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The theory of macroscopic electrodynamics �in its multipole form� for harmonic plane-wave electric
and magnetic fields in linear anisotropic media yields constitutive relations and expressions for the
material constants and other macroscopic observables. It is shown that the calculated dynamic
material constants are unphysical: of the 36 elements of the constitutive tensor, 27 �comprising the
inverse permeability and two magnetoelectric tensors� depend on the choice of coordinate origin,
while the remaining 9 �the permittivity tensor� are physical at electric dipole order, but not beyond.
Thus quantities such as the time average of the instantaneous Poynting vector have origin-dependent
values. We use properties of the macroscopic Maxwell equations and the equation of wave
propagation to show how physically acceptable results can be obtained in a relatively simple manner
for both nonmagnetic and magnetic dissipative media. In doing so, it is essential to adhere to a
certain hierarchy for the pairing of electric and magnetic multipoles/polarizabilities. We also
comment on the Post constraint in relation to this theory, and use the Buckingham effect to illustrate
origin-dependent and origin-independent properties. © 2006 American Association of Physics Teachers.
�DOI: 10.1119/1.2151213�
I. INTRODUCTION

The purpose of this paper is to present some surprising
results that have been obtained in the multipole description
of macroscopic electrodynamics. The theory starts with Max-
well’s equations for the microscopic electric and magnetic
fields e and b. A suitable averaging process leads to the
macroscopic Maxwell equations for four fields—the macro-
scopic electric and magnetic fields E and B and two addi-
tional fields, D and H. Multipole concepts enter early and
naturally in this approach, and D and H are expressed in
terms of infinite series involving spatial derivatives of vari-
ous macroscopic multipole moment densities �see Sec. II�.
This classical theory has been studied in considerable detail,
is the basis for understanding a range of electromagnetic
phenomena, and is a standard part of the physics curr-
iculum.1–4

For the theory to be workable we have to establish rela-
tions between the four macroscopic fields. To this end we
will consider semiclassical electrodynamics in which matter
is treated quantum-mechanically, while the electromagnetic
fields are treated classically. For electromagnetic harmonic
plane-wave fields, quantum-mechanical perturbation theory
yields expressions for the induced multipole moment densi-
ties as infinite series involving E, B, and their spatial and
temporal derivatives. To simplify the presentation, we ini-
tially consider only nonmagnetic media �see Secs. III–VII�.
The necessary modifications that must be made for magnetic
media are outlined in Sec. VIII.

Constitutive relations are obtained for the response fields
D and H of linear, homogeneous, anisotropic, dissipative
media in terms of the harmonic fields E and B �see Sec. IV�.
The material constants in these relations are linear combina-
tions of polarizability densities of various multipole orders.
Each polarizability is given in terms of a quantum-
mechanical expression involving matrix elements of molecu-
lar multipole moment operators.

This semiclassical extension of the theory, which draws on
the quantum theory of multipole moments and polarizabil-

ities, is less familiar than the purely classical theory, and one
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of the aims of this paper is to bring it to the attention of a
wider readership. The extension of the theory brings advan-
tages and makes it possible to study certain properties �for
example, symmetries, translational behavior, and absorption
effects� of the dynamic material constants and other observ-
ables. Also, computational techniques can be used to obtain
numerical values for observables—an area in which consid-
erable advances have been made in recent years.

Sections II–IV form the essential background to this paper.
In Sec. V we discuss the translational behavior of the theory.
This behavior yields the first surprise: the theoretical results
for the dynamic material constants are largely unusable be-
cause they are not translationally invariant. Specifically, 27
of the 36 components of the constitutive tensor for a linear,
anisotropic medium are unphysical and the remaining 9 are
physical at electric dipole order only �see Secs. V and VIII�.
Thus the calculated harmonic response fields have the unac-
ceptable property that their amplitudes depend on where we
choose the origin of a molecular system of coordinates. Con-
sequently, the time average of the instantaneous Poynting
vector is also origin dependent and hence unphysical.

We then consider how the theory can be adapted to avoid
unphysical results. In the literature this modification has been
done by means of a transformation theory.5,6 This theory is
beyond the scope of this paper, and we therefore present a
more elementary approach based on the equation for wave
propagation �see Sec. VI�. This approach is used in Sec. VII
to obtain physically acceptable results for a nonmagnetic me-
dium: we work to electric quadrupole-magnetic dipole order
and thereby obtain results for three of the four material con-
stants �the permittivity and the two magnetoelectric tensors�.
The theory is extended to magnetic media in Sec. VIII.

In Sec. IX we comment on the fourth material constant—
the inverse permeability tensor. The static �dc� expression for
this tensor is translationally invariant and therefore does not
require transformation. However, the extension of this ex-
pression to nonzero frequency is surprisingly complicated.
The reason is that in semiclassical theory the dynamic in-
verse permeability is a property of electric octopole-

magnetic quadrupole order, and it is difficult to carry out the
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necessary transformations to such a high order. In Sec. X we
consider the theory in relation to the Post constraint, a topic
that has attracted much recent attention.

To further illustrate the important role of origin-dependent
and origin-independent quantities, we describe in Sec. XI an
interesting induced effect �the Buckingham effect� that re-
lates a macroscopic origin-independent observable to a mi-
croscopic �molecular� origin-dependent observable. The in-
tricacy of this relation and the accuracy to which it has been
established encourages confidence in the macroscopic semi-
classical multipole approach, at least for phenomena to
which it is applicable. A brief discussion of some applica-
tions of the semiclassical theory is given in Sec. XII.

II. THE MACROSCOPIC MAXWELL EQUATIONS

Multipole concepts arise naturally when the microscopic
Maxwell equations of electrodynamics are recast in the form
of macroscopic equations for bulk media. The standard pro-
cedure for doing so involves two steps. We first perform a
suitable spatial average over the microscopic charge and cur-
rent densities and the associated microscopic electromag-
netic fields in the Maxwell equations. Then spatial Taylor-
series expansions are performed for the �sufficiently slowly
varying� average charge and current densities. This proce-
dure leads to the familiar macroscopic Maxwell equations,
which consist of two homogeneous equations for the macro-
scopic electric and magnetic fields E and B,

� · B = 0, �1�

� Ã E = −
�B

�t
, �2�

and two inhomogeneous equations for the derived fields D
and H,

� · D = � , �3�

� Ã H = J +
�D

�t
, �4�

in terms of the macroscopic �free� charge density � and cur-
rent density J.

The fields D and H are given by infinite series involving
macroscopic multipole moment densities according to

Di = �0Ei + Pi − 1
2� jQij + 1

6�k� jQijk + ¯ , �5�

Hi = �0
−1Bi − Mi + 1

2� jMij + ¯ . �6�

Here and in the following a repeated subscript on a Cartesian
tensor implies summation from 1 to 3. In Eq. �6� contribu-
tions from the motion of the medium as a whole have been
neglected. The multipole densities are for the electric dipole
Pi, quadrupole Qij, octopole Qijk, and the magnetic dipole
Mi, and quadrupole Mij. These densities are macroscopic
averages1,4 that involve the corresponding moments of a
molecule �or other charge entity�, defined by

p = qr , q = qr r , q = qr r r , �7�
i � i ij � i j ijk � i j k
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mi = � �q/2m�Li, mij = � �2q/3m�Lirj . �8�

Here the summations are over all particles in a molecule,
each having charge q, mass m, position vector r, momentum
�, and angular momentum L=rÃ�.

In Eqs. �7� and �8� the position vectors r of the constitu-
ents of a molecule are defined relative to some origin O.
Often O is placed at the center of mass of a molecule, al-
though a different choice such as the effective quadrupole
center might be more convenient. The choice of O is con-
strained only by the convergence of the series expansions
leading to Eqs. �5� and �6�. This constraint means that r
should be the order of molecular dimensions �see the follow-
ing�. Thus O is an arbitrary origin inside or near the mol-
ecule.

Detailed accounts of the theory have been given by
Russakoff,1 Robinson,2 Scaife,3 and Jackson,4 who provide
references to earlier work on this subject. These authors ex-
hibit the terms involving Pi, Qij, and Mi in Eqs. �5� and �6�,
but it is not difficult to extend the analysis to other terms in
Eqs. �5� and �6�.

There is another method of obtaining these results which
dates back to Van Vleck7 and parallels the multipole expan-
sions familiar in the electrostatics and magnetostatics of a
charge distribution in vacuum. In this method multipole ex-
pansions are performed for the dynamic scalar and vector
potentials at a point in the macroscopic medium. A limitation
in Ref. 7 that these multipole expansions are not valid close
to a molecule was removed by considering the contribution
to the potentials due only to molecules inside a small �but
otherwise arbitrary� volume in the medium and evaluated at
a field point just outside �in the near zone of� the small
volume.6 The same spatial average1,4 is used and both ap-
proaches lead to Eqs. �5� and �6�.6 In the multipole expansion
of the vector potential the electric and magnetic contribu-
tions pair up in a specific manner, for example, electric quad-
rupole with magnetic dipole and electric octopole with mag-
netic quadrupole, and their magnitudes are ordered according
to the following hierarchy:6,8

electric dipole � �electric quadrupole

magnetic dipole
�

� �electric octopole

magnetic quadrupole
� � ¯ . �9�

This pairing of electric multipoles of order 2n with magnetic
multipoles of order 2n−1 �n=2,3 , . . . � is an important feature
of the theory which extends to the semiclassical formulation.

The spatial average can be performed either by using a
weighting function1,4 or by the aid of a truncated Fourier
analysis.2,4 The goal is to average �filter� out enough of the
complicated microscopic behavior so that the spatial Taylor-
series expansions are rapidly convergent, while retaining
enough detail that the macroscopic theory can still describe
the phenomena. A helpful discussion of this point has been
given in Ref. 2. The condition for the validity of the theory is
that averaged quantities �fields and source densities� vary on
a scale that is much larger than molecular dimensions �, as
for example in experiments in molecular physics using la-
sers, where the wavelength is about 103�. This condition
differs from that for the convergence of the multipole expan-
sion for a molecule in vacuum �distance to the field point

���.
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It is common to assume that an electric dipole-magnetic
dipole approximation �the retention of only the densities Pi
and Mi� is almost always justified in Eqs. �5� and �6� and that
the higher-order terms represent small corrections to the di-
pole terms. Surprisingly, it turns out that in the semiclassical
theory the situation is considerably more subtle.

III. INDUCED MULTIPOLE MOMENT AND
POLARIZABILITY DENSITIES

The usefulness of the macroscopic Maxwell equations
�1�–�4� depends on the constitutive relations. We now present
results from the quantum theory of multipole moments and
polarizabilities that enable us to obtain these relations. At
this point the theory becomes semiclassical. For reasons that
will become clear, we concentrate on the polarizability den-
sities Pi, Qij, and Mi, which appear in Eqs. �5� and �6� �see
the hierarchy �9��. It is also convenient to first consider non-
magnetic media �media for which time-odd polarizability
tensors are zero9�. Magnetic media are considered in Sec.
VIII.

In a seminal paper, Buckingham10 used time-dependent
perturbation theory to derive quantum-mechanical expres-
sions for the leading multipole moments induced in a mol-
ecule by the fields of a harmonic, plane electromagnetic
wave. Based on Buckingham’s approach and notation the
macroscopic densities of these moments in a linear, homoge-
neous, anisotropic, nonmagnetic medium can be written
as11,12

Pi = �ijEj + 1
2aijk�kEj + ¯ +

1

�
Gij� Ḃj + ¯ , �10�

Qij = akijEk + ¯ , �11�

Mi = −
1

�
Gji� Ėj + ¯ + �ijBj + ¯ , �12�

where the fields are given by

E = E0ei�k·r−�t�, B = B0ei�k·r−�t� �13�

and � is the angular frequency and the wave vector k is
complex for dissipative media.

The dynamic polarizability densities in Eqs. �10�–�12� are
macroscopic averages involving the corresponding molecular
quantities. The quantum expressions of the latter in the non-
degenerate quantum state �n	 were derived by Buckingham
and are10–12

�ij = �2/���
s

�snZsn Re
�pi	ns�pj	sn� = � ji, �14�

aijk = �2/���
s

�snZsn Re
�pi	ns�qjk	sn� = aikj , �15�

Gij� = − �2/���
s

�Zsn Im
�pi	ns�mj	sn� , �16�

where the quantum-mechanical moment operators have the
same forms as the classical moments in Eqs. �7� and �8�. �We
discuss the polarizability density �ij in Sec. IX.� We have
used the same symbols for the molecular equivalents of the
macroscopic tensors in Eqs. �10�–�12�, and we have used the

notation �		sn= �s�	�n	 for the matrix elements of an opera-
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tor. Also �sn= �Es−En� /� is the angular frequency of a radia-
tion transition between states with unperturbed energy Es and
En, and Zsn is a complex line-shape function that allows for
dispersion and absorption.13 In the absence of absorption

Zsn = ��sn
2 − �2�−1 �17�

is real. The symmetry of the tensor subscripts of �ij in Eq.
�14� is due to the Hermitian property of the operator pi in Eq.
�7� and the symmetry of aijk arises from the intrinsic sym-
metry of qij in Eq. �7�.

We remark that Eqs. �10�–�12� consist of two infinite se-
ries �one in E and its derivatives and the other in B and its
derivatives�.12 �This remark applies also to the higher mo-
ment densities such as Qijk and Mij in Eqs. �5� and �6�.11,12�
The terms in Eqs. �10�–�12� that are most familiar are prob-
ably those involving �ij and �ij. The reader may wonder why
we have also chosen to display the terms involving aijk and
Gij� , but not any others such as magnetic terms in Qij. The
answer will become clear and we will see that the terms
included are the smallest set that is necessary.

The multipole orders of the polarizability densities in Eqs.
�10�–�12� are evident from Eqs. �14�–�16� and Sec. IX, and
are

electric dipole: �ij, electric quadrupole: aijk,

magnetic dipole: Gij� , magnetic quadrupole: �ij . �18�

All other terms are of electric octopole-magnetic quadrupole
order and higher, as are all contributions to Qijk, Mij, and
other moment densities in Eqs. �5� and �6�.6,11 Thus if we
include only the terms in �ij, aijk, and Gij� in Eqs. �10�–�12�,
we are working to electric quadrupole-magnetic dipole order.

IV. CONSTITUTIVE RELATIONS

The constitutive relations for the response of a linear, an-
isotropic medium to the harmonic fields Eq. �13� have the
form

Di

Hi
� = CEj

Bj
� = Aij Tij

Uij Xij
�Ej

Bj
� , �19�

for i , j=1, 2, and 3. The components of the 6
6 matrix are
the complex material constants of the medium; for a homo-
geneous medium they are uniform. They represent the mac-
roscopic observables: the permittivity Aij, inverse permeabil-
ity Xij, and the magnetoelectric coefficients Tij and Uij.

14 In
general, these observables are functions of the polarizability
densities of each multipole order. The 6
6 matrix in Eq.
�19� represents the constitutive tensor C.

Explicit multipole expressions for C can be obtained by
using the theory of Sec. III. We simply substitute Eqs.
�10�–�12� in Eqs. �5� and �6�, and use the replacements � j
→ ikj and � /�t→−i� for the harmonic fields �13�. This sub-
stitution yields a series expansion

C = C�0� + C�1� + C�2� + C�3� + ¯ . �20�

The vacuum contribution evident in Eqs. �5� and �6� is

C�0� = �0�ij 0

0 �0
−1�ij

� . �21�
The quantity
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C�1� = �ij 0

0 0
� �22�

is of electric dipole order and is the leading contribution due
to the presence of a medium.

C�2� = �1

2
ikk�aijk − ajki� − iGij�

− iGji� 0
� �23�

is the contribution of electric quadrupole-magnetic dipole or-
der, and

C�3� = 3rd 2nd

2nd − �ij
� �24�

is the contribution of electric octopole-magnetic quadrupole
order. The �¯� in Eq. �20� indicate terms beyond electric
octopole-magnetic quadrupole order.

The nine components involving aijk in Eq. �23� are a small
correction to the leading contribution �ij to the permittivity
in Eq. �22�; the reason for their retention will become clear
in Sec. VII. In Eq. �24� the entries 2nd and 3rd denote
second- and third-order contributions to the magnetoelectric
and permittivity tensors, respectively. Both are given in
terms of polarizability densities of electric octopole-
magnetic quadrupole order;6,15 they are small corrections to
the leading terms in Eqs. �22� and �23�, and therefore we do
not give their explicit expressions. However, it turns out that
these terms play an important role in the theory �see Sec. IX
and Ref. 15�.

We mention that for nondissipative �lossless� media the
complex material constants in Eq. �19� must satisfy the
symmetries6,16

Aij = Aji
* , Tij = − Uji

* , Xij = Xji
* . �25�

The contributions given explicitly by Eqs. �19�–�23� and
�14�–�16� clearly satisfy Eq. �25� because Zsn in Eq. �17� and
k are real for nondissipative media. For the symmetry of Xij
in Eq. �24� we also require the symmetry for �ij �see Sec.
IX�. The conditions in Eq. �25� represent a set of 21 relations
that reduce the number of independent components of the
constitutive tensor for nondissipative media from 36 to 21.
Even though the relations in Eq. �25� do not apply to dissi-
pative media �as we know on general grounds6,16 or because
Zsn and k are complex in such media�, they play an important
role in determining physically acceptable material constants.6

V. VIOLATION OF TRANSLATIONAL
INVARIANCE

Tensors representing physical quantities can be classified
into six subcategories: polar or axial �according to their be-
havior under improper coordinate transformations�; time-
even or time-odd depending on their behavior under time
reversal; and origin independent or origin dependent accord-
ing to their behavior under spatial translations. Our interest
in this section is with translational behavior.

A tensor is origin independent �translationally invariant� if
all of its components are unchanged by an arbitrary shift of
the origin of coordinates. If one or more of its components is
changed by this shift, the tensor is origin dependent. The
value of an origin-dependent observable has meaning only

with respect to a stated coordinate origin. The material con-
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stants in Eq. �19� are origin-independent observables; origin
dependence of material constants would result in unphysical
behavior of certain phenomena such as energy flow in a me-
dium �see the following� and reflection at a crystal surface.6

Thus we require that

�Aij = �Tij = �Uij = �Xij = 0, �26�

where � denotes the change in a quantity due to an arbitrary
shift in the origin O of the system of coordinates used in the
evaluation of multipole moments such as Eqs. �7� and �8�.
Equation �26� represents a total of 4
9=36 relations that
must be satisfied for translational invariance.

Multipole moment operators, like their classical counter-
parts, are �mostly� origin-dependent quantities,6,13 which can
result in an origin dependence of the corresponding
quantum-mechanical polarizabilities, such as Eqs. �14�–�16�,
which determine the material constants. Thus it is important
to ask: do the multipole material constants satisfy the condi-
tions �26� for translational invariance?

To answer this question we first determine the effect of an
origin shift on the multipole moment operators. For a dis-
placement d of origin from O to O�, the position and mo-
mentum operators relative to O� and O are related by

r� = r − d, �� = � . �27�

We work to electric quadrupole-magnetic dipole order. Then
from Eqs. �7�, �8�, and �27� the changes in the moment op-
erators are

�pi = − di � q , �28�

�qij = − dipj − djpi + didj � q , �29�

�mi = − �ijkdj � q

2m
k, �30�

where �pi= pi�− pi, etc. In Eq. �30� we have used the familiar
expression

�a Ã b�i = �ijkajbk, �31�

where �ijk is the Levi-Civita tensor.
Next we use Eqs. �28�–�30� to determine the translational

behavior of the polarizabilities �14�–�16�. Because �n �s	=0
for s�n, we have

��pi	sn = 0 �s � n� , �32�

so that Eq. �14� gives

��ij = 0, �33�

meaning the polarizability �ij is translationally invariant.
Similarly, if we apply Eq. �32� to the polarizability Gij� in Eq.
�16� we have

�Gij� = − �2/���
s

�Zsn Im
�pi	ns�mj + �mj	sn

− �pi	ns�mj	sn�

= �2/��� jkldk�
s

�Zsn Im��pi	ns�� �q/2m��	sn� ,

�34�

in which Eq. �30� was used. To simplify Eq. �34� further we

use the relation
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��H�0�,pi�	sn = ��sn�pi	sn = − i��� �q/m�i	sn
, �35�

where H�0� is the unperturbed molecular Hamiltonian, which
is assumed to contain only a velocity-independent potential.
Then from Eqs. �34�, �35�, and �14� we have

�Gij� = 1
2�� jkldk�il. �36�

A similar calculation for the polarizability in Eq. �15� yields

�aijk = − dj�ik − dk�ij . �37�

To estimate the order of magnitude of these changes in the
polarizabilities, we recall that the molecular origin O should
be in or near the molecule. Thus, we have d�� �the dimen-
sion of a molecule� and �a��� according to Eq. �37�. An
electric quadrupole moment is of order � times an electric
dipole moment, and it follows from Eqs. �14� and �15� that
a��� and �a�a. Hence by shifting O we can change aijk
by an amount that is comparable to its initial value. Similar
results hold for all polarizabilities.

The polarizability densities in Eqs. �10�–�12� are averages
of the corresponding molecular polarizabilities �14�–�16�.
Consequently, the polarizability densities also possess the
symmetries �14� and �15� and the origin dependencies �33�,
�36�, and �37�.

From Eqs. �33� and �22� we see that the leading multipole
term �electric dipole term� in the multipole expansion �20�
satisfies Eq. �26�. However, from Eqs. �36� and �37� it is
clear that the electric quadrupole-magnetic dipole contribu-
tion �23� does not satisfy the first three equations in Eq. �26�.
The inverse permeability Xij =−�ij in Eq. �24� also does not
satisfy Eq. �26� �see Sec. IX� nor do other contributions of
electric octopole-magnetic quadrupole order.6 We emphasize
that this conclusion does not apply to static phenomena. For
example, in Eq. �23� Gij� →0 �see Eq. �16�� and k→0 as �
→0; thus C�2�→0 and there is no violation of translational
invariance at electric quadrupole-magnetic dipole order for a
nonmagnetic medium. Also for magnetic media the static
values are translationally invariant �see Secs. VIII and X�.

We therefore reach the surprising conclusion that of the 36
components of the dynamic constitutive tensor C in Eq. �19�,
the multipole expansion �20� of semiclassical electrodynam-
ics produces physically unacceptable results for 27 of them
�comprising the inverse permeability and magnetoelectric
tensors, Xij, Tij, and Uij�. Of the remaining 9 �comprising the
permittivity tensor Aij�, an acceptable result is found at elec-
tric dipole order �see Eq. �22��, but not beyond �see Eq.
�23��.

It is instructive to elaborate on the unphysical nature of the
above-noted results. From Eqs. �19�–�23� and �13�, we see
that to electric quadrupole-magnetic dipole order the ampli-
tude H0 of a harmonic, plane-wave field H is given by

H0i = − iGji�E0j + �0
−1�ijBj . �38�

According to Eqs. �36� and �38�,

�H0i = − 1
2 i��ikldk� jlE0j . �39�

For an arbitrary shift d of the origin, �H0i is nonzero in
general and hence the amplitude H0 depends on the choice of
origin O.

This unphysical result carries over to the transmission of
energy in a medium. Consider the time average of the instan-

16
taneous Poynting vector S=E
H, which is given by
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�S	 = 1
2 Re�E Ã H*� . �40�

The origin dependence of �S	 follows from Eqs. �13�, �39�,
and �40�. In discussing the result, we choose the z axis along
S and consider linear polarization with E along the x axis.
Then E0= �E0 ,0 ,0� is real. The result is

��Sz	 = − 1
4��dz�̄xx − dx�̄xz�E0

2e−2k̄·r, �41�

where �̄ij and k̄ are the imaginary parts of �ij and k. Thus,
for a dissipative nonmagnetic medium �Sz	 is origin depen-
dent. For a magnetic medium, �S	 is also origin dependent,
even in the absence of dissipation �see Sec. VIII�.

We now consider how the semiclassical theory outlined in
Sec. IV can be modified to obtain physically acceptable re-
sults. A transformation theory has been developed for this
purpose,5 but this work is beyond the scope of this paper, and
we provide here a simpler approach based on the wave equa-
tion.

VI. A CLUE FROM THE WAVE EQUATION

A wave equation can be obtained from the inhomogeneous
Maxwell equation �4�. We consider a dielectric and therefore
set J=0. We work to electric quadrupole-magnetic dipole
order and use the constitutive relations given by Eqs.
�19�–�23� in Eq. �4�. For the harmonic fields �13� we make
the replacements � j→ ikj and � /�t→−i� in all terms involv-
ing derivatives of the fields E and B and use Faraday’s law
�2� in the form

Bj = �−1� jmnkmEn �42�

to eliminate terms involving B in favor of E. We also write
k= ��n /c�� where n is complex for a dissipative medium,
and its real part represents the refractive index for the polar-
ization state described by the amplitude E0 in Eq. �13� when
the propagation is along the unit vector �=k /k. In this way
we obtain

�n2�i� j − �n2 − 1��ij + �0
−1�ij − i��0

−1n/c��ij�E0j = 0 �43�

for the propagation of harmonic, plane-wave fields in a ho-
mogeneous, nonmagnetic, anisotropic dielectric. Here

�ij = �k��iklVjl − � jklVil� , �44�

with

Vij = Gij� − 1
2�� jklakli. �45�

To obtain Eq. �44� we have used the relation

�ikl�lmn = �im�kn − �in�km. �46�

Note that the third and fourth terms in Eq. �43� are of electric
dipole and electric quadrupole-magnetic dipole order, respec-
tively �see �18��.

This wave theory, including its extension to electric
octopole-magnetic quadrupole order and magnetic media,
has been used to describe a variety of transmission effects
such as natural optical activity, Faraday rotation, gyrotropic
birefringence, and Lorentz birefringence.17 For our purposes,
the relevant aspect is the translational behavior of Eq. �43�,

that is, of the tensor Vij. From Eqs. �36�, �37�, and �45�,
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�Vij = 1
2�� jkl�dk�il + di�kl + d��ki� . �47�

The second term in Eq. �47� is zero because of the symmetry
of �kl �see Eq. �14�� and the antisymmetry of � jkl. Hence

�Vij = 1
2��� jkl + � jlk�dk�il = 0. �48�

This invariance, together with that of �ij in Eq. �33�, means
that Eq. �43� is translationally invariant. This result is sur-
prising given that Eq. �43� has been obtained using a consti-
tutive tensor that is origin dependent; it is discussed further
in Secs. VII and VIII.

VII. TRANSLATIONAL INVARIANCE REGAINED

The origin independence of Vij leads us to ask: can we
impose translational invariance on the theory of Sec. IV by
recasting it in a form that involves the origin-independent
combination �45� rather than Gij� and aijk separately, and that
does not disturb the symmetries �25� or the propagation
equation �43�? The possibility of doing so rests on an impor-
tant property of the inhomogeneous Maxwell equations �3�
and �4�, namely that they do not define the response fields D
and H uniquely. In fact, for complex harmonic plane-wave
fields

D = D0ei�k·r−�t�, H = H0ei�k·r−�t�, �49�

Eqs. �3� and �4� have the following property: if HG is a
complex harmonic field with the same form as Eq. �49�, then
the transformations

Hi → Hi + Hi
G, Di → Di − �−1�ijkkjHk

G, �50�

of the fields H and D will leave Eqs. �3� and �4� unchanged.
We concentrate on the terms of electric quadrupole-

magnetic dipole order in D and H, which are responsible for
the lack of translational invariance discussed in Sec. V for
nonmagnetic media. According to Eqs. �19�–�23�, these are
the contributions
electric tensors Tij and Uij of Eq. �19� and aijk no longer

306 Am. J. Phys., Vol. 74, No. 4, April 2006
Di = i 1
2kk�aijk − ajki�Ej − iGij�Bj , �51�

Hi = − iGji�Ej . �52�

We proceed in two steps.
1. The discussion in Sec. VI motivates us to convert the

origin-dependent tensor Gji� in Eq. �52� to the origin-
independent tensor Vji defined in Eq. �45�. This conversion is
done by adding

Hi
G = i 1

2��iklakljEj �53�

to Hi, so that

Hi → − i�Gji� − 1
2��iklaklj�Ej . �54�

According to Eqs. �50�, �51�, �53�, and �46�, we then have

Di → i 1
2kk�akji − ajki�Ej − iGij�Bj . �55�

Equation �55� for D is not yet satisfactory because the coef-
ficients of E and B are origin dependent.

2. We use the relation

kk�akji − ajki�Ej = �� jklakliBj , �56�

which follows from Faraday’s law �42� and Eq. �46�, to ex-
press Eq. �55� as

Di = − i�Gij� − 1
2�� jklakli�Bj . �57�

We have completed our goal of recasting D and H into
physically acceptable forms where the coefficients of E and
B are origin independent. In terms of their effect on the
constitutive tensor C in Eqs. �19� and �20�, the above two
steps leave the vacuum and electric dipole contributions C�0�

and C�1� in Eqs. �21� and �22� unchanged, and they alter the
electric quadrupole-magnetic dipole contribution C�2� in Eq.
�23� according to
� i

2
kk�aijk − ajki� − iGij�

− iGji� 0
�→

1 �
i

2
kk�akji − ajki� − iGij�

− iGji� −
1

2
��iklaklj� 0 �→

2 � 0 − iGij� −
1

2
�� jklakli�

− iGji� −
1

2
��iklaklj� 0 � . �58�
The total constitutive tensor �for a nonmagnetic medium
and to electric quadrupole-magnetic dipole order� is from
Eqs. �20�–�22� and �58�,

C =� �0�ij + �ij − iGij� −
1

2
�� jklakli�

− iGji� −
1

2
��iklaklj� �0

−1�ij
� .

�59�

Thus, the polarizability densities Gij� and aijk have been com-
bined to form the leading contributions to the magneto-
contributes to the permittivity. Clearly, the origin-
independent material constants in Eq. �59� satisfy the sym-
metries �25� if the polarizability densities are real, that is, for
nondissipative media. Also, because the two steps in Eq. �58�
do not alter the inhomogeneous Maxwell equations �3� and
�4�, they leave the propagation equation �43� unchanged. For
the success of the analysis leading to Eq. �59�, it is essential
that we not neglect a priori the term involving aijk in Eq.
�23�, even though at that stage it is a small correction �in the
sense of Eq. �9�� to the leading �electric dipole� term �ij.

VIII. MAGNETIC MEDIA

A magnetic medium possesses time-odd polarizability ten-

sors in addition to the time-even tensors introduced in Sec.
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III for a nonmagnetic medium.6,9 Thus there are some addi-
tional contributions that should be included in discussing
magnetic media. In the following we will, for brevity, give
just the additional contributions. The analysis closely paral-
lels that in Secs. III–VII for nonmagnetic media, and we give
only a brief outline, emphasizing an interesting difference
between the two cases.

We start with the macroscopic induced multipole moment
densities Eqs. �10�–�12� to which should be added11,12

Pi =
1

�
�ij� Ėj +

1

2�
aijk� �kĖj + ¯ + GijBj + ¯ , �60�

Qij = −
1

�
akij� Ėk + ¯ , �61�

Mi = GjiEj + ¯ +
1

�
�ij� Ḃj + ¯ . �62�

The polarizability densities �ij� , aijk� , and Gij for magnetic
systems are the time-odd counterparts of the time-even den-
sities �ij, aijk, and Gij� in Eqs. �10�–�12� for nonmagnetic
systems. The quantum-mechanical expressions for the corre-
sponding molecular quantities are10,12

�ij� = − �2/���
s

�Zsn Im
�pi	ns�pj	sn� = − � ji� , �63�

aijk� = − �2/���
s

�Zsn Im
�pi	ns�qjk	sn� = aikj� , �64�

Gij = �2/���
s

�snZsn Re
�pi	ns�mj	sn� , �65�

where the symbols have the same meanings as in Eqs.
�14�–�16�. �We postpone a discussion of the polarizability �ij�
to Sec. IX.� In Eqs. �14�–�16� and �63�–�65� we have used a
prime to indicate those polarizabilities that vanish in the dc
limit ��=0�. All the comments made at the end of Sec. III
regarding the multipole orders of polarizability densities and
the neglected terms in Eqs. �10�–�12� apply here as well.
Thus �18� applies also to the time-odd tensors �ij� , aijk� , Gij,
and �ij� .

Corresponding to Eqs. �60�–�62�, we have the following
additional contributions to the electric dipole, electric
quadrupole-magnetic dipole, electric octopole-magnetic
quadrupole terms �22�–�24� in the constitutive tensor �20�,

C�1� = − i�ij� 0

0 0
� , �66�

C�2� = �1

2
kk�aijk� + ajki� � Gij

− Gji 0
� , �67�

C�3� = 3rd 2nd

2nd i�ij�
� . �68�

As before, 2nd and 3rd in Eq. �68� refer to terms of electric
octopole-magnetic quadrupole order, which make second-
and third-order contributions to the magnetoelectric and per-
mittivity tensors. For nondissipative media, the contributions

�66�–�68� satisfy the symmetries �25�.
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The translational behavior obtained from Eqs. �63�–�65� is

��ij� = 0, �69�

�Gij = − 1
2�� jkldk�il� , �70�

�aijk� = − dj�ik� − dk�ij� . �71�

When these are used in Eqs. �66� and �67�, we see that there
is a breakdown of translational invariance of the material
constants after the electric dipole order. This breakdown
again results in the origin dependence of the amplitude H0
and the energy flow. For a linearly polarized wave and the
choice of coordinates used in Eq. �41�, it is readily found
from Eqs. �19�–�23�, �66�, �67�, �70�, and �40� that for a
nondissipative medium

��Sz	 = − 1
4�dx�xz� E0

2. �72�

Thus in a magnetic medium �S	 is origin dependent even in
the absence of dissipation.

To cast the theory into a physically acceptable form, we
proceed as before and look to the wave equation for a clue.
For a magnetic medium and to electric quadrupole-magnetic
dipole order, we must include the contributions �66� and �67�
in the calculations leading to Eq. �43�. It is easily found that
as a result, �ij should be replaced by �ij − i�ij� and �ij by

�ij + i�̃ij in Eq. �43�, where

�̃ij = �k�− �iklGjl − � jklGil + 1
2��aijk� + ajki� ��

= �k�− �iklWjl − � jklWil + Sijk� . �73�

Here

Sijk = 1
3��aijk� + ajki� + akij� � , �74�

Wij = Gij − 1
6�� jklakli� . �75�

In the step leading to Eq. �73� we have used Eq. �46� and the
symmetry in Eq. �64�.

According to Eqs. �70� and �71�, Sijk is origin
independent6 but Wij is not. It is easy to get around this
difficulty because Wij in Eq. �73� can be changed without

affecting �̃ij: we can add a term in �ij to Wij in Eq. �73�
because �ikl� jl+� jkl�il=0. Thus, we can add cGll�ij �where c

is a number� to Eq. �75� without changing �̃ij. �Note that
according to Eq. �70� and the anti-symmetry of �ij� , the trace
of Gij is origin dependent.� It is straightforward to show that
Wij is origin independent if c=1/3. We therefore consider

Wij = Gij − 1
3Gll�ij − 1

6�� jklakli� . �76�

We emphasize that the change from Eq. �75� to Eq. �76� is
necessitated by translational invariance. It turns out that there
is an interesting physical consequence to this change �see
Sec. X�.

The above discussion shows that the wave equation for
magnetic systems, like that for nonmagnetic systems, is ori-
gin independent even though both are based on origin-
dependent constitutive relations. The invariant tensors �74�
and �76� are the clue provided by the wave equation, and we
now seek to recast the constitutive relations �to electric
quadrupole-magnetic dipole order� in terms of them. We
need concentrate only on the additional, magnetic contribu-

tions to Eqs. �51� and �52�. According to Eq. �67�, these are
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Di = 1
2kk�aijk� + ajik� �Ej + GijBj , �77�

Hi = − GjiEj . �78�

As before there are two steps. We add
di. It follows that Eq. �81� is origin dependent and therefore
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Hi
G = � 1

3Gll�ij + 1
6��iklaklj� �Ej �79�

to Hi and use Eq. �50�. Then we use Faraday’s law �42� and
the relation �56� with aijk replaced by aijk� to modify Di. The
result is conveniently summarized by giving the effect on
C�2� in Eq. �67�,
C�2� →�
1

3
kk�aijk� + ajki� + akij� � Gij −

1

3
Gll�ij −

1

6
�� jklakli�

− Gji +
1

3
Gll�ij +

1

6
��iklaklj� 0 � . �80�
The total constitutive tensor for a magnetic medium �to
electric quadrupole-magnetic dipole order� is obtained by
adding Eqs. �66� and �80� to the nonmagnetic contribution
�59�. Clearly, the result satisfies the symmetries �25� for a
nondissipative medium, where the wave vector and polariz-
ability densities are real. Also, the wave equation is unaltered
by the two steps in Eqs. �58� and �80� because, by construc-
tion, these steps leave the macroscopic Maxwell equations
�3� and �4� unchanged.

IX. THE INVERSE PERMEABILITY

From Eqs. �19�–�24� and �66�–�68� we see that the inverse
permeability of a magnetic medium is given in the semiclas-
sical theory by

Xij = �0
−1�ij − �ij + i�ij� . �81�

The quantum-mechanical expressions for the corresponding
molecular polarizability tensors are11,12

�ij = �2/���
s

�snZsn Re
�mi	ns�mj	sn�

+ � q2

4m
�rirj − r2�ij	nn = � ji, �82�

�ij� = − �2/���
s

�Zsn Im
�mi	ns�mj	sn� = − � ji� , �83�

where the notation is the same as that used in Sec. III. In Eq.
�82� the second sum is over all particles in a molecule as in
Eqs. �7� and �8�. The two terms in Eq. �82� are the familiar
paramagnetic and diamagnetic contributions, respectively.
Although �ij and �ij� appear in the leading terms involving B
in the macroscopic magnetic dipole moment density Mi �see
Eqs. �12� and �62��, the quantum-mechanical expressions
�82� and �83� show that they are of magnetic quadrupole
order.

Both �ij and �ij� are origin dependent:11,12

��ij = 1
2���ikldkGlj� + � jkldkGli�� , �84�

��ij� = − 1
2���ikldkGlj − � jkldkGli� , �85�

where we have, for simplicity, neglected terms quadratic in
cannot represent a physically acceptable inverse permeability
tensor.

To find an acceptable inverse permeability we should pro-
ceed as we did for the magnetoelectric tensors; that is, we
must construct an origin-independent linear combination of
�ij with other nonmagnetic polarizability densities of electric
octopole-magnetic quadrupole order �there are four of them�
that correspond to the entries marked 2nd and 3rd in Eq.
�24�. In a similar manner, �ij� for a magnetic medium must be
combined with polarizability tensors in the entries denoted
by 2nd and 3rd in Eq. �68�. These calculations are consider-
ably more difficult than those presented in Secs. VII and VIII
and the details can be found in Ref. 15. We mention that it is
essential to take account of the magnetic quadrupole moment
density Mij and the electric octopole moment density Qijk in
Eqs. �5� and �6� to obtain an origin-independent constitutive
tensor to this order.

X. THE POST CONSTRAINT

This constraint, which was first proposed by Post,18 re-
quires the equality of the traces of the magnetoelectric ten-
sors

Tii = Uii, �86�

thereby reducing the number of independent components of
the constitutive tensor in Eq. �19� for a dissipative medium
from 36 to 35 �and from 21 to 20 for a nondissipative me-
dium�. The constraint has attracted considerable attention in
recent years.19 Our intention here is to comment on the re-
sults in Secs. IV, VII, and VIII in relation to the Post con-
straint:

1. The magnetoelectric tensors obtained directly from the
semiclassical theory are given to electric quadrupole-
magnetic dipole order in Eqs. �19�, �23�, and �67�. From
these equations we have

Tii = Gii − iGii�, Uii = − Gii − iGii� . �87�

Thus the constraint is violated in a magnetic medium if Gii
�0. �At the next multipole order it is violated even for a
nonmagnetic medium.6,15�

2. For the transformed magnetoelectric tensors, Eqs. �59�

and �80� show that instead of Eq. �87�, we have
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Tii = − iGii�, Uii = − iGii� . �88�

�We have used �ii=3 and �iklakli=�iklakli� =0 because of the
antisymmetry of �ijk and the symmetry of aijk and aijk� in Eqs.
�15� and �64�.� Thus the Post constraint emerges automati-
cally as a by-product of the transformations; this feature oc-
curs also at the next multipole order.15

3. The cause of the change from Eq. �87� to �88� is seen to
be due to the imposition of translational invariance on the
theory, specifically with the construction of Wij in Eq. �76�.
Because Wii=0, the contributions of Gii in Eq. �87� are re-
moved in the transformed theory. Thus, the theory presented
here has the surprising feature that the Post constraint is con-
nected with translational invariance, at least for ac fields.

4. Because the change from Eq. �75� to �76� does not
affect the wave equation, we conclude that transmission phe-
nomena cannot be used to test the validity of the Post
constraint—at least in the macroscopic theory �the long-
wavelength limit�. The same conclusion has been reached
without using a multipole description.19

5. It is instructive to consider the dc limit ��→0,k→0�.
We have already noted that all polarizability densities indi-
cated with a prime vanish when �=0. Thus, the dc limit of
the direct multipole results in Eqs. �19�–�24� and �66�–�68� is

C0 = �0�ij + �ij Gij

− Gji �0
−1�ij − �ij

� . �89�

�To obtain Eq. �89� we have used the result that the entries
2nd and 3rd in Eq. �24� are zero in the dc limit.20� The
polarizability densities in Eq. �89� are given by Eqs. �14�,
�65�, and �82� with �=0; that is, Zsn=1/�sn

2 . These dc polar-
izability densities are origin independent—see Eqs. �33�,
�70�, and �84� with �=0. We may therefore expect that the
transformed multipole results should have the same limit
�89�. Surprisingly, from Eqs. �59�, �66�, and �80� we have

C0 =� �0�ij + �ij Gij −
1

3
Gll�ij

− Gji +
1

3
Gll�ij �0

−1�ij − �ij
� . �90�

�We have also used the result that the leading �electric
octopole-magnetic quadrupole� contribution to the trans-
formed Xij goes to −�ij as �→0.15� The limits �89� and �90�
agree for the permittivity and inverse permeability tensors,
but not for the magnetoelectric tensors. The difference is
associated with the Post constraint, see the previous remarks
�1�–�3�. Equation �90� satisfies this constraint, but Eq. �89�
does not, at least in media for which Gll�0. It would be
interesting to perform an experimental test to determine
which of Eqs. �89� and �90� is correct.

6. The polarizability density �ij in Eqs. �89� and �90� is
given by the dc value of Eq. �82�. This expression agrees
with the well-known result of Van Vleck,7 who, to our
knowledge, was the first to mention translational invariance
in this regard; when �=0, the origin dependence of the para-
magnetic and diamagnetic terms in Eq. �82� cancel each
other.6 We emphasize that although it is relatively easy to
obtain Van Vleck’s result, its extension to an origin-
independent expression at nonzero frequency involves the

complicated task mentioned in Sec. IX.
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XI. THE BUCKINGHAM EFFECT

An important feature of the work we have described is the
manner in which origin-independent macroscopic observ-
ables can be expressed in terms of suitable combinations of
origin-dependent molecular properties �polarizabilities and in
some cases also multipole moments�. Often these molecular
properties are also observables, and in this section we discuss
a beautiful example of how values of an origin-dependent
molecular property can be extracted from measurements of
an origin-independent macroscopic observable. We consider
the birefringence induced in a gas by an electrostatic field
gradient. In recognition of the substantial contributions by
Buckingham to the theoretical and experimental aspects of
this phenomenon,21–23 the effect has been named after him.24

A nonuniform electrostatic field exerts a torque Ni
=�ijkqjl�lEk on an electric quadrupole.6 In a gas of quadru-
polar molecules this torque produces partial alignment of the
molecules and hence anisotropy. This alignment gives rise to
a linear birefringence known as electric-field-gradient-
induced birefringence. The measurement of the effect pro-
vides a direct method for determining the electric quadrupole
moment of a molecule.21–23

The experimental arrangement devised by Buckingham
consists of a gas cell in the form of a long metal cylinder,
along the length of which run two thin parallel wires that are
equidistant from the axis of the cylinder and on opposite
sides. The wires are maintained at the same potential relative
to the cylinder, and consequently the electrostatic field is
zero on the axis, but the electric field gradient � is not.6 A
laser beam parallel to the axis, centered on it, and of width
smaller than the separation of the wires, is used to measure
the induced birefringence.

For linearly polarized light this birefringence is given
by23,25

nx − ny = �N/30�0kT���3�ijqij − �iiqjj − pi
3ajji − aijj

+ 10�−1�ijkGjk� �� . �91�

Here N is the number density of the molecules �assumed to
be constant�; T is the temperature of the gas; the polarizabil-
ity tensors �ij, aijk, and Gij� are given by Eqs. �14�–�16�; and
pi and qij are �permanent� electric dipole and quadrupole
moments defined in Eq. �7�. The x axis is in the plane of the
wires and perpendicular to them; the y axis is perpendicular
to the plane of the wires. The refractive indices nx and ny are
for incident beams linearly polarized parallel to the x and y
axes, respectively. In Eq. �91� we have omitted a
temperature-independent term.23,25

We note the following points in relation to the present
paper.

1. Equation �91� can be obtained either from the forward
scattering of light by molecules,23,25 or by using a wave
equation obtained from the macroscopic Maxwell equation
�4�,26 or by using general arguments based on spatial prop-
erties, intrinsic symmetry, and dimensional analysis.27 Each
calculation is to electric quadrupole-magnetic dipole order
and the results are the same.

2. In the Buckingham effect the medium is inhomoge-
neous, and consequently the wave equation is more compli-
cated than that in Sec. VI; nevertheless, it is still origin
independent,6,26 as is the right-hand side of Eq. �91�. �The

translational invariance of Eq. �91� can be checked using
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Eqs. �28�, �29�, �33�, �36�, and �37�.� This property of Eq.
�91� is essential because nx and ny are origin-independent
macroscopic observables.

3. For a nondipolar molecule �pi=0�, Eq. �91� simplifies to

nx − ny = �N/30�0kT���3�ijqij − �iiqjj� . �92�

Consider a linear molecule. Relative to its main symmetry
axis the molecule has only one independent component of its
traceless quadrupole moment, which is the usual quoted
value. This component can be obtained from Eq. �92� and
measurements of the birefringence at various temperatures
and the relevant components of �ij. There is no question of
origin dependence here because as shown by Eq. �29�, �qij
=0 for a neutral nondipolar molecule.

4. For a dipolar molecule �pi�0� the quadrupole moment
is origin dependent �see Eq. �29��, and the situation is more
subtle. As pointed out in Ref. 23, Eq. �92� still applies, pro-
vided that the origin-dependent vector in curly braces in Eq.
�91� is set equal to zero:

3ajji − aijj + 10�−1�ijkGjk� = 0. �93�

The origin-dependent moment qij obtained using Eq. �92� is
with respect to an origin defined by Eq. �93�. This origin is
known as the effective quadrupole center;23 it is a convenient
reference point for the quadrupole moment of a dipolar mol-
ecule. The effective quadrupole center is a frequency-
dependent point that, in general, does not coincide with the
center of mass of a molecule.

5. Measured values of quadrupole moments are in good
agreement with the results of ab initio calculations.28,29 For
dipolar molecules it is essential that an accurate numerical
calculation be performed to locate the position of the effec-
tive quadrupole center.29 These computer calculations show
that the accurate evaluation of molecular polarizability ten-
sors such as those considered in this paper is now feasible.

6. Equation �91� illustrates how the inclusion of a third
origin-dependent quantity �qij for a dipolar molecule� with
aijk and Gij� allows construction of an additional invariant
quantity—compare the invariant scalar in square brackets in
Eq. �91� with the invariant tensor �45�.

We conclude that the experimental, theoretical, and com-
putational aspects of the Buckingham effect support the mul-
tipole approach described in this paper.

XII. APPLICATIONS

It is beyond the scope of this paper to discuss the many
applications of the semiclassical theory. Here we make some
brief comments and refer the reader to the literature for fur-
ther details.

Because of the finite wavelength of a harmonic wave, its
fields are not uniform over an element of a medium, such as
a molecule in a gas or a unit cell in a crystal. Thus field
gradients of different order � jEi, �k� jEi , . . . �and similarly
for B� may also induce multipoles. The wave also possesses
time-derivative fields, and it is sufficient to consider just the
zeroth and the first time derivatives. Thus the following
fields of a harmonic plane wave may induce multipoles of
various orders Ei, � jEi, �k� jEi , . . . ,Bi, � jBi, �k� jBi , . . ., to-
gether with their first time derivatives �cf. Eqs. �10�–�12� and
�60�–�62��.

It might be supposed that such field-gradient effects would

be experimentally negligible for visible light, given its wave-
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length of order 500 nm and the dimension of a unit cell in a
crystal which is typically of order 0.5 nm. However, the op-
tical activity that exists in some crystals is due to the terms

�kEj and Ḃj in Eq. �10�, and the effect is not negligible: in
quartz the rotation angle along its optic axis is about
220° per cm of path for yellow light.

The action of a field gradient of an electromagnetic wave
in inducing an effect in matter is known as spatial
dispersion.30 This concept was used as long ago as 1878 by
Lorentz in his theory of linear birefringence in certain cubic
crystals.31 A subsequent theory by Condon and Seitz32 ex-
plained this birefringence in terms of the contribution �k� jEi
to the polarization density P, and this explanation was fol-
lowed by a consistent multipole theory that includes all rel-
evant contributions.11 Other early work was that of Gibbs on
optical activity.33

Semiclassical multipole theory has been applied to all
eight transmission effects contained in the Jones cal-
culus;34,35 this theory entails working with a wave equation
like Eq. �43�, but including magnetic properties and extended
to electric octopole-magnetic quadrupole order.17 These ef-
fects occur in nature. The theory has also been applied to
effects induced by static fields, such as the Kerr effect17 and
the Buckingham effect. As mentioned in Sec. VI, the wave
equation is translationally invariant and it therefore produces
physically acceptable results for all of these phenomena.

The material constants constructed in Secs. VII and VIII
required the introduction of three invariant tensors: Vij in Eq.
�45�, Wij in Eq. �76�, and Sijk in Eq. �74�. Some phenomena
in which these tensors find application include:

1. The symmetric part of Vij and its origin independence
were first discussed in a theory of the optical activity of a
fluid of aligned molecules.36

2. Experimental confirmation of the need to include the elec-
tric quadrupole contribution �the term in akli in Eq. �45��
in the theory of optical activity in an anisotropic chiral
medium is provided by the microwave measurements of
Theron and Cloete.37,38 They measured the rotation of lin-
early polarized microwaves emerging from a 2-m-long
sample consisting of chiral metal objects having dimen-
sions of about 3 mm in a regular array supported by a
dielectric foam. Their measurements disagreed with theo-
retical values in which the quadrupole contribution was
omitted.

3. The tensor Vij is required in the theory of reflection from
nonmagnetic uniaxial and cubic crystals.6

4. Wij and Sijk are needed in the theory of reflection from
magnetic crystals like Cr2O3.6

XIII. DISCUSSION

We have shown that the multipole description of macro-
scopic, semiclassical electrodynamics yields unphysical re-
sults for quantities such as the dynamic material constants,
response fields, and energy flow. We have also shown how
the nonuniqueness of D and H in Maxwell’s macroscopic
equations allows us to construct physically acceptable re-
sults. We did this in a simple way by using the equation for
wave propagation to motivate our calculations.

The nonuniqueness is a property of the Maxwell equations
even when supplemented by the constitutive relations �19�.
The transformation theory of Refs. 6 and 15 shows that with-

out the symmetries �25� for nondissipative media and the
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invariances �26�, an infinite number of solutions D and H
can be generated within multipole theory. The propagation
equation �43� �and its extensions17� is invariant under these
transformations.6 By imposing some of the symmetries and
the invariances �25� and �26�, we obtain unique, physically
acceptable fields D and H. �For a magnetic medium and to
electric quadrupole-magnetic dipole order, it is sufficient to
impose Uij =−Tji

* and �Txx=�Txy =�Uxx=�Uxy =0; the re-
maining 44 of the 57 conditions in Eqs. �25� and �26� are
then automatically satisfied.6� Thus symmetry and transla-
tional invariance are crucial to the theory.

The hierarchy of multipole orders �9� also plays an impor-
tant role. This hierarchy enters in the classical multipole ex-
pansions �5� and �6� for the response fields and in the mul-
tipole orders of the polarizability densities in expansions
such as Eqs. �10�–�12� for the induced macroscopic multi-
pole moment densities. These orders are obtained from
quantum-mechanical expressions such as Eqs. �14�–�16�, and
the first few are listed in �18�. We make several comments
concerning this hierarchy.

1. Properties and effects may be classified according to the
lowest multipole order of polarizability densities that is
necessary to describe the property or effect, based on �9�.
For the material constants, for example, our discussion
shows that the multipole order of the leading contribution
is �i� permittivity: electric dipole; �ii� magnetoelectric co-
efficients: electric quadrupole-magnetic dipole; �iii� in-
verse permeability: electric octopole-magnetic quadru-
pole. For the inverse permeability, this conclusion is
counterintuitive: the polarizabilities �ij and �ij� in Eqs.
�12� and �62� provide the leading terms involving B and

Ḃ in the expansion of the macroscopic magnetic dipole
moment density Mi. Nevertheless, according to Eqs. �82�
and �83�, both �ij and �ij� are of magnetic quadrupole
order. The terms of magnetic dipole order in Mi are the

electric field terms −�−1Gji� Ėj and GjiEj in Eqs. �12� and
�62�; they contribute to the magnetoelectric effect.

2. The contribution of higher-order terms should be treated
with some care. It is, of course, true that higher-order
terms will be small compared to the leading contributions.
For example, the tensor aijk� +ajki� +akij� in Eq. �80� makes a
small �electric quadrupole� contribution to the leading
�electric dipole� term �ij of the permittivity in Eq. �22�—
here “small” means of order molecular dimension/
wavelength times the leading contribution. However, this
quadrupole tensor is important in its own right. More sig-
nificantly, if we were to neglect the quadrupole tensors
aijk in Eq. �23� or aijk� in Eq. �67�, then the resulting trans-
formed contributions Eqs. �58� and �80� to the constitu-
tive tensor would not be origin independent.

3. The transformation of the multipole response fields at a
given order in Eq. �9� requires that we work with all the
polarizabilities of that order. The reason is that the origin
dependencies of polarizabilities of given multipole order
2n involve polarizabilities of the next lowest order 2n−1

�examples are Eqs. �36�, �37�, �70�, �71�, �84�, and �85��.6
Consequently, by combining polarizabilities of the same
order, we can construct origin-independent forms.5,6,15

The use of “mixed orders,” such as an electric dipole-
magnetic dipole approximation, will not yield physically
acceptable results for properties such as the dynamic ma-

terial constants.
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4. Where the leading contribution to a property is a higher-
order member of �9�, it is not clear what small means.
Consider, for example, the magnetoelectric effect, which
is of electric quadrupole-magnetic dipole order. This ef-
fect is of considerable interest in solid-state microelec-
tronics for its practical applications such as in sensors and
microwave devices.39–41 Therefore, ways are sought to
enhance the effect by, for example, the use of bulk and
multilayer composites42,43 and the production of a giant
magnetoelectric effect due to electromechanical
resonance.44

In conclusion, we raise some additional points that may be
of further interest. �a� Why does the conventional semiclas-
sical multipole theory for a macroscopic medium yield un-
physical results that require transformation? After all, this
theory is based on standard physics: the averaging and series
expansions of electromagnetic quantities and the application
of time-dependent perturbation theory to molecular multi-
pole moments and polarizabilities. �b� Is it possible to obtain
physical results by first making a microscopic transformation
�of the molecular Hamiltonian, say�, rather than by trans-
forming macroscopic fields? �c� Is there an interesting theory
underlying the aspects of nonuniqueness and transformation
in the macroscopic theory? �d� Why is the Post constraint
violated for the unphysical fields of the conventional theory,
and why is the constraint obtained automatically for the
transformed fields. In fact, is the Post constraint adequately
understood? In this connection, an experimental test of the
constraint for the dc magnetoelectric coefficients in Eqs. �89�
and �90� would be of interest.
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