1,2,3 toraise and lower
the vector index u.

A signature of the symmetry of a classical field theory is
the invariance of the action integral

2
S (4] =f d'x L6, (3,8, (0], (1)
1

taken between two spacelike surfaces under the associated
transformations of the fields. Hamilton’s principle then im-
plies that the equations of motion are also invariant under
these transformations. Noether’s theorem refers to the lo-
calimplications of a symmetry and these are determined by
exploring the consequences of the invariance

88, (41 =0, (2)
under the infinitesimal transformations
¢, (x) =, (x) + 64, (x). (3)

The variations are assumed to vanish on the boundary sur-
faces 1 and 2.

Corresponding to (3) we have the variation in the La-
grangian density
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97 95
= 5 a ——————
38, o) P+ ETERRE

6[d.¢.(x)],
(4)

where summation over any repeated index is implied. If we
suppose that we can interchange the § and d,, operations,
(2) and (4), together with the equations of motion

3.7 4.4
- :0’ 5
([aama(x)]) 3, (x) )
imply that
a.¢
d*xd 8¢, ( ) 6
f ( (3.6, (0] P, (x) (6)

Since the integrand of (6) vanishes on the boundary sur-
faces and involves otherwise arbitrary variations of the
fields induced by the symmetry transformations, it follows
that

a*j, (x) =0, (7)
where!”
. T 9Y
(x) = —————6¢,(x) 8
Ju 310,61 ¢, (x (8)

is the conserved Noether current. Evidently we can always
define a Noether current corresponding to (3) whether or
not (2), and therefore (7), is realized.

Actually, since arbitrary variations of the fields are in-
volved, Eq. (8) defines an entire family of currents as well
as the charges

Q(x(,)zfd3x Jo(x), 9
which are also conserved,
%) _y, (10)
dx,

as a consequence of (7) provided Ju (X) vanishes sufficient-
ly quickly in spacelike directions at infinity. '® This uninter-
esting diversity is usually eliminated by parametrizing the
variations ¢, (x) by a space-time independent infinitesi-
mal parameter € so that

6, (x) =¢f, [#(x)], (11)

where f, [#] is somé function of all the ¢, (x)’s. The con-
tent of Noether’s theorem can then be stated in a form that
reflects the intrinsic character of the symmetry transfor-
mation rather than factoring in irrelevant information
about the parameters that particularize it. That is, equa-
tions of the same form as (7), (8), and (10) hold as before
but now in terms of what may be called the intrinsic
Noether current,

0.7

o (X)) = [ [¢(X) ], (12)
.],u N a[a'u¢a(x)]f ¢

with which is associated the Noether charge
Q(XO)NEJdejO(x)N' (13)

Ifj, (x)y is conserved, the time-independent charge Qy
given by (13) can be regarded as an intrinsic observable of
the system. On the other hand, given any tensor field
R,,, (x) that falls off sufficiently rapidly in spacelike direc-
tions, the conserved current
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.];1 (x)N =j,u (x)N +av(R,uv —_Rvy) (14)

determines the same charge Q because
[ a0 Ro, —Ro) = [ 40" (Roy — Ro)

=0.

This device of adding the divergence of an antisymmetric
tensor'® can be used to “improve” the original canonical
Noether current so as to attain some other property, such
as the indicial symmetry of the energy-momentum tensor
while maintaining current conservation and the same value
of the Noether charge.'®""

We will see in Sec. IV that local gauge transformations
are unusual in two respects with regard to Noether’s
theorem. Generally, one cannot disentangle the param-
eters that define the transformations from the local gauge
Noether current. Furthermore, we find that the canonical
Noether current in this case is itself the divergence of an
antisymmetric tensor and so meaningful Noether charges
can arise only from long-ranged contributions in spacelike
directions.

ITI. LOCAL GAUGE TRANSFORMATIONS

By definition, gauge transformations of any sort do not
represent physical symmetry operations. Rather, they
probe the phase relationships within the model space of a
physical theory. The intrinsic conserved charges that ac-
company the gauge invariance of a theory generally are
observable provided they are themselves gauge invariant.
These two aspects do not conflict because the range of val-
ues of the charges do not represent different possible states
of a particular system, as would be the case for angular
momentum or energy, for example. Rather, the values of
the charges define different classes of possible systems,
namely, all those with definite values of the charges.

A. Abelian gauge groups

Several properties of general gauge theories in regard to
Noether’s theorem are already present in the trivial exam-
ple of a free electromagnetic field with

L = —IF, F*, (15)
where the antisymmetric electromagnetic field tensor F,,,

is expressed in terms of the gauge fields 4, (x) in the usual
manner,

F, =d,4,—3.4,. (16)

Evidently (16) and thus (15) are invariant under the U(1)
group of Abelian gauge transformations,

A, (x) >4, (x) +3,0(x). (17)
For infinitesimal 8(x), the Noether current (8) is
Ju (X)) =d7[F,,(x)0(x)], (18)

which is manifestly conserved by virtue of the antisym-
metry of £, (x).

We see that because of the derivative operation on the
gauge parametrizing function 6(x), we generally cannot
factor out the incidental attributes of the transformation.
For constant 8(x), namely, global, or rigid, gauge transfor-
mations, we see that (18) vanishes by the equations of mo-
tion and we always have zero intrinsic charge. The charges
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one would try to infer from (18) are not defined except for
special gauge functions 6.
The point is that the time-independent charge integral

Qw]=fd%aqaﬁuu

will not exist for an arbitrary free-field tensor F;, unless
8(x) is suitably well behaved. Then the three-dimensional
spatial integral (19) can be converted into a surface inte-
gral whose value depends upon 8(x). If 8 is a constant,
then obviously Q(8) = 0, but otherwise the value of Q[&]
depends both on the particular gauge and field functions
that enter into (19). Thus the infinity of conserved charges
(19) do not represent useful observables of the system.
This is because they fail in what is the signal function of a
conserved charge, namely, to provide a labeling of equiv-
alence classes of systems governed by the same underlying
dynamics. The explicit gauge dependence of (19) is, of
course, a direct reflection of this failure.

Another way of looking at the failure of local gauge in-
variance to provide any new observables is to realize that
one has introduced into the problem redundant degrees of
freedom by treating all four components of 4, as indepen-
dent fields in the variations. In classical field theory, one is
able to specify uniquely the functional form of the gauge
field only after this arbitrariness is removed by some gauge-
fixing condition. Imposing such a condition is equivalent to
adding a gauge-fixing term to the Lagrangian, a type of
term that is not locally gauge invariant. Therefore, when
one wishes to solve the equations of motion describing the
gauge field, the local gauge invariance of the Lagrangian,
and so the action, is destroyed along with the possibility of
additional observables. On the other hand, global gauge
invariance still holds and one is left with the corresponding
intrinsic conserved current and charge. So, while the de-
mand for local gauge invariance motivates both the intro-
duction of the gauge fields and their coupling to matter, it
yields no new observable since one must eventually break
the symmetry to solve for the gauge field uniquely. This is
consistent with the requirement that all observables be
gauge invariant. :

In order to see that the situation is the same when mini-
mally charged matter fields are included, let us consider
the Lagrangian

L= pruge + [ (8, + 1A, )P1*[(I* + ieA )]
+ m?|B)? + V(id — ed — m) . (20)

Here, %, i given by the free electromagnetic Lagran-
gian(15). The complex scalar field ¢(x) represents
charged scalar particles while the four-component spinor
¥(x) corresponds to charged Dirac particles. The slash
notation designates a contraction with respect to the gam-
ma matrices y#, for example, A = 4, 7*. Also ¢ =y,
where the Hermitian adjoint operation includes a transpo-
sition with respect to the spinor indices, @ = 1,2,3,4, in ad-
dition to complex conjugation, where we keep in mind that
we are dealing with classical fields.

It should be noted that because of the asymmetrical
structure of the Dirac term in (20), .% is not real. Symme-
trization leads to a real Lagrangian that differs from (20)
by an action-preserving total divergence. One subtlety in
this occurs in connection with calculations of variations
such as (4) where all of the independent fields enter. When
using (20), in effect, only the ¥, (x) are regarded as inde-

(19)
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pendent fields. If the symmetrized .#” were to be used, then
the % (x) fields as well would have to be taken to be inde-
pendent. In the first case, one obtains a real contribution to
6.2 that is identical to the sum of the contributions in the
second instance. Another subtlety concerns the Grass-
mann character of ¥ in the quantized case; we remark
about this in Sec. IV,

Local gauge transformations now entail phase changes
in the charged fields to accompany (17), namely,

d(x)—e “OD(x), (21a)
Y(x) e IY(x). (21b)

One easily sees that for infinitesimal @(x), the Noether
current 18

Ju (%) = 0(x)J,(x) — F,, (x)d"0(x), (22)
where
JH(x) = ie(¢* 3" + 2ied"|$|?) + eyt (23)

is the gauge-invariant source current in the equation of mo-
tion for the electromagnetic field

3, F*(x) =J"(x). (24)
We can then rewrite (22) as
Ju(x) =3"[F,, (x)0(x)], (25)
which is just (18) again.
For constant gauge functions 6,
Ju(x) =6J,(x), (26)

so that J, (x) is the intrinsic Noether current. In contrast
to the discussion of the free electromagnetic field, the
Noether charge

0= J d3x J,(x)

is a useful observable because it does provide a means of
classifying equivalence classes of systems. It is important to
note that

Q=fd3x3’F@(x),

(27)

(28)

so that for fields generated by localized charges and cur-
rents (28) can be converted into a surface integral at infin-
ity that is finite and nonzero in general (Gauss’ law). Asin
the noninteracting case, the infinite family of conserved
charges associated with the general current (25) repre-
sents, in essence, redundant observables and serves no
practical purpose.

We note that any infinitesimal function #(x) can be
written in the form

O(x)=€[l+f(x)], (29)

where € is an infinitesimal parameter and f (x) is an arbi-
trary e-independent function. Then

Jux) =€{J, () + 3 [F.f ()]} (30)

so that the terms within the curly brackets resemble what
we referred to as an intrinsic Noether current.” The form
(30), while it seems to show explicitly the form of the re-
dundancy in the Noether currents that exists for local
gauge transformations, actually provides little insight over
(25) as may be seen by taking f (x) to be a constant. Equa-
tion (30) is, perhaps, more incisive if f (x) is restricted to
those functions that vanish at infinity in all spacelike direc-
tions.

126 Am. J. Phys., Vol. 58, No. 2, February 1990

It is due to the very special properties of minimally cou-
pled gauge theories in generating interactions that the
Noether current associated with a gauge symmetry trans-
formation of all the fields can be expressed in terms of the
field strengths with no explicit reference to the matter
fields. In the electromagnetic case, the underlying reason
for this to happen is the validity of identities such as

XGIA) _ 4K (B8%4,)
94, (x) d[3.6(x)]
%*

— ieg*(x) oX($9*A,) (31)

d[3.8* (0]’
where X is any function that involves only the matter fields
¢(x) and ¢*(x) minimally coupled electromagnetically.
Equation (31) is a variational differential form of the mini-
mal coupling prescription. It is Eq. (31) and a similar one
involving ¢, ¢*, and ¢, that are responsible for the connec-
tion between the source current of the gauge fields and the
associated Noether current.

B. Non-Abelian gauge group

Non-Abelian gauge theories are distinguished from the
Abelian ones by a multiplicity of gauge fields, self-interac-
tions, and gauge transformations that involve the gauge
fields in addition to the functions that parametrize them.
This adds to the technical complexity of determining the
consequences of gauge invariance. Nonetheless, for the
Noether currents and charges the results are essentially
identical to the Abelian case except for trivial multiplicities
produced by the group indices so long as any matter fields
that enter into the theory are coupled to the gauge fields
minimally.

Itis convenient to follow Cheng and Li?® in their conven-
tions for the phases and coupling constants for the gauge
fields 47, (x) as well as the gauge transformations that
characterize them. We consider the least complicated situ-
ation corresponding to a gauge group G generated by a
compact, simple Lie group with N Hermitian generators
T a=1,..,N that satisfy

[T4T"] =iC,, T

(32)

The structure constants C,,. are completely antisymmetric
in their indices.

The gauge fields transform globally according to the ad-
joint representation of G and so are enumerated in the same
manner as the generators. In the absence of matter fields
the dynamics of the gauge fields are generated by the La-
grangian

Dg)gauge = - AFZVF'Z‘; (33)
where

Fi =38,4%—~3,A4% +gC,AA4¢ (34)
is the field strength. Since

5fgauge — _F‘ZV, (353)

d(3,47)

%ﬁi= —gF ' Cyoqd ], (35b)
the equations of motion are

3, F4 = gF *Cppyd §. (36)

Under an infinitesimal local gauge transformation
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parametrized by the (infinitesimal) functions €“(x), the
changein 4] is

847 =C,,. 0% — (1/8)3,0°. (37

With (35) and (37) it is now straightforward to show that
the Noether current corresponding to an infinitesimal local
gauge transformation is

Ju ) = (= V)3 [F2,(x0)8°x0)]. (38)

This differs from our Abelian result [cf. Eq. (18)] only in
the appearance of the factor ( — 1/g) that results from the
different phase and coupling constant conventions used in
the two instances. If we make the transformationsg— — g
and 8- g6 in Eqs. (34)—(38) we obtain a convention con-
sistent with the one used in the Abelian case.

We next show that (38) is still valid when matter fields
are introduced provided that their coupling to the gauge
fields is minimal. The scalar (¢) and fermion () matter
fields are presumed to transform globally according to ar-
bitrary finite-dimensional irreducible representations of G
that correspond to matrix realizations L ¢ of the generators
T“. The matrix elements L j as well as the field compo-
nents ¢, and ¢, are labeled by indices with ranges appropri-
ate to the individual representations; the spinor indices are
suppressed. It is only necessary to suppose that there is one
scalar and one spinor multiplet and that they both trans-
form according to the same representation of G. Then the
complications entailed in the generalizations to arbitrary
numbers of multiplets of either Lorentz types are trivially
indicial.

Generally we have a Lagrangian

j = fgauge + a'fma\tter’ (39)
where ., .. is given by (33) and

gmaner = (D#¢)7(D#¢) + ¢l7/uD,u¢_ V. (40)

The potential ¥ (¢*,4,3,¢) includes all mass terms and the
nongauge couplings of the scalar and fermion fields. The
minimal gauge coupling is manifested by the covariant de-
rivative

D,=4,—igld;, (41)
which is a matrix in the finite-dimensional representation
space.

The Noether current corresponding to local gauge trans-
formations for the system represented by .¥ is

4.7 54 + 4.7

WO = GGty N 5
i< a3y
+ ——3(8#(;5;") S + ———8(8”1//,) 8Y,. (42)
Here, 54 ¢ is given by (37) as before while
6¢; = —iL 07, (43)
and
oY, = —iL; 0%, (44)

are the infinitesimal changes of the matter fields. We have
suppressed the spinor indices in the last term on the right-
hand side of (42).

The demonstration that (42) reduces to (38) follows
immediately from the following two identities. The first
merely generalizes the calculation employed in the pure
gauge case:
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__EEg:__aAg.
3(3,4%)
_ ( - l)av (Frgey - I mer (ﬁ-) . (45)
g 043,

The second corresponds to (31) and is a variational differ-
ential manifestation of minimal gauge coupling in the pres-
ent context:

ad ad
8¢, + 6¢F
(00 3000 T 30,0
—_ agmatter (21)
aas \g/

+ 6y

_ 9 )g
' a(a‘u'pl)
(46)

1V. BRST SYMMETRY

~ In order to facilitate our discussions, we ignore matter
fields and employ a well-known compact index-free nota-
tion with respect to the adjoint representation of the simple

~ group G similar to that employed by Frampton,'® e.g.,

whose treatment we loosely follow. The field strength is
written as

F,=0,4,—3d,4, +g4, N4, (47)
where the cross product is defined as
(B/\K)a ECachch’ (48)

where B, and K, are any two objects (“vectors”) that
transform according to the regular representation of G.
Then ifa dot is used to denote the scalar product of vectors,
the gauge Lagrangian (33) becomes

L g = — Y F*.

gauge (49 )
We will need only the covariant derivative D Z” in the regu-

lar representation,

D £=4d,6 +g4, NE,
where £ “ is a vector.

One method for quantizing the classical theory based on
(49) leads to a (covariantly) gauge-fixed Lagrangian that
contains so-called Faddeev—Popov ghosts that are denoted

by ¢, and ¢;5 and are independent mutually anticommut-
ing (Grassmann) variables:

(50)

gz“ggauge_"-ZGF"’_zFPG’ (51)
where

Lor = — (1/22)(8%4,,)?, (52)

L epg =0d,c"-D¥e, (53)

and « is a fixed parameter whose significance is immaterial
for our consideration.

Obviously no statement can be made about the behavior
of . under an infinitesimal local gauge transformation,

64, = — (1/g)D,0, (54)
unless the transformation properties of ¢ and ¢* are de-
fined and the gauge parameters € “(x) suitably restricted.

This is indeed the case for the BRST transformation appro-
priate to .7 defined by choosing

Sprst 0 = gc 64,
SO
5BRSTA,u = = (D#C)(S/?-,

(55a)

(55b)
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with
Oprstc= — (8/2) (¢ Ac)bA, (55¢)
SprsrC = — %(3“'A”)5/1. (55d)

Here, 64 is an infinitesimal Grassmann parameter that sat-
isfies the anticommutation relations

{84,c} ={64,c"}=0. (56)
Otherwise 84 behaves like an ordinary number, namely,

d, 64 =0,

[4,,64]=0.
The role of 64 is to render Sgrsr @ bosonic variation that
satisfies the usual form of the Liebnitz rule when acting on
a product

Sgrst (0,0,) = (80,)0, + 0,(80,). (57)

The calculation of Sgzrsr -7 is simplified with the aid of
vector identities that are straightforward generalizations of
those of vector analysis in three-dimensional Euclidean
space.

A, Vector identities

The structure constants of the Lie algebra, C,,. are total-
ly antisymmetric with respect to permutations of their in-
dices. This attribute along with the fact that they also satis-
fy the group algebra (regular representation) implies that

Cabk Clpk = 5a1 5bp - 5ap 51;/- (58)

Antisymmetry and (58) suffice for the proof of all of the
identities listed next in terms of the arbitrary vectors 4, B,
K.

Clearly,

ANB= FBAA, (59)

with the upper (lower) sign if all the components of 4 and
B are commuting (anticommuting).

There are three independent types of triple-scalar prod-
ucts:
(i) All components of 4, B, K commute:

A (BAK) =K-(ANB). (60)
(i) [44B°] =[4°K*] =0,{B°K*} =0:

A (BAK)= — K- (AAB). (61)
(iii) All components of 4, B, K anticommute:

A-(BAK) is independent of ordering. (62)

There are two independent triple-vector products:
i [BK =0

AN(BAK) = (4'K)B — (4'B)K, (63)
(ii) {B*°.K*} = 0:

AN(BAK)= — (4'K)-B— (A'B)‘K. (64)

Two further identities that are repeatedly used in subse-
quent calculations are'®

AN(BAB) =2(AANB)AB (65)
and

3,(BAB) =2(3,B)\B, (66)
where B is a Grassmann vector,

{B*B“}=0. (67)

Equation (65) follows trivially from (64}, (59), and (63).
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Only (59) and the fact that d,, obeys the usual Liebnitz rule
suffice to prove (66). We use (60)-(67) repeatedly in
what follows.

B. dppsy &

Since (55b) is a local gauge transformation, we must
have

5BRST L =0,
as can be seen from

5BRST F == 6 /\ F

Hy uv

- (68)

gauge

and
Serst (Fu F*) = — 0-(F,,, ANF"™)

I nv
=0

The remainder of the calculation is straightforward and
one finds

Surst L =3"[L(3"4,)(D,c) ]84, (69)

namely, the BRST variation of . is a total divergence that
is transformed into a surface term in the action and so has
no effect on the dynamics, which are BRST invariant. We
demonstrate this in a more direct manner in the Appendix.
Another implication of the nonvanishing of the right-hand
side of (69) is that the BRST-Noether current derived
from .% is not conserved, but one that is can be constructed
simply by subtracting the square-bracketed term in (69)
from the original current.

In the course of establishing (69), one exploits the fact,
which follows from (55), that

OprsT (DHC) =0, (70)

which is just one of the nilpotency relations that character-
ize the BRST transformation:

Sirst (4,) =0, (71a)
Sirst€ =0, (71b)
StrsrcT =0. (7lc)

We remark that (71c) follows using the equations of mo-

tion for ¢; it is interesting to note, however, that Sxsrc*

vanishes independently of the equations of motion. Since
3y

‘SBRST Jgauge = ﬁ'aﬂ (5BRSTAV)
nty

+ a ggauge .

(72
A, (72)

6BRSTA v?

it is seen that (68) follows from the validity of the useful
identity
F,. 3"(D"c) =g(4"NF,,)-D"c. (73)

Of course, (73) is valid independently of (68), (55), or the
equations of motion that have as yet to be exploited. It
should be possible to use instead of .%” a Lagrangian that is
BRST invariant. It is easily shown that
Sprst L =0,
where the invariant (/) Lagrangian,
L= — (1/2a)(d*-4,)* — c¢*-(8"D,¢),
(75)
differs from . by a total divergence. The problem with
(75) is that it contains second derivatives that we examine

(74)

gauge

D. L. Karatas and K. L. Kowalski 128



in more detail within Sec. V since it then requires a modifi-
cation of the usual Noether formalism.

Recall, however, that we have demonstrated here only
one quite conventional method of gauge fixing the Lagran-
gian, and that one may also consider other prescriptions.
At the expense of introducing auxiliary scalar commuting
bosonic fields £, , for example, one may define a covariant
gauge-fixing prescription that automatically leads to a van-
ishing BRST variation of .Z". We thank the anonymous
referee of this work for pointing out to us that for

Lor =0, A"+ (a/2) ff, (76)
L e =0d,¢7 D, (77)
one finds that the Lagrangian
fzfgauge‘i’JGF‘FfFPG
is invariant under the following set of transformations:

Oprst 0 = g€ 04, (78a)
OprstA, = — (D,c)b4, (78b)
Oprsrc = — (8/2)(cN¢)b4, (78¢)
Sprsr¢’ = —[84, (78d)
SprstS/ = 0. (78e)

This Lagrangian, we note, suffers from no higher deriva-
tive problem, and moreover that the nilpotency relations of
the BRST transformations, Eq. (71) plus 83gs:f = 0, for-
mulated in this way are found to be satisfied without re-
course to the ghost equations of motion.

V. BRST NOETHER CURRENTS

The Noether formalism for the particular realizations of
BRST symmetry considered in Sec. IV has two complica-
tions not encountered previously. One is the higher-deriva-
tive problem pointed out at the end of Sec. IV. The other
has to do with the fact that ¢ and ¢™ are anticommuting
Grassmann quantities. So that for any variation § of the
fields we have, e.g.,

53—5c+-%§+5 oL, (79a)
z%-5c++af-6c+ , (79b)

where d .7 /dcand 3 . /¢, e.g., denote the left- and right-
handed variational derivatives,?' respectively, of .# with
respect to the Grassmann quantity ¢. Consequently, the
relevant Noether currents are given by

4 4.7

; =& +. +5 . RN 80
Ju(x) = oc 3G, 4 23,0) + (80a)
=_.a_“2¢_.5c+ 07 '5C+ (80b)
3(d,c™) 3(d,¢)

The Lagrangian formalism holds as usual with respect to
¢ and ¢ so long as either only right or only left variational
derivatives are employed; evidently the same equations of
motion are obtained either way.

Since
3¢ _ 3%
a(d,c™) a(d,c™)
= — D*#¢, (81a)
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3¢ _ 0%
3(d,¢) d(d,c)
= + 9%, (81b)

it follows that the BRST Noether current associated with
Z is??
[/ (%) ] grsT = F,, D¢ — (8/2) (t?,lc‘+ ):-(cAc)
+ (2/a)(d4,) D,c, (82)

where we have dropped an overall 64 factor on the right
side of (82). A conserved BRST current is obtained from
(82) by subtracting the divergence (69) yielding (again
without the overall 64 factor)

Ju(X)prst =F,,"D"c— (8/2)(d,c7) (cAc)

+ (1/)(374,)- (D). (83)

The verification that one also obtains (83) from the
BRST-invariant Lagrangian .7, requires the use of a high-
er derivative Lagrangian and Noether formalism that we
quote, for simplicity, in terms of a scalar, non-Grassmann
field ¢(x). If

Z =Z(4.9,49°9), (84)
then the action principle implies the equations of motion

0.7 =0, (85)
where

d J d
0. = —a'(-2) at(—_)-_ 86

is the Lagrangian operator for this case. For any variation
8, the Noether current is

jﬂ(x)z[ a.7 8#( 8_7‘ )]5¢

oo \aae
3.7

——=—3,(84), 87

+a(az¢) . (69) (87)

which is conserved if § .2° = 0. The adaptation of (84)—
(87) to the Grassmann situation encountered in connec-
tion with . and the BRST transformation (55) is clear
from our treatment of ordering questions earlier in this
section. One finds, for example, that

) 8.7, .
Ju (x)gRST zmlaBRsrAv +J; (%), (88)
where
37, 5.
- sa( )
“O= 5@ M\ a@me )|
3.7,
+m'a,u(5BRSTC)- (89)

One then obtains (83), with the aid of some of our pre-
viously quoted identities, which demonstrates the consis-
tency of the two approaches.

As a further check on the validity of our result (83), itis
instructive to verify directly that

5#1‘,‘ (X)grst =0, (90)
using the explicit equations of motion?*:

9F,, = F.(x),

d*(D,c) =0,

(91a)
(91b)
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d%ct =g(d,ct)NAM (91c)
The conserved source current for the field strength,
£ (x)= —(1/a)3,(3°4) +g(d,c*) Ac
+84"NF,;, (92)

is evidently quite distinct from the Noether current (83).
Both of these currents, in turn, are each different from the
conserved Noether current that is associated with the in-
variance

6oL =642, =0, (93)
under the global (rigid) gauge transformation

beA, = g4, N6, (94a)

bs,c=g(c\B), (94b)

Sect =g(ct A\G), (94c)
namely,

J,(x)=F, A"+ (1/a)(d"4,) N4,

—d,ctAe+c" AD,c. (95)

Now J, (x) corresponds to the conservation of “charge,”
although J, (x) and the conserved charge

sza”x.]o(x) (96)

are generally gauge variant.

V1. SUMMARY

We have elaborated upon the customary pedagogical
treatments of Noether’s theorem when it is applied to local
gauge transformations. We have shown for both Abelian
and non-Abelian gauge groups that the Noether currents
associated with local gauge symmetry are expressed solely
in terms of field strengths and are trivially conserved. The
same form for the current is obtained whether or not the
gauge fields are coupled to matter so long as that coupling
is minimal. The resultant currents and their associated
charges do not generally correspond to physical observa-
bles except for constant gauge parameters, in which case
they reduce to the currents and charges implied by global
(or rigid) gauge symmetry. This is reflective of the lack of
gauge fixing.

When the gauge fields are constrained, as is necessary to
obtain unique solutions of the classical equations or to
quantize the theory, the local symmetry is destroyed and
the consequences of Noether’s theorem are much more
limited. A particularly interesting case is when the quanti-
zation is carried out using the device of anticommuting
Faddeev-Popov ghosts. The gauge—fixed Lagrangian still
possesses a restricted local gauge symmetry, BRST invar-
iance. The application of Noether’s theorem in this case
involves subtleties in Grassmann calculus and the higher
derivative Lagrangian formalism not usually explicated in
introductory treatments of gauge theories. We have given a
self-contained treatment that considers these points in de-
tail and also considers the differences among the source
current, and the two Noether gauge symmetry currents
(global and BRST) that arise in a quantized gauge field
theory. Two theorems concerning the nonuniqueness in
the choice of field theory Lagrangians are proved in the
Appendix.
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APPENDIX

It is often stated that Lagrangians that differ by total
divergences yield equivalent equations of motion because
such terms are converted to surface terms in the action
principle that can be discarded. The result, of course, is
actually independent of the consideration of surface inte-
grals. We explore this question here because it takes on a
slightly different form for Lagrangians containing higher

derivatives such as ...

The usual result is that if we have

Z = L($,0,8) + (), (Al)
then, because
a [
3./ =b{;ay¢, (A2)
we have
0, %=0., (A3)
where
3 d
o, =9, [—2—) -2 A4
- "(a(a,,m) ¢ (A4

From (A3) we see that the equations of motion will be the
same for both .¥" and .%.

A number of generalizations of the preceding non-
uniqueness (of the choice of Lagrangian ) theorem to high-
er derivative Lagrangians are possible. The one we require,
however, is where

7 = 7($.9,6,0,9,)

= Z($,0,4) +3./*(4,0,¢). (A5)
Then, since )
. df* ar*
Ja.ft="—-30d,6 + ———3,0,9, A6)
=55 %t g (
one finds, after a somewhat lengthy calculation, that
0,7 =0, %, (A7)
where
~ d d J
O, = —4d,0 d ——. (A8
- 1% 33,0, | a@,8) 96 (48)
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The correction of an erroneous textbook derivation on electrical charge relaxation in conductors
is discussed. The actual decay in a good conductor is damped oscillatory instead of the simple
exponential decay that is often claimed, while short wavelength disturbances spread through the
medium much like particles of mass m = fiw, / (v*), where @, is the plasmon frequency and (v*)

is the mean-square electron velocity.

A derivation that is found in many prominent electro-
magnetics textbooks for physicists' and engineers,” and at
least one well-known optics text,’ concerns the relaxation
of electrical charge in a conductor. Its expressed purpose is
to demonstrate that the free relaxation of a disturbance

- away from equilibrium in the charge density is an extreme-
ly rapid process, so that on the time scale of most physical
events no electrical charge perturbance can prevail inside a
good conductor. Even though it has been pointed out be-
fore* that both the proof and the result given in these
books are seriously in error, many authors of new texts
continue to include it. The error is due to-the implicit as-
sumption that the relaxation time of the charge density is a
dc phenomenon, even though the time scale of the process
is calculated to be as short as 10~ '%s. This decay rate actu-
ally corresponds to the x-ray frequency region! It is desir-
able that proofs presented in undergraduate textbooks be
within the grasp of the average student but educational
objectives are poorly served by erroneous proofs, especially
when widely adopted. Moreover, for those texts that are
written at the graduate level, such “simplification” is even
less appropriate.

This issue was apparently first attended to by Ashby,*
who points out that the actual electrical decay time of a
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conductor should in fact be of the order of the electron
collision time, which is about 2 10™'* s for copper. A
more recent discussion, by Ohanian,’ makes an excellent
point of the fact that the relaxation actually proceeds in
three stages. The first stage is the relaxation of electrical
charge density. The second stage is the expulsion of the
electric and magnetic fields to the exterior of the conductor
and that of currents to the surface. During the third stage,
the process terminates with the slower ohmic and radiative
damping of the surface currents. Ohanian’s discussion
centers on the second and third stages of the process, while
Ashby treats the first.

Physical consideration shows that a description of the
first stage, that of charge relaxation, depends on whether or
not the total charge is zero. In the former case, the relaxa-
tion of current and charge densities is accompanied by a
transport of the surplus charge to the surface of the con-
ductor, which requires special mathematical treatment.
The time constant associated with this stage is then also
related to the size and geometry of the conductor, as well as
to the initial charge distribution. Moreover, the equations
describing the transport of the uncompensated charge are
nonlinear, the solution of which would be much more diffi-
cult. And finally, since there is no definitive decoupling
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