In general relativity gravitational effects (as seen near a
massive object or in cosmology) are inextricably mixed with
local motions. As Synge observes, a truly gravitational effect
should involve the Riemann tensor, which the formulas (41)
or {42) do not. Thus, in principle, we could have z#0 from
these formulas even in flat space—time scenarios. For ex-
ample, the Robertson—Walker model with k=—1 and
a(t)=t is flat but has a cosmological redshift.

This result derived by Synge is, unfortunately, not well
known even among the community of general relativists to-

Synge had highlighted. The purpose of this communication
was to bring the result to the notice of modern workers in
relativity with the help of explicit examples familiar to them.
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Conventional discussions of Maxwell’s equations in free space have for many years taken a
historical approach starting with electrostatics and magnetostatics, and have taught us that the
sources of E are electric charge and B, and the sources of B are electric current and E. However, a
direct dynamic reading of Maxwell’s differential equations leads unquestionably to the surprisingly
different conclusions that the sources of E are electric current and curl B, and the single source of
B is curl E. In this dynamic reading of Maxwell’s equations, electric field is generated locally by
electric current, and fields propagate away from the current source by the dual mechanisms of
curl E generating B locally and curl B generating E locally.

I. INTRODUCTION

Conventional discussions of Maxwell’s differential equa-
tions in free space

div E= ﬁ, curl E=—B, 1
€0
div B=0, curl B=uy(j+ €E), )

follow the historical development of electromagnetism, pro-
ceeding from electrostatics (Coulomb) and magnetostatics
{Ampere and Biot—Savart) to Faraday’s induction and finally
to Maxwell’s displacement current and field propagation. It
seems to follow naturally from electrostatics and magneto-
statics, that charge and current are the sources, respectively,
of electric and magnetic field. It again seems natural to in-
terpret the contributions of Faraday and Maxwell by saying
that electric field is generated also by time varying magnetic
field, and that magnetic field is generated also by time vary-
ing electric field. Finally, recognizing the neat fit between
these interpretations and the mathematics of the Helmholtz
theorem, which shows that a vector field is determined by its
divergence and its curl as sources of the field, it is no wonder
that most physicists trained in this tradition have had no
reason to question these “natural” teachings, or to look for
alternative interpretations. The Helmholtz theorem'

’

r-r
V(l‘,t)= div V(l",t)mdl"
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!

+f curl V(r',#) X 4'71'|l‘——l"|3dr (3)

expresses a vector field V(r,t) as a sum of an irrotational
(Coulomb-type) field with source density div V, and a sole-
noidal (Biot—Savart-type) field with source density curl V.
The integrals in Eq. (3) extend over all space.

In this paper we describe a surprisingly different interpre-
tation, one that follows naturally by reading Maxwell’s dif-
ferential equations directly as a set of local dynamic field
equations. In this reading, the instantaneous state of the elec-
tromagnetic field is described by the values of E(r,) and
B(r,t) at all points of space, and the rate of change of the
state, described by E and B, is determined by the instanta-
neous values of the fields and of the current distribution j,
through the two curl equations of Maxwell,

. 1 1

E=——j + curl B, 4
€9 J €olbo )

B=—curl E. (5)

We can imagine numerically integrating these equations,
time step by time step, using

E(r,t+ 6t) = E(r,t) + Sg(r,t) 8¢,
B(r,t+ 6t)=B(r,t) + Sg(r,1) 6t
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where Sg(r,t) is the right side of Eq. (4) and generates E
locally, and Sz(r,f) is the right side of Eq. (5) and generates
B locally.

Although the consequences of the local dynamic view of
Maxwell’s equations were a surprise to us when we first
realized them, we discovered later that the view had already
been adopted in a textbook by Pieter B. Visscher, although
from a somewhat different perspective.

In this reading of Maxwell’s equations, electric field is
generated locally by the current (density) j and by curl B
(multiplied by coefficients), and magnetic field is generated
locally by —curl E; these are the right sides of Egs. (4) and
(5). Electric field E is initiated locally by the current j, which
is external to the field, and field propagates away from the
current source by the dual field mechanisms of —curl E gen-
erating B locally and curl B/, u, generating E locally.” We
will use the natural terminology that j and curl B (multiplied
by coefficients) are the sources of E, and that —curl E is the
source of B.

Also, both of Maxwell’s divergence equations are direct
consequences of the two curl equations and of charge con-
servation. The vanishing of div B is a consequence of the
fact that the source of B has zero divergence. The propor-
tionality of divE and p is a consequence of the fact that
currents generate both electric field and charge so as to sat-
isfy div E=p/e;. Additionally, electrostatics and magneto-
statics are regarded simply as equilibrium situations in which
E and B are both zero.

It is to be expected that the Helmholtz theorem plays no
role in a local dynamic interpretation of Maxwell’s equa-
tions, because it can be regarded simply as a mathematical
identity that describes a static and nonlocal relation between
a vector field at one position and its divergence and curl at
other positions, all at the same time.

The direct dynamic interpretation is discussed further in
Sec. II, along with some examples and consequences. In Sec.
IT1, the historical evolution from electrostatics and magneto-
statics to Faraday’s induction and finally to Maxwell’s dis-
placement current and field propagation is illuminated by
discussing two approximations to Maxwell’s equations,
called the quasistatic and the Faraday approximations. Sec-
tion IV presents an indirect dynamic interpretation in which
the electric field is resolved into a Coulomb part and the
remainder, and the magnetic field into a Biot—Savart part and
the remainder. Finally, in Sec. V we compare briefly the
ideas of this paper with interpretative comments made by
other authors.

It is of course true that Maxwell’s equations need not be
“interpreted” at all, and that their quantitative consequences
follow directly from the equations themselves and are inde-
pendent of whatever interpretation is adopted. It is also true,
however, that interpretations, viewpoints, and ways of think-
ing about the equations, are useful for both qualitative and
quantitative understanding.*

I1. DYNAMIC INTERPRETATION

A. The divergence equations from the dynamic curl
equations

As stated in Sec. I, the two Maxwell “curl equations,” in
the forms of Eqgs. (4) and (5), describe the local dynamics of
the electromagnetic field. The electromagnetic sources of
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electric field are the terms on the right side of Eq. (4), j and
curl B (aside from coefficients); and, the single source of
magnetic field is —curl E.

Taking the divergence of Eq. (5) gives (d/dt)div B=0,
which states that the electromagnetic source of B (which is
—curl E) generates only divergence-free magnetic field. If
we then imagine no sources of field other than those on the
right sides of Egs. (4) and (5), it follows® that div B=0.

The divergence of Eq. (4) results in (d/dt)divE
=—(1/g)div j. Using charge conservation,

p=—divj ©)

then leads to Hdiv E—p/ey)/ot=0, which states® that the
electric field generated by j satisfies Maxwell’s divergence
equation, div E=p/¢,. The current density j generates both E
and p in such a way that the divergence equation is automati-
cally satisfied. The conclusion is that the Maxwell diver-
gence equations are consequences of the two dynamic curl
equations and of charge conservation.

B. Static fields as equilibrium fields

An equilibrium electromagnetic field is one for which E
and B are zero at all r. Equating them to zero in Egs. (4) and
(5), or in Egs. (1) and (2), results in curl E=0 and
curl B=u,j. Taking the time derivative of the div E equation
in Eq. (1) shows that p=0, and therefore from Eq. (6), that
div j=0. The static, or equilibrium fields, which we denote
by E¢ and Bgg (for Coulomb and Biot—Savart) are then de-
termined through Helmholtz’s theorem by their divergences
and curls,

div Ec =p/€y, curl E; =0,
div Bgs=0, curl Bgs= ol (7)

resulting in the following fields, in which the integrals ex-
tend over all space:

p(r') r-r .
= | 7o g ®
_f 2 ! _r’ d I3 9
Bgs(r)= | mai(r’) X aar—r P 9)

C. Dynamics of a current delta pulse

Imagine an initial condition with no field, no charges, and
no currents, E, B, j, and p vanishing over all space. Then
imagine a “delta” pulse of current at time zero of the form

i(r,t)=o(r)é(s), (10)

where 8(¢) is the Dirac delta function. Integrating Egs. (4),
(5), and (6) over the duration of the delta pulse, from r=0"
immediately before the pulse to t=0" immediately after the
delta pulse, gives

1
E(r,0%)= ——o(n), B(r,0")=0,
0

p(r,0")=—div o(r). (11)

Also, using Egs. (4) and (5) at time t=0%, at which j=0 and
E and B are given by Eq. (11), leads to

E(r,0%)=0, B(r,0")=—curl E(r,0"). (12)
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Fig. 1. A tube current pulse generating a uniformly charged disk and a
uniform tube electric field.

Suppose first that div ¢ = 0, in which case no charge is
generated and p=0. Then after the delta pulse, for t>07,
both j and p are zero, and the fields E and B satisfy Max-
well’s free field equations and thus propagate away to infin-
ity at the wave speed

c=(o€o) "% (13)

When div o # 0, a charge density p=—div o is generated
by the current delta pulse, and this charge density remains
stationary as long as no further currents act. If the electric
field generated by the delta pulse, E(r,0"), is by chance or
design the Coulomb field, E., associated with the charge
density generated by the pulse, then nothing further happens
after the pulse; the situation immediately after the pulse is
one of static equilibrium, with B=0, p=—div o, and E=E
where div Ec=—div o/¢, and curl E-=0. When the gener-
ated electric field is different from E., then field dynamics
results in creation of magnetic field, and field propagation
takes place in such a way that the electric and magnetic fields
settle down to the equilibrium values, Bgg and E, associ-
ated with j=0 and p=—div o, where Bgs=0, and E is de-
termined by curl Ec=0 and div E.=—(div o/¢;) (and the
condition that it vanishes at infinity).

D. Examples

As a first example consider a current delta pulse with
a(r)—*[Q/(4 wr?)[t. This pulse generates a pomt charge Q
at the origin, and an electric field E=[Q/(4 we,r?)]f, which
is precisely the equilibrium static field for the charge Q.
There is then no further change. This inverse square current
pulse generates the electrostatic situation of a point charge
and its equilibrium field.

Now consider a delta pulse  with o(r)
=(Q/ma*) 1Kx) 7(r’ ~—a)x where X is the unit vector in the
positive x direction, r' is distance perpendicular to the x
axis, and 7 is the complement of the step function, equal to
unity when the argument is less than zero, and zero when the
argument is positive. This pulse consists of a uniform current
density of magnitude Q/ma’ in the x direction within the
tube of radius a centered on a negative x axis, as indicated in
Fig. 1. The pulse generates a uniformly charge disk of total
charge Q, centered at the origin and perpendicular to the x
axis. It also generates an electric field E=—(1/¢,)o(r) which
is a uniform field within the tube directed leftward out from
the charged disk. This electric field is not the equilibrium
field for the disk of charge; although it satisfies the diver-
gence equatlon (havmg the correct flux emanating from the
charge), its'curl is not zero. How the field starts changing
toward the equilibrium electrostatic field will be considered
shortly.
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Fig. 2. A sheet current pulse in the x,y plane generates a sheet E field.
Because E vanishes off the plane, its circulation is in the X direction on the
positive z side of the plane the—x direction on the negative z side. The
paths for the line integrals are indicated by the arrows.

An electric dipole consisting of positive and negative
charged disks can be generated by a current pulse in a tube of
finite length. The electric field generated by this pulse is
again not the equilibrium field.

Field propagation may be illustrated by the delta pulse
with o(r)=—\&z)y. As schematized in Fig. 2, this describes
a current pulse in the x,y plane, directed in the negative y
direction, with current X per unit length along the x direction.
The pulse has zero divergence and consequently generates no
charge. From Egs. (11) and (12), the fields generated by the
pulse satisfy

E(r,0+)=§05(z)9, E(r,0%)=0, (14)

B(r,0")=0, B(r,0")=—curl E(r,0")= %6’(2)5(. (15)

0
The generated electric field is a sheet of E in the x,y plane,
directed in the positive y direction, which is then propagated
in both directions outward from the sheet toward 1nﬁn1ty by
the dual mechanism of —curl E generating B and c? curl B
generatmg E. The fields, E=E yy and B=B X at times t>0"
are given by®

Ey=% 6—0[5(z—ct)+ 8(z+ct)]

1 A
Bx=% 6—0[—5(z—ct)+5(z+ct)]. (16)

Half of the initial E sheet amplitude propagates in the posi-
tive z direction and half in the negative z direction, each half
propagating along with its associated B field. The fields
propagating in the positive z direction are sheets given by

E,=(\/2€y)6(z—ct) and B ——()\/2660)5(2 ct).

The dual mechanism that glves rise to the propagation,
—curl E generating B and ¢* curl B generating E, may be
described qualitatively as follows. The curl of the initially
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Fig. 3. The B field induced by —curl E of the field in Fig. 1, and the curl of
that B field, which induces new E field.

generated E, of Fig. 2, is a double layer’ centered at the x,y
plane, directed in the +x direction on the positive z side and
the —x direction on the negative z side. Consequently,
—curl E generates a double layer of B directed in the —x
direction on the positive z side and the +x direction on the
negative z side. Note that the direction of B on both sides is
such that EXB is outward from the x,y plane. This is the
mechanism for initiation of the two outwardly propagating B
sheets. In similar fashion, each B sheet generates a double E
layer, with the E at the side closer to the x,y plane in the —¥
direction, thus canceling the previous E on the closer side,
and the E on the side further from the x,y plane in the initial
E direction, that of +y, thus propagating the initial E out-
ward (1/2 in each direction). In this fashion each of the
propagating E sheets generates a double B layer that cancels
the previous B sheet on the side closer to the source plane,
and generates the new B sheet on the side further from the
source plane. In the same way, each of the propagating B
sheets generates a double E layer that cancels the previous E
sheet on the side closer to the source plane, and generates the
new E sheet on the side further from the source plane. (For a
particle of matter to propagate in this fashion, it would have
to continually be destroyed at its current position and recre-
ated at its next position.)

A similar analysis shows how the tube of E lines emanat-
ing leftward out of the charged disk of the second example
above, Fig. 1, starts to change into the electrostatic equilib-
rium field. As indicated in Fig. 3, the curl of the tube E field
is a cylindrical sheet field running around the tube in the
sense related to the direction of E by the right-hand rule. The
source of B, which is —curl E, thus generates a cylindrical
sheet of magnetic lines in the opposite sense. The source of
E, ¢? curl B, for this B field contains a double cylindrical
layer centered at the curved surface of the tube, directed in
the initial E direction at the outside sheet and oppositely at
the inside sheet, thus generating E outside the tube in the
initial E direction and reducing the field inside the tube. The
curl of B also contains contributions that are radially outward
from the circumference of the charged disk end of the tube.
(This may be seen by taking the circulation of B around a
loop with its left arm being a small arc of the circumference
and right arm a small parallel arc displaced slightly to the
right.) It is these contributions that generate radially outward
components of new E field. The continuation of these
mechanisms results eventually in the electrostatic field of the
uniformly charged disk, all B and all other contributions to E
propagating away to infinity.
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E. Creation and destruction of arbitrary electric and
magnetic fields

Imagine again an initial condition with no fields, no
charges, and no currents. It was shown in Sec. II C, that the
current delta pulse j(r,t)=o(r)&¢) generates at time t=0"
the electric field E(r,0")=—a(r)/¢, but does not generate
any magnetic field. This result may also be stated in the
following way. Any initial field with arbitrary electric field
E(r,0") and no magnetic field, B(r0*)=0, could be gener-
ated by the immediately preceding delta current pulse given
by j(r,t)=0o(r)&t) with o(r)=—gE(r,0").

We prove at the end of this subsection that any initial field
with arbitrary magnetic field B(r,0) and no electric field,
E(r,0")=0, could be generated by the immediately preced-
ing “delta prime” current pulse j(r,)=2(r)é'(¢), where & (¢)
is the derivative of the delta function and 2(r) satisfies curl
3(r)=¢B(r,0") and has arbitrary divergence.

The following pulse creation theorem is then true. Any
specified field at any time can be created by an immediately
preceding current pulse. The fields at time ¢35, E(r,ty) and
B(r,tJ ), can be created out of zero field at time ¢, by the
current pulse

() =o(r)8(t—ty) + 2(r)8' (t—1ty), 17
where

o(r)=—¢E(r,ty),  curl 3(r)=¢B(r,ty) (18)
and div 2(r) is arbitrary. As a corollary, the following de-
struction theorem is true. Any given field at any time can be
destroyed, canceled out, by an immediate current pulse, that
pulse which would create the negative of the given field.

Consider again any given field at any time ¢; and ask the
question, “Which past currents generated them?”” The an-
swer is that there are infinitely many past current distribu-
tions that could have generated the field. The immediately
preceding pulse described by Egs. (17) and (18) is only one
of the possibilities. [There are actually an infinite number of
these due to the arbitrariness of div 3(r).] By running the
source-free equations (4) and (5) with j=0, backward to an
carlier time ¢, — 7, and creating the field at this earlier time by
an immediately preceding current pulse, it is seen that an
arbitrary field at any time could have been created by pulses
at any earlier time, or by any number of combinations of
pulses at various earlier times, or by smoothing out these
pulses over time, by infinitely many continuous current dis-
tributions in the past.

We now show that a delta prime current pulse creates only
magnetic field. Start with zero fields at time r=0",
E(r,07)=0 and B(r,07)=0. Let j(r,t) denote a pulse of cur-
rent that acts only during the infinitesimal time interval from
t=0" to t=0", and let k(r,t) be the cumulative current from
the beginning of the pulse, so that

Jk(r,t)
a

k(r,t)= fot_ J(rtHdt', jre)= 19

Now integrate Egs. (4) and (5) from the beginning of the
pulse at time 0~ to any time ¢ during the pulse, 0" <t=<0".
The results are

E(r,t)=—'5i0 k(r,t), (20)
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t
B(r,t)= —curlf E(r,t')dt’,
o-

when it is assumed that B remains finite during the pulse and
therefore that the integral of B in Eq. (4) remains infinitesi-
mal over the infinitesimal duration of the pulse. Using the
formula for E(r,¢) in the integral for B(r,z) leads to

1 t
B(r,t)= E; curljo_k(r,t’)dt’. (21)

The fields generated by the pulse, E(r,0%) and B(r,0%), are
then

1
E(r’0+)= - k(r,0+)5
€

1 o+ (22)
B(r,0")=— curl | Kk(r,t")dt'.
€0 0

Choosing k as the step function k(r,t)=o(r)(¢), where
1(t) is the unit step function, gives the delta current pulse
jrt)=dk/ot=0(r)&t), and from Eq. (22) reproduces the re-
sults obtained earlier in Eq. (11). The delta function, k(r,t)
=3(r)&t), gives the delta prime current pulse
jr,t)=3(r)&'(t), and from Eq. (22) gives E(r,0")=0 and
B(r,0")=curl 3(r)/g,. Using k(r)=2(r)&t) in Eq. (21)
shows that B does remain finite through the pulse, as as-
sumed in Eq. (20).

III. THE “QUASISTATIC” AND “FARADAY”
APPROXIMATIONS

A. The quasistatic approximation

Consider an arbitrary distribution of charge and current,
p(r,t) and j(r,t), satisfying charge conservation (6), and ask
what the fields E(r,t) and B(r,¢) would be in the absence of
Faraday induction and Maxwell’s displacement current, and
what then would be the differential equations for these fields.
More correctly, we ask how would we approximate the fields
without taking into account Faraday induction and Max-
well’s displacement current. The most reasonable answer to
this question is what we call the first approximation, or the
quasistatic approximation to Maxwell’s equations. The fields,
denoted by E,(r,¢) and B,(r,f), may be called the “instanta-
neous” Coulomb and Biot—Savart fields, respectively, and
are given by

E ‘f AL ok S )
](l',t)—— €0 47T|r_r,F r, ( 3)
B _J’ (e r-r’ ,
()= [ uei(r',t) mdl‘ , (24)

for any time varying charge and current distributions. Be-
cause E(r,?) is determined instantaneously by the instanta-
neous charge distribution, p(r,t), through Eq. (23), it is le-
gitimate in this quasistatic approximation to say that electric
charge is the source of electric field. Similarly, from Eq. (24)
it is legitimate to say that electric current is the source of
magnetic field.

In contrast with E,(r,t) and B, (r,t), the equilibrium fields,
Ec(r) and Bgg(r), of Eqgs. (8) and (9 are defined only for time
independent current and charge distributions j(r) and p(r), or
equivalently when j is stationary and div j=0. This differ-
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ence leads to a significant change in the differential equa-
tions for the fields. For the equilibrium fields, the differential
equations are given in Eq. (7). For the quasistatic approxi-
mation, they are obtained by evaluating the divergence and
curl of Eqgs. (23) and (24), and are®

div E1=£, curl E;=0, (25)
€p
div B;=0, curl B, = uo(j+ €E,). (26)

The change is the presence of E, in the equation for curl B;.
It arises® because the curl of Eq. (24), or of Eq. (9), has a
term involving an integral containing div j which vanishes in
the equilibrium case, leading to curl Bgg=pgj. Here, div j
need not vanish, and the integral turns out to be E,, after
replacing div j by —p. Because div curl B; vanishes identi-
cally, the divergence of the right side of the curl B; equation
must also vanish, thus requiring the E, term when div j#0.

In spite of the appearance of the E, term in Eq. (26), the
field B, is still given by the Biot—Savart integral of Eq. (24),
for the following reason. The Helmholtz theorem applied to
Eq. (26) gives for B, the integral in Eq. (24) with j replaced
by (j+&E;). But the contribution of E; to the integral
vanishes” because curl E;=0. Although E, does not contrib-
ute to the Biot—Savart integral, it must be included in the
Ampere circuital form of the curl B, equation

f Bl-d1=fu0(j+e(,13:1)-dA 27

which is a direct consequence of the curl B, equation in Eq.
(26).

The differential equations in the quasistatic approximation
Eqs. (25) and (26), differ from Maxwell’s in two respects.
They do not contain a Faraday induction term in the equation
for curl E;, and they do not contain the full Maxwell dis-
placement current in the curl B, equation. The full Maxwell
displacement current, E, generally has a non-vanishing curl
and does contribute to the Biot—Savart integral for the mag-
netic field.

B. The Faraday approximation

We now describe a second approximation that takes into
account Faraday induction, but not Maxwell’s full displace-
ment current. We call this the “Faraday approximation,” and
denote the fields by E,(r,t) and B,(r,t). The ficlds may be
described as follows. The magnetic field, B,(r,t), is simply
the instantaneous Biot—Savart field, B, of Eq. (24), and the
electric field, E,(r,), is the sum of the instantaneous Cou-
lomb field, E; of Eq. (23), and a non-Coulombic Faraday
field denoted by Eg. This Faraday field is regarded as the
field induced by a time varying B;, and is defined by

div Ez=0,  curl Ez=—B,. (28)
The Faraday approximation is then described by Eq. (28) and
E=E1+EF, B=B1 . (29)

The differential equations for the fields defined by Egs. (28)
and (29) are

dvE=2,  cul E=—B, (30)
€
div B=0, curl B=py(j+ €E;) (31)
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and differ from Maxwell’s, Eqs. (1) and (2), by having E,
rather than E in the curl B equation.

There is no field propagation in the Faraday approxima-
tion, and thus no radiation. The fields at all points of
space are instantaneously determined by the instantaneous
values of p, j, and j; p(r¢) determines E,(r;) by Egq.
(23), j(r,t) determines B(r,t)=B,(r,t) by Eq. (24), and j de-
termines B,(r,f), which in turn determines Eg(r,t) by Eq.
(28). When p and j vanish everywhere during any time in-
terval, then E and B also vanish in that time interval. When
only j vanishes, and p does not, there remains only the sta-
tionary Coulomb field E, associated with the necessary sta-
tionary charge distribution.

In this approximation, it is both natural and legitimate to
say that magnetic field is generated by currents because
B=B, is determined solely and instantaneously by j. It is
also legitimate to say that the E, part of E=E,;+Eg is gen-
erated by charges and that Faraday’s induced part, E is gen-
erated by the time-varying magnetic field, B=B;.

It is difficult to characterize generally the range of validity
of the approximation. From one point of view,'® it can be
said that the error stems from neglecting time derivatives of
Jj higher than the first. For a moving charge in uniform trans-
lational motion with speed v, this is equivalent to saying that
the Faraday approximation gives the fields correctly to first
order in v/c.

From a more fundamental viewpoint, the basic error is the
absence of field propagation, which requires mutual genera-
tion between electric and magnetic field. Although there is
Faraday generation of E by B, there is no generation of B by
any property of the electric field. Mutual generation and
propagation appear only when Maxwell replaces E; in Eq.
(31) by the full displacement current E, in which event the
equations can be dynamically interpreted as described in Sec.
II.

IV. AN INDIRECT DYNAMIC INTERPRETATION:
RESOLVING THE FIELDS

We describe an indirect interpretation of Maxwell’s equa-
tions that is of some value in spite of its artificial nature as a
mathematical trick. We resolve the electric field into its Cou-
lomb part E; and its remainder E*, and the magnetic field
into its Biot—Savart part B, and its remainder B*,

E=E1+E*, B=B1+B* (32)
Then E*=E—E; and B*=B—B,; may be regarded as the
displacements or departures of E and B from their instanta-
neous Coulomb and Biot—Savart values E; and B;. If we
now regard E(r,t) and B;(r,?) of Egs. (23) and (24) as the
fields that are instantaneously in equilibrium with the charge
and current distributions, p(r,¢) and j(r,t), then E* and B*
are the displacements of the fields from their instantaneously
equilibrium values. The differential equations for E* and B*
then describe the vibrations of the fields around these instan-
taneously equilibrium values. This is analogous to the ex-
ample of a vertical mass spring system in a g (gravity) field,
where it is of value to measure the displacement of the mass
not from the unstressed position of the spring, but from the
shifted equilibrium position. This shifted equilibrium posi-
tion would be only an instantaneous equilibrium position
when g varies with time.
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The differential equations for E* and B* may be obtained
by subtracting Egs. (25) and (26) from Egs. (1) and (2) and
are

div E*=0, curl E*=-B*-B,, (33)

1.
div B*=0, curl B* =C—2E*. (34)
Taking the curl of the curl equations in Eqs. (33) and (34)
results in
1. . 1... 1.
V2E* - C—ZE*=cur1 B,, V2B* - EfB*=—C-7B1, (35)
which show that E* and B* propagate at speed c.

If at some time j becomes and remains zero, then B, be-
comes and remains zero, and p becomes and remains station-
ary or zero, and therefore E; becomes and remains stationary
or zero. It follows from Egs. (33) and (34), with B,=0, that
the departure fields, E* and B* then propagate away to in-
finity, leaving behind only the static equilibrium field, E,,
associated with the remaining static charge distribution, if
any. The examples in Sec. Il D may be interpreted in this
manner. At the moment that j becomes and remains zero, E*
and B* may be considered to be “detached” from the current
sources that initially generated them,!! and then to propagate
freely on their own.

The B, term of Eq. (33) vanishes not only when j is zero
but also when j is stationary, j=j(r). Thus when j becomes
stationary and remains so, the departure fields, E* and B*,
again simply propagate away to infinity, and the fields settle
down to their instantaneous equilibrium values E, and B,.
The magnetic field B, is the stationary Biot—Savart field as-
sociated with j,, and the electric field E; is the instantaneous
Coulomb field associated with p. When div j, vanishes, both
p and E, are stationary. When div j,#0, both p and E, in-
crease linearly with time. Another situation with a simple
outcome'? arises when j becomes and remains linear in time
for a long time, and consequently B, becomes constant in
time. .

V. COMPARISON WITH OTHER AUTHORS

Reading Maxwell’s equations directly as a set of local
dynamic field equations leads to the conclusions that an ex-
ternal current generates E locally, and that all further action
involves the internal dynamics of the field, operating by the
dual mechanism of —curl E generating B and ¢ curl B
generating E. In contrast, a number of past and recent writ-
ings in this journal have downplayed the electromagnetic
field as the agent that propagates signals across space.

Papers by Rosser, Jefimenko, and Griffiths and Heald ef-
fectively deny dynamic action within the electromagnetic
field. They argue against a local dynamic reading of Max-
well’s curl equations, Egs. (1) and (2). In discussing Max-
well’s curl B equation, Rosser,'® writes “It is not necessary
to state that it is the displacement “current” which gives rise
to the magnetic field, it is sufficient to say that one effect is
accompanied by the other. They have a common cause,
namely, moving charges, at some earlier time. For a full
discussion of this viewpoint the reader is referred to
O’Rahilly.” Rosser goes on to make the analogous statement
about the curl E equation. We agree with Rosser only in
saying that E is not a source of B, and B is not a source of E.
We differ greatly when we say it is the other way around;
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that —curl E generates B, and c” curl B generates E, and this
describes the dual mechanism by which field is propagated.
We object to the underlying ideas in Rosser’s statement
which denies any dynamic action within the electromagnetic
field. The book by O’Rahilly,' to which Rosser refers, is an
absolutely thorough rejection of the entire field concept and
of Maxwell’s theory.

The papers by Jefimenko and by Griffiths and Heald base
their denial of field dynamics on two equations derived by
Jefimenko which give E and B directly in terms of retarded
values of p, p, j, and j. Jefimenko'® writes, “These equations
indicate that the sources of a time-dependent electric field are
electric charges together with conduction and convection
currents, while those of a time-dependent magnetic field are
only the conduction and convection currents but not the dis-
placement currents. This means that although a displacement
current is associated with a magnetic field, this does not con-
stitute a cause and effect relationship.” Griffiths and Heald,'®
writing about Maxwell’s curl B equation say “The Maxwell
term JE/d¢ is necessary in the local equation (2) (the curl B
equation) as a surrogate for the source currents at other
places... . In principle, JE/dt is no more a source of VXB,
than VX B is a source of JE/d¢.” These authors state that the
“true source” of B is the current distribution j.

In our opinion the primary nature of the field, on an equal
footing with matter, needs no defense other than the force of
history from Maxwell to Einstein and beyond. We also refer
to the quotations from Einstein and Infeld® and Feynman.!!

However, we comment on Griffiths and Heald’s descrip-
tion of E as merely a “surrogate” for the “true” source cur-
rents at other places. It was demonstrated earlier that any
given field distribution could have been created by infinitely
many past current distributions. In our view, any field that
could be a surrogate for an infinite number of possible past
current distributions, must be worthy of more consideration,
and in fact should be regarded as an independent entity. (Ad-
ditionally, although it may be unfair in this discussion to
invoke quantum phenomena, we do so, and point out the
process of pair creation by photons, in which currents and
charges are created out of pure electromagnetic field.)

ISee, for example, A. Sommerfeld, Mechanics of Deformable Bodies (Aca-

demic, New York, 1950), pp. 147—149, where the Helmholtz theorem is
called “a fundamental theorem of vector analysis.”

%Picter B. Visscher, Fields and Electrodynamics (Wiley, New York, 1988).
This book was brought to our attention during the review process. Viss-
cher’s perspective on fields starts by discretizing all field equations with
respect to space and time.
3The dynamics of field propagation has been similarly described by Ein-
stein and Infeld in A. Einstein and L. Infeld, The Evolution of Physics
(Simon and Shuster, New York, 1938), where they write that Maxwell’s
equations

do not...connect two widely separated events: they do not connect the
happenings here with the conditions there. The field here and now de-
pends on the field in the immediate neighborhood at a time just past. The
equations allow us to predict what will happen a little further in space
and a little later in time, if we know what happens here and now... . We
can deduce what happens here from that which happened far away by
the summation of these very small steps.

*A fascinating introduction to the nineteenth century models and interpre-
tations of Maxwell’s electromagnetism is given by Bruce J. Hunt in an
article entitled “ ‘How My Model Was Right’: G. F. FitzGerald and the
Reform of Maxwell’s Theory” which appears in Kelvin’s Baltimore Lec-
tures and Modern Theoretical Physics Historical and Philosophical Per-
spectives, edited by Robert Kargon and Peter Achinstein (MIT, Cambridge,
Massachusetts, 1987).

913 Am. J. Phys., Vol. 62, No. 10, October 1994

SIntegrating (&/0t)div B=0 results in div B=f(r), where f(r) is a stationary
function of position. If now a static field By, is defined by div By=f(r) and
curl B;=0, then the difference field, B— By, satisfies Egs. (4) and (5) and
also div (B—By)=0. But B—By is simply the magnetic field that arises
from the source term, —curl E. Integrating 3/df[div E—(p/€;)]=0 results in
div E—(p/e))=g(r). If a static field E, is defined by div E,=g(r) and
curl E,=0, then the difference E—E, satisfies Eqs. (4) and (5) and also
div (E-Eg)=p/¢;.

SSet E=E,y and B=B k. Then, after the pulse, E,(z,f) and B,(z,¢) both
satisfy the source free (scalar) wave equation in one dimension, with initial
conditions E,(z,0*)=(\/€)8(z) and E,(z,0")=0 for E,, and
B.(z,0%)=0 and B,(z,0*)=(\/€)&'(z) for B, . The plane wave solutions
for these initial conditions are given in Eq. (16). They clearly satisfy the
source-free wave equation and also satisfy the initial conditions immedi-
ately after the pulse.

"It may be seen from Fig. 2 that the circulation of E is clockwise on the
positive z side of the x,y plane, and thus that curl E is in the positive x
direction. Analogously, curl E is in the negative x direction on the negative
z side. It is clear that curl E is confined to a double layer surrounding the
x,y plane because E and therefore curl E vanish off the plane. Quantita-
tively, the curl of the initially generated E, of Eq. (13), is
curl E=—(\/g)8'(z); the double layer is mathematically described as a
delta prime function.

8Evaluating the divergence and curl of both Eq. (23) and Eq. (24)
gives divE,=p/e,, curl E;=0, divB;=0, and curlB,
=p o§—f div jir" )[(x—r')/4njr—r'Pldr’ which leads to Eq. (26) after
replacing div j by —p, and realizing that the resulting integral containing p
is equal to eOEI.

°As in the previous note, the divergence and curl of
F(r)=[f" ) X[(r~r')/@4mir—r'P)ldr’ are divF=0 and curl F
=f— [ div fr’ )[(r—r")/(4nlr—r'P)ldr’. When curl f=0, Helmholtz’s
theorem for f gives f=1 div f(r',¢)[(r—r')/(4=r—r'])]dr’ from which it
follows that curl F=0. Then F=0 when curl =0 because div F and curl F
are then both zero. It even follows that an irrotatinal current distribution,
one with curl j=0, generates no Biot—Savart magnetic field.

%When E,=E, Egs. (30) and (31) dgree with Maxwell’s equations. They
then give correct results when EF vanishes, because by Eg. (29).,
E=E,+Eg. When all derivatives of j higher than the first are zero, then j
is stationary, and then B=B1 is stationary, from Eq. (24), and then E; is
stationary from Eq. (28), and so EF vanishes in such cases.

""More picturesquely, in describing the propagating fields that remain after
all charges and currents vanish, Feynman, in R. P. Feynman, R. B. Leigh-
ton, and M. Sands, The Feynman Lectures on Physics (Addison—Wesley,
Reading), p. 188, wrote

The fields have “taken off,” they are propagating freely through space,
no longer connected in any way with the source. The caterpillar has
turned into a butterfly.

2When j is stationary, so is B, , from Eq. (24), and so is the Faraday induced
field, B¢, from Ref. 10. Substituting E*=Ep+E** in Eqgs. (33) and (34),
and using Ez=0 and Eq. (28) then shows that E** and B* satisfy the
source-free field equations and thus propagate away to infinity. The fields
therefore settie down to B=B,; and E=E,;+E;. The “settled” magnetic
field, B,, is linear with time, and the settled electric field, E, is quadratic
in time because p is quadratic when j is linear (and div j#0). The simplest
example where j becomes stationary is that of a ramp function starting at
time zero, j=j'(r)¢7(¢), n(¢) being the unit step function. Here, j=0 for
£<0, and j=j'(r) for £>0, and so B, jumps from O to another stationary
function of position during the startup. Because ﬁ, varies with time during
the startup at time zero, it generates departure fields in Eqs. (33) and (34),
which then propagate away to infinity.
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