(i) Owing to the idempotency of 4; and to commutation

under the trace, one has Tr 4,0 = Tr 4,pA;. Hence, 4;pA,;
= O implies Tr 4,0 = 0.

(ii) If Tr 4,pA; = 0, then in any complete orthonormal
basis {|@,):n = 1,2,...} we have 3, <@, |4,04;|@,) = 0.
Since p>0, each ({@, |4,)p(4;|@,)) >0 as well.

Hence,

(9. |4ipA;|@,) =0,

Since, e.g., |@,) is an arbitrary (normalized) vector, and
since two linear operators have the same expectation value

in all state vectors only if they coincide, we must have
A,pA; =0. : O

n=12,...

APPENDIX B

To prove that the Corollary, which gives a necessary
condition, does not give simultaneously also a sufficient
one, we present an example for the validity of the Corollary
with lack of interference.

Let {|n): n = 1,2,...} be an orthonormal and complete
basis. We define |W)=2""%|1) +2~12|2),

lp)=2"123) +2714),

ly)=2""%3) +i21%4).

Then, we take

B=(2)2| + [x){xl,

p=|¥)(VY|,
{4,i=12,.,3={P,P,},
with

Pi=|1){1} + @) e,
P=12)2] + (33| + 94 — @) e D

+ > {n){n|.
n=>5
One has [P,,|¥)(¥|]#0 [because |¥) is not a charac-
teristic vector of P,, cf (7)], and analogously for
P,=1 — P,. Further, [B,P;]5#0, i = 1,2. Hence, both in-
compatibilities required by the necessary condition from
the Corollary are valid.

One always has
Tr Bp = Tr BPpP, + Tr BP,pP,
+ Tr BPpP, + Tr BP,pP,.

To demonstrate lack of interference [the validity of (6)],
we evaluate

Tr BP,pP, = Tt P,BP,p = (¥|P,BP,|¥) =0
(because BP,|¥) = 0), and analogously
Tr BP,pP, = Tr P,BP,p = (¥|P,BP,|¥) = 0. 0
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Kaluza-Klein unification and the Fierz-Pauli weak-field limit
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An introduction to higher-dimensional unification is provided by a simple modern treatment of
the original 5-D Kaluza-Klein ansatz. A demonstration is given of the way electric charge arises
from momentum in the fifth dimension and an estimate of the radius of the extra dimension is
obtained from simple quantum-mechanical considerations. The Fierz—Pauli weak-field
approximation is applied and found to exhibit some of the essential features of Kaluza-Klein
theory in a few lines without the need for a full general relativistic analysis.

L. INTRODUCTION

Two of the most important theoretical physics problems
are the consistent quantum description of gravitation and
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its unification with the electrodynamic and nuclear inter-
actions in a way that also unifies the fermionic description
of matter with the bosonic exchange quanta of interacting
fields. Important ingredients in some of the most promising
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theories, for example, supergravity and superstrings,' are
the key ideas of Kaluza? and Klein.**

We present here a new elementary way of deriving and
understanding some of the Kaluza—Klein ideas. We use SI
units and retain all physical constants, in particular G, c,
and #.

Any theory unifying electrodynamics and gravitation
must overcome enormous differences between the two in-
teractions. Although Finstein’s relativity theories gave
both a common nonquantum space-time description,
gravitation is universal whereas only particles with non-
zero charge interact electrodynamically. The motion of a
gravitational test particle obeys the weak equivalence prin-
ciple and is thus independent of its internal characteristics,
in particular its rest mass. In sharp contrast is the accelera-
tion of a charged particle according to the Lorentz law with
its dependence on the charge-to-mass ratio. This difference
is intimately connected with the geometrical nature of gen-
eral relativity theory and the nongeometrical nature of
electrodynamics. Yet another difference is the nonlinearity
of general relativistic gravitation compared to the linearity
of Maxwell’s theory. ’

We deal in this paper with the five-dimensional (5-D)
theory of gravity and electromagnetism in the spirit of the
early pioneers of Kaluza—Klein theory. After a brief histor-
ical overview in Sec. II, we summarize in Sec. II1 the gener-
alization of general relativity to 5-D and its subsequent
reduction to standard four-dimensional (4-D) general rel-
ativity plus Maxwell’s electrodynamics. An inconsistency
in Kaluza’s paper is clarified as we build up the 5-D metric
from the line element.

In Sec. IV we show how a test particle traveling along a
geodesic trajectory in 5 D (interacting gravitationally
only) acquires an electric charge in 4-D due to its momen-
tum in the fifth dimension. Simple quantum mechanical
arguments, originally due to Klein,** suffice to demon-
strate the quantization of charge in terms of the radius of
the extra dimension. This is shown to be only an order of

magnitude larger than the Planck length, consistent with -

its nonobservation.

We show in Sec. V that the Fierz—Pauli theory of weak-
field gravity (not available to Kaluza) suffices to demon-
strate many of the essential features of Kaluza—Klein theo-
ry, namely, the reduction of 5-D pure gravity to both
electrodynamics and gravity in 4 D, in a few lines, without
necessary recourse to a full general relativistic analysis. It
does however depend on a few results from the full treat-
ment, which is summarized first for that reason. The reader
not confident in general relativity theory may take Secs. 111
and IV, specifically Egs. (9), (23), (29), and (30), on
faith and still find that Sec. V provides new insight into
Kaluza—Klein theories.

The developments in this paper consciously follow those
of Kaluza® and Klein**. They are however presented in a
more didactic way and recast in a modern notation and
context. The weak-field approximation in particular bene-
fits from the use of the well-known Fierz—Pauli linearized
gravity theory in which the dynamics are contained in ex-
plicit derivatives rather than in connection coefficients
buried inside the Einstein tensor.

The detailed development of the fully relativistic Ka-
luza-Klein ansatz and the illuminating weak-field approxi-
mation provide an accessible yet solid first step into Ka-
luza-Klein theory.

All standard results, most notably the use of the
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(— + + +) metric, follow the same conventions and
terminology as Misner et al.’ and Doughty,® with 5-D ana-
logs of 4-D quantities being denoted by a circumflex.

I1. HISTORICAL OVERVIEW

In 1919, Theodor Kaluza, a junior scholar at the Univer-
sity of Konigsberg (now Kaliningrad, USSR) proposed a
generalization® of general relativity from 4 D to 5 D in an
attempt to unify the interactions of relativistic gravitation
and electrodynamics. This was achieved via a weak-field
approximation of an extended 5-D metric tensor contain-
ing the electromagnetic as well as the gravitational poten-
tials. :

However, the idea of higher-dimensional unification was
not new. In 1912, Finnish physicist Nordstrom’ had devel-
oped a relativistic theory of gravity based on a scalar field.
In 1914, before the final form of general relativity theory,
he utilized an extra spatial dimension to form a flat 5-D
space-time with -a five-vector electromagnetic potential to
extend Maxwell’s electrodynamics and found® that the
fifth component was equivalent to his scalar gravitational
field. He supposed that 4-D scalar gravity was a remnant of
an Abelian gauge theory in his flat 5-D space-time. How-
ever, Nordstrém’s scalar gravity theory could not explain
the bending of light near the sun® and was soon overtaken
by the new-general relativity theory.

Since general relativity was the foundation of Kaluza’s
work, he first sent his paper to Einstein, it being necessary
at that time for papers to be recommended to journals by
established scientists on behalf of the author. Einstein was
amenable to Kaluza’s ansatz,’ but his few reservations'®
disheartened Kaluza, and publication was delayed until
1921, when Einstein decided to recommend publication
after all."!

An early rival to Kaluza’s theory was that of Weyl,'?
who relaxed the parallel transport property of general rela-
tivity and allowed a “gauge” scaling of the space and time
dimensions in an attempt to have both gravity and electro-
magnetism arising from the geometry of a 4-D space-time.
However, electric charge is not conserved in Weyl’s theory.
It was thus eliminated as a unified theory, only to be
revived in a different form in 1929 as a key property of
quantum electrodynamics, where the electromagnetic field
couples to the electron spinor field.'?

In 1926, Swedish physicist Oskar Klein showed that Ka-
luza’s theory reduced rigorously to 4-D Einstein—-Maxwell
theory in a full relativistic analysis.? He also supposed that
the fifth dimension, which a relativistic analysis implies
(Sec. III C) must be compact, to be curled up unobserva-
bly small and found that this led naturally to the quantiza-
tion of electric charge.>*

By the early thirties, Einstein had begun studying Ka-
luza—Klein theory again. With Mayer, he attempted'* to
do away with the extra dimension by associating a vector
space with a 5-D basis to each point in a 4-D space-time.
Unsatisfied with this, he then followed Klein’s idea®* and
assumed the fifth dimension to be closed (or periodic) on a
small scale.’® This was an attempt to impose a physical
reality on the extra dimension after earlier work had tended
toregard it as an embarrassment, only mathematically nec-
essary. Again no great success was forthcoming and Ein-
stein soon abandoned the effort.!®

The extended 5-D metric tensor contains 15 compo-
nents. However, only 14 are required to describe an electro-
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magnetically sourced gravitational field in 4-D. Kaluza’s
ansatz involves a dimensionless scalar field as well. We
shall show in Sec. III B that Kaluza’s assignment of the
scalar field to only one metric component is inherently in-
consistent. Nearly all of the subsequent early work fol-
lowed Klein® and assumed the constancy of this scalar
field, normalized to unity. Its inclusion was left unexplored
until Jordan'? and Thiry'® independently derived the full
Kaluza—Klein metric [Eq. (9)] in the 1940s. Jordan’s
work'” on this led to the Brans—Dicke-Jordan scalar-ten-
sor theories of gravitation.'® For further discussion on the
historical background, see Ref. 20.

Generalization of the Kaluza—Klein ansatz to include
the strong- and weak-nuclear forces first discovered®' in
the early 1930s had to await the non-Abelian gauge theo-
ries of Yang and Mills*? in 1954. The local gauge symmetry
of electromagnetism is completely described by the Abe-
lian (commutative) U(1) group, which may be thought of
as the group of translations around the circumference of a
circle. Thus the single extra dimension in 5-D Kaluza—
Klein theory suffices to include the gauge character of elec-
trodynamics that then arises naturally as a geometric coor-
dinate transformation in 5-D (Sec. III B). The more com-
plex gauge symmetries of the nuclear interactions,
however, require the inclusion of many more spatial di-
mensions if they are also to be unified under a Kaluza-
Klein type procedure.

The first “modern” reference to a Kaluza—Klein theory
incorporating the Yang-Mills.theories is probably a prob-
lem posed by DeWitt in his lectures®® at the 1963 Les
Houches summer school on relativity, groups, and topol-
ogy. Further work by Kerner®* and Cho ez al.** in 1975 laid
the foundations of modern Kaluza—Klein theory, which
has been incorporated into the currently popular theories
of supergravity and superstrings. These developments are
discussed in Refs. 1, 20, 26-29.

II. KALUZA-KLEIN ANSATZ

Following Kaluza,” we consider a generalization of 4-D
gravitation to 5-D space-time, whose coordinates we de-
note by {x*} = {x*,x°}, where 4,B,C,... = {0,1,2,3,5} and
the 5-D line element is d5* = g,, dx* dx® in analogy with
4-D general relativity. The extra dimension must be space-
like to avoid causality violations due to the existence of
closed timelike curves which, for example, could allow an
event to cause itself.>’

A. Transformation law of the fifth coordinate

In 4 D, general coordinate transformations of the form
xt—x*=x"(x"), which imply that dx*—dx"
= (9x"/Ix*)dx", leave the line element ds* unchanged
provided the metric functions g, (x) correspondingly
transform according to g;; = (Ix*/0x") (8x"/8x")gm

We partition the 5-D general coordinate transformation
x* > x(x?) by regarding it as a two-index array that we
display in matrix form, and similarly partition the symmet-
ric (£, = £, ) metric tensor to obtain:

Ao A xﬁ(xM,XS )) (ipv g,uS )
=%, d = 1)
D (x5 xy) 8an = sv 8 (

This already shows that they may easily include a 4-D gen-
eral coordinate transformation x*—x"(x*). A symmetric
four-tensor g,,,, appropriate to 4-D gravity, may be con-
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structed from the symmetric quantities §,, and/or g,8s,.
A single four-vector field constructed from 8,5 = g;, is a
possible electromagnetic potential. Both may include fac-
tors of the g, scalar.

To account for the observed 4-D character of space-
time, Kaluza?® introduced the cylinder condition:

All components of the 5-D metric and the first four

coordinates x* must be independent of the fifth coor-

dinate x°, so that ds& ., and dsx* vanish identically.
We also demand that the first four coordinates of 5-D
space-time characterize 4-D space-time, which implies that
dxP/9x° (and thus dx*/dx") must vanish 1dent1ca11y

To determine the transformation law of x°, we note that
the symmetric 5-D metric must transform according to

N 6x oxB
848 — O Bg,w’

in analogy with the 4-D case, and that the cylinder condi-
tion must hold in all frames. Now, d5 2,5 and ds £s3 are both
zero by the cylinder condition, and so the resulting coeffi-
cients of §,; and gs; must each vanish. The coefficient of
8, gives (Ix*/3x™) (3 *x°/9x> dx>) = 0, and the invertibi-
lity of x"(x“) then glves d%x%/3x° 3x° = 0, for which the
solution is x° = a(x*)x’ + b(x*). With this condition the
coefficient of g55 becomes a(x*)da/dx* = 0. Invertibility
of x*(x*) ensures a#0 giving da/dx* = 0, and so a must
therefore be independent of x”. The most general transfor-
mation of the fifth coordinate is thus of the form

X o X =x 4+ fx), (3)
where we have put @ = 1 without loss of generahty The

inverse transformation is given by x x5 =x° +g(x*),
where g(x*) = — f[x*(x")].

(2)

B. Five-dimensional metric

In a stationary 4-D space-time (where dyg,,, = 0) the
line element ds” = g, dx* dx” between two events x and
X 4 dx may be split®’ into ds? = goydA > + dI?, where the
temporal and spatial separations dA and d/ are given by

8xo08r0 )a’xk dx

00

8xo
8oo

dA =dx° +=2dx* and dI*= (gk,'—

(4)
These quantities are invariant with respect to the transfor-
mation x°—x° + f(x*) in the time direction, and arbitrary
coordinate transformations x*— x*(x*), on each constant
x° spacelike cross section.

Klein® notes that, analogously to dA and dI? of Eq. (4),
the line element d5° between two events in 5-D space-time
may be similarly split, as a result of the cylinder condition,
into the invariant quantities

dl = dx® + B8 g
8ss

and
diz = (gw - ﬁ‘fﬁ)dxﬂ dx”. (5)
8ss
Putting £55 = ¢ (a dimensionless scalar field) suggests we
also put g,5 = kdA,, with « a constant, so that Eqgs. (5)
become

dA = dx® + kA, dx*
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and
= (8, — KA, A, )dx" dx". (6)
Now dl? is independent of x* and will be the line element

ds* = g,,, dx* dx” of 4-D space-time if we make the identi-
fication

gpv = g,uv - K2¢AyAv' (7)

Thus the 5-D line element d5* may be written (cf. the 4-D
case above) as

d§2 = ds2 + gss dz 2
or

d¥ =g, dx* dx” + ¢ (kA, dx* + dx°)?, (8)
which yields the partitioned 5-D metric

. (gm, + KP4, A, K¢A#)

ST\ wa, ¢ )
now expressed totally in terms of the 4-D quantities g,,,,
A,, and @. The inverse metric g"* is easily obtained from
the standard prescription 458, = 6C This analysis dem-
onstrates that if ¢ is included in gss, then it ought also to
appear, for consistency, in the other three components. A
field redefinition of 4,,, for example 4 ;™ = ¢4,,, may per-
mit the removal of ¢ from some but not all of these three
components. Kaluza’s identifications, g,s =«4, and
&ss = ¢, lead to a metric that is inconsistent with those
same identifications.

In general relativity the first-order gravitational poten-
tials I'*, , called the affine connections or connection coeffi-

cients,>>? symmetric in their last two indices, are related to
the metric by

v/l _gﬂﬂ(aﬂ.gm + avgﬂ}. - afrgvli ) (10)

Instead of the above approach, Kaluza considered the 5-D
generalization of Eq. (10) and found, using the cylinder
condition, that only 64 of the 52(5 + 1)/2 =75 indepen-
dent components of T 4BC = =T A(BC) gADI‘,,c are non-
vanishing after partitioning 4 = {u,5}:

(9)

2T s = 03 + 0,8 — Fubin, (1n
2Fyv5 = 2fy5v = avg,u,S - yg’vs, (12)
2Ty, = 2Fs, = 3,8us + .80, (13)
205, = — 21/:,;55 =d,8ss, (14)

with I"5s5 and 10 others vanishing. The form of Eq. (12) led
Kaluza to the identification g,; = x4,,, so that the electro-
magnetic field strength tensor F,, = d, 4, — d,4,, is given
by 2I,,,s = 2T s, = kF,,, in which the SI dimensions of
the proportionality constant « must be [x] = {q]/[p],
namely, those of electric charge ¢ over momentum p. The
combination

2hs,, =k(3,4, +3,4,)=K3,,, (15)

does not appear in the equations of electrodynamics and
must not therefore appear in the physical equations that
result if the Kaluza idea is to be successful. Qur analysis
above shows that these 5-D connection coefficients are cor-
rect only in the special case of ¢ constant, here normalized
tog=2g5s=1

Whether or not the scalar field is constrained to be con-
stant, the electromagnetic Bianchi identity,® namely 9, F*~

= 0, follows 1mmed1ate1y from the following 5-D general .

relativistic identity® arising from the symmetries of the
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Riemann tensor:
dp (T ypc + Tpea + Teun)
= aA FCDB + aBrADC + aCrBDA » (16)

which is easily verified by writing out the components.
Taking (4BCD) = (uvA5) and substituting 2T,
=«k(¢F,, +A4,0,6 — A,d,¢) we find

3,F;, +3,F,, +9,F,, =0 & 4,F*=0. (17)

Under the coordinate change of Eq. (3) for the fifth
coordinate, 8,5 = k¢A,, transforms by

8a5 =8us +8550:8 = Az =4, K_la;,f, (18)
which may be recognized as a gauge transformation of the
vector field 4,,. This demonstrates one of the most power-
ful results of Kaluza’s ansatz, namely, that the gauge free-
dom of 4,,, previously considered “internal” in some sense,
arises naturally here as a geometric freedom in the extra
dimension. More recent attempts®® to incorporate the
strong- and weak-nuclear forces into the Kaluza~Klein
framework require more dimensions to account for their
more complicated non-Abelian gauge symmetries.

C. Reduction of the 5-D action

To simplify subsequent calculations we now set ¢ = 1in
all components of the metric (9), bearing in mind that they
are therefore not the most general solutions. The reduction
from the Einstein—Hilbert action in 5 D to the sum of the
Maxwell and Einstein—Hilbert actions in 4 D is clearer and
more enlightening without the extra terms due to the scalar
field, which will be restored in Sec. V. It plays no important
part in this introductory look at Kaluza—Klein theory. Its
interpretation as a Goldstone boson for example would be
considered in the context of the more realistic higher-di-
mensional theories that are naturally field theoretic and
involve the weak- and strong-nuclear forces.

Einstein’s  field equations G,,=R,, —ig, R

= (87G/c*) T,, of general relativity may be obtained
from the var1at10nal principle 65 /8g,,, = 0, in which S is
the Einstein—Hilbert action®*?

Sy = 6n Gfd“x\/ gR,

where g = ||g,,. ||, and d *xy/ — g is the invariant four-vol-
ume element in curved space-time.

By analogy with the 4-D variational principle, we con-
sider a generalization of the Einstein—Hilbert action (19)
and the variation of the 5-D Ricci scalar R, which may be
expressed® in  terms of 4-D  quantities as
R =R —IK*F*F,,, therefore being independent of x°.

pv?

The Emsteln—Hllbert actionin 5 D is

(19)

5= J d’xy — R (20)
167G
where 2 = ||g,z|| = ||g,.. || = g and the dimensions of G

must be those of (G /length). We may now separate the
integral into a 4-D part and an integration over x°, namely,

~ o J‘ J‘ ~
S=—-r dx5 d 4x —gR
167G '8
and immediately carry out the integration over x°. To

avoid meaningless infinities the fifth dimension must be
compact,* although this does not require it to be small
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relative to macroscopic scales. We consider a constant ra-
dius r for the fifth dimension and denote its circumference
by Cs = § dx® = 27rrs.

For Eq. (20) to eventually reduce to the Einstein—-Max-
well action:

S(grt+em) =S(gn) +S(cm)

fd"‘x\/‘—R

161rG

A J d*x
4uc

A
we make the standard association G = 27r;G. Hence, Eq.
(20) becomes, on substitution of R,

fd “xy —g (R — WPF*F,), (22)

_ngwF'uV7 (21)

16 G
which implies that
k= (167G /uoc*)'. (23)

In evaluating this constant, it is instructive to rewrite it in
the form

1/2
K=(2a8) L:ﬁg_g. e
a m,c 8. mPC

€ P
=575%10""As’m kg,
(24)

where  a, = &/4mefic=17297X10">  and @,
=2Gm?/#ic = 1.18 X 10~ ** are the dimensionless elec-
tromagnetic fine structure constant and a gravitational
analog, the latter expressed by convention in terms of the
proton mass m,. The dimensionless Lagrangian coupling
constants g, and 8, are given by a, = g /47 and a,
=g,/

With our 5-D action § now indistinguishable from
S (grt + em) » Standard variational procedures yield Einstein’s
equations with an electromagnetic soyrce and the vacuum
Maxwell equation. The variation of .S with respect to g,,.,
becomes:

1617G.I-d4x£s( gR)

fd‘*xa((— FoF,), (25)
4poc

where §(v —gR) =+ —g( — R" + §g*"R)bg,,, is given
by a standard general relativistic analysis.** The variation
of the second term in (25) is

8(V —gF*F,,) =2 —g(FMF>, + ig’“’F"’Flp)thm,,

giving

58 =—=F 2| R — Lgor
167 2
_ 8”G4(FMF oL g‘“’F,ipF"’)]égw. (26)
HoC 4
Since the &g,,,’s are arbitrary, the condition 55=0 yields:
R#— 2 goR = SIS puap, — g, 1)
2 soct
or Q27
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G" = 81rG Ty

(em)?

where T4}, is the electromagnetic energy-momentum
tensor:

T4 = (1/po) (FMFy — g*'F, . F*7). (28)

Variation of S with respect to the rest of § .5, namely 4,,,
leads to the vacuum Maxwell equation d, F** = 0.

This extension to 5 D in order to unify electromagnetism
and gravity closely parallels the Minkowskian extension of
3-D space to 4-D space-time in special relativity to unify
E = {cF*°} and B = {}¢"'"F,, } in the Faraday tensor F,,,
(with F,;, = €,,,,B™).

IV. GEODESIC EQUATIONINS5D
A, Classical

We consider now the motion in 5 D of a free particle of
mass m, namely a geodesic trajectory, with ¢ still equal to
1. A massive test particle in 4 D has an action S{z(7)] and
an energy-momentum tensor 7#*(x) given® by

S[z(r)]= —mc JW dr( —g,, 2" (29)
and
T*(x) = mc fw dr 8*[x — z(7) ]2, (30)

leading to a trajectory z(7) which obeys the geodesic equa-
tion ' + I's 22" =0, where * =dz*/dr and 7 is the
proper time.

The geodesic equation in 5 D is, correspondingly,

3 4 T4 .2%C = 0, 31

where the connection coefficients are given in the Appen-
dix. We partition Eq. (31) by 4 = {u,5}. With 4 = we
obtain

# 4 Tuzd 4 2Te s =0,
which becomes, using connection coefficients (A1) and
(A2),

3 4 T 25 = k(KA 24 + 2°)FF 2 (32)

The A = 5 part of (31) becomes, using Eqs. (A3), (A4),
and (15),

5 — (kA T, — k3,28
+ KPAPF,, (kA2 + )2 =0, (33)

and it can be verified using Eqgs. (32) and (33) that
C=«kd, 7 + 7 is a constant, that is dC /d7 = 0. Hence,
Eq. (32) becomes the Lorentz equation

# 4 T4, 2%" = (¢/m)F*, 2" (34)

for the motion of a particle with mass m and charge ¢ in
curved space-time, provided we demand that «C = ¢/m,
which determines the dimensions of C to be those of a ve-
locity, (C) = (ms~!). We see also that 2, is decoupled
from the 4-D dynamics as it must be.

Once again a consideration of the purely gravitational
effects in 5-D Kaluza-Klein space-time produces, in a fully
relativistic context, motions governed by both gravitation-
al and electromagnetic interactions in 4 D.

Now consider a generalization to 5 D of the free particle
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geometric Lagrangian® contained in the action (29), name-
ly

L= —me( —g,,25%)2 . (35)
From the usual prescription® and the relation

P = — 57" we get p, = L /3" = mg ;52" The fifth
component is

bs = mkA, 2 + mz> = mC, (36)

which is consistent with the dimensions of C. Thus the
charge g in the Lorentz equation is related to ps by

172 &
e a, m,c
In classical Kaluza—Klein theory, the charge (in units of
the proton charge) is a manifestation of momentum in the
fifth dimension in units of m,c. Electric charge is bipolar
and, in contrast to the total mass energy of a system, may
have a zero value. The Kaluza-Klein ansatz associates
these properties with similar properties of ps.
Using Eq. (36) in the z component of p,, namely
P =mz, + mPA, A2+ mkd,?, (38)
wehave p, = mz, + kA, ps which with the first part of Eq.
(37) agrees with the generalized momenta 7, = mz,
+ gA,, of a particle of charge g interacting with the electro-
magnetic field. Thus we can identify p, with7,. The 4 = u
component of the momentum of a free particle in 5 D be-
comes the momentum of a charged particle in 4 D interact-
ing with the electromagnetic field via its electric charge ¢
which arises from the 4 = 5 component.

B. Quantum mechanical

With the fifth dimension now considered compact we
apply some elementary ideas from quantum theory to get
an estimate of r;. We know from experiment that the elec-
tric charge of free particles is quantized into integral multi-
ples of the electronic charge e. Hence, from Eq. (37) we
may write

(39)
for the proton. Assuming an integral number N of de Brog-
lie wavelengths fit around C;, we have
NAs = 27Nfi/ps = 2mrrs. With Eqs. (39) and (24) we find
_ N _ (2ag )‘” N#

e a

ﬁs = e/k,

s

. (40)
. m,c

We rewrite thisas (N =1)
2

a

I =2(137lp ~23.41], = 3.784X 10~ * m,

rs =

e

(41)

where the Planck length /, = (G#/c*)? = 1.616 X 10~
m. This shows that the radius of the fifth dimension differs
from /, by a factor dependent only on the electromagnetic
fine structure constant. The numerical value of 7y is consis-
tent with the fact that the fifth dimension has not been
observed in high-energy experiments. To probe length
scales of the order of 10~** m would require energies
~10'"® GeV—far beyond the direct capabilities (~ 1000
GeV) of modern accelerators.

Equation (40) describes the quantization of charge in
terms of the radius of the fifth dimension,
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q = Nehi/rs. (42)

This illustrates the geometric origins of electric charge and
its quantization under this ansatz. A goal of many modern
Kaluza—Klein theories is to somehow determine the size of
the extra dimension(s) from other arguments, thus “ex-
plaining” the quantization and value of electric charge.

V. WEAK-FIELD APPROXIMATION

The Fierz—Pauli field is a massless spin-2 tensor field,®
the equations for which may also be formed by considering
the weak-field limit of general relativity. In an asymptoti-
cally flat space-time, one can form the Fierz—Pauli tensor
field 4,,, (x) from the metric tensor of the geometry by

Prv = 8w — M " (43a)
and

h# = — 1p*h, (43b)
where h = ht = — h is the trace of #**, and re-express

Einstein’s field equations in linearized form as>¢
— Oh,, +23%0,h,,, —1,,070%h;, = (161G /c))T,,,.

(44)
17,19

The Brans-Dicke-Jordan theory of gravity isa vari-
ation of general relativity theory which explicitly incorpo-
rates Mach’s principle,>*> namely that it is the distribution
of matter elsewhere in the universe that determines the lo-
cal properties of inertia and hence mass. The left side of the
Brans-Dicke-Jordan field equation is also the Einstein
tensor of general relativity theory, but the right side in-
volves a scalar gravitational field ®y,; which plays a simi-
lar role to the inverse of the universal gravitational constant
G. In the weak-field approximation, the Einstein tensor
reduces to the left side of Eq. (44). We also approximate
the scalar field by ®yp; = @, + &, where ¢, is constant and
& contains the small variations about ¢,. The Brans—
Dicke-Jordan equation in the weak-field approximation is
then'

- D’_’uv + 20 lamzvm — 7,,0%3 P’—Up
= (16m¢g /e T, + (3,9, — 71,0645 " (45)

In a straight generalization of the 4-D result
huy = &4y — My 10 5 D we take the full metric of Eq. (9)
and form

I;AB =845 — Nap> (46)
where ||,z || €1, enabling us to ignore second-order terms

and obtain the 5-D generalization of the weak-field equa-
tion (44) as

- DZAB +2d Ca(BZA)C - ﬁABa ‘9 D}_’CD
= (167G /c*) T 3. (47)

Consider again the case of a free particle in the 5-D Ka-
luza—Klein space-time. The energy-momentum tensor 7,
is therefore given® by

T (X) = me f & &% — 3(3) 12425, (48)

the 5-D generalization of Eq. (30). We now consider Eq.
(47) with the three index choices (4B) = (uv), (45), and
(55).

Taking (4B) = (uv) we obtain
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O, + 20%3, ks — B,0%0%h,, = (167G /9T,
(49)

Now Oh,, =h,, 2nmit where £, = h,, +K¢4,4,
~h,, since K2¢A A, = h,shs, which is neglected in our
lmear approximation. The 5-D trace A in the second term is

=h* + h3=h + ¢, where we have again dropped a
term in h Thus from Eq. (43b), 4 h —i7,,¢ and
Eq. (49) becomes
— Oh,, + Aza ‘5(;\71#),1 ~7,,0%9h,,

= (161rG/c“)T,W + (4,0,¢ — 1,,04), (50)

which is the weak-field equation (45) of the Brans-Dicke—
Jordan theory of gravity if we identify our dimensionless
scalar field ¢ with the dimensionless ratio & / ¢0: and de-
mand GT = ¢y 'T,,. If the scalar field ¢ is constant,
then Eq. (50) reverts to the standard weak-field Fierz—
Pauli equation. Indeed, it was consideration of this scalar
field in the context of 5-D Kaluza—Klein theory that led
Jordan to his work'” on the scalar-tensor theory of gravity
in the 1940s.

The mdex ch01ce (AB) = (u5) yields
— Dh +d%d, hy, = 1617'GT s/c*, where we have used
the cyhnder condmon and 7,5 = 0. On substitution of the
metric components (9), using Eq. (23), and constraining
¢ = 1 we obtain

04, — 3,8 A= — (160G /kc*)T;s = — pkCsT 5.

(51)

Now the energy-momentum tensor on the right side is the
(u5) part of Eq. (48). Using

J, = qcfdr&“[x —z(n)]z,

and letting ps ~mz, in the weak-field approximation since
k<1, wefind

T, = (1/xC5)J,, (52)

where we have made use of the relation p; =g/« from Sec.
IV. With this result, Eq. (51) becomes Maxwell’s second-
order equation 004, —d,d'4 = — uyJ,. However, this
result did require the use of stronger approximations,
namely that the scalar field ¢ be constant (normalized to
unity) and that ps =~ mz,, which involves ignoring the first-
order term k4, z* in p. With these conditions in place, the
motion of a test particle in 5 D becomes that of a charged
_particle in 4 D interacting with the electromagnetic field in
flat space-time.
With (4B) = (55) in Eq. (47) we obtain

Ohgs — f1550 737k, = 167G Tss/c".
Since 7jss=1, we find kg5 =1¢ — ik and Z,Ip =h;,
— 1, (A + ¢), and using Eq. (43b) we obtain

Ok = — (167G /c*) Ts. (53)
Equatmg this with the trace of the wave equation Dh

= —167GT, ,/c¢* we get the following relation between
T,s and the trace of the 4-D energy-momentum tensor:

T = (1/C5)T, (54)
where we have used G = C,G. This is consistent with our
earlier results since the gs5 metric component may repre-
sent a scalar gravitational field (¢ = £ /¢, in this section)
and it is known® that scalar gravitational fields couple only
to T'= T4 rather than all components of 7,
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VL. CONCLUSION

We have presented a simple account of 5-D Kaluza—
Klein theory and shown that construction of its metric re-
quires the incorporation of the scalar field in all compo-
nents, clarifying the inconsistency of Kaluza’s original as-
sociations.

The Kaluza—Klein ansatz>* was presented in detail in a
fully relativistic way. The Einstein—-Hilbert Lagrangian
c’R /167G, which yields Einstein’s vacuum equations in
the 4-D variation, is generalized in the Kaluza-Klein tech-
nique to 5 D. Upon dimensional reduction it yields Ein-
stein’s equations with an electromagnetic source composed
of pure radiation (since J, = 0).

We also considered a free particle traveling along a 5-D
geodesic as an illustration of the Kaluza-Klein process,
both classically and in the context of simple quantum me-
chanics. This demonstrates how electric charge arises as a
consequence of momentum in the fifth dimension. An esti-
mate of the radius of the compact fifth dimension was ob-
tained and its simple relationship with the Planck length
via the electromagnetic fine structure constant explicitly
determined. Consistent with its nonobservation, its nu-
merical value was found to be only an order of magnitude
larger than the Planck length (/, ~10~3° m).

We demonstrated the simple reduction to 4-D gravita-
tional and electromagnetic results under a Fierz—Pauli
weak-field approximation of the 5-D gravitational field
equations sourced by a test particle. This encapsulates the
essential elements of (5-D) Kaluza-Klein theory without
the need for a full general relativistic treatment.

APPENDIX

The connection coefficients derived from the metric of
Eg. (9) with ¢ = 1 are

v =T% — k(A4 F*, +A,F*), (A1)
T = — F*,, (A2)
f“s = —KAPT,,; — PAPAFy, + K34, (A3)

= UCA*F,,, (A4)
1‘55 —T% =o0. (A5)
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A method is described for the evaluation of the elastic constant of a rubber automobile inner ~tube.
The relevant theory is presented, and no expensive apparatus need be used.

L. INTRODUCTION

A number of authors have considered the stress/strain
relations in rubber structures such as balloons and circular
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membranes.’ We extend the analysis to the case of an auto-
mobile inner tube. A simple global stress analysis is possi-
ble if the shape is considered as a toroidal surface of revolu-
tion. The deformation of a volume element due to the local
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