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The Jahn-Teller effect (JTE) is defined and the historical background of the Jahn-Teller
theorem is briefly discussed. The E ® f3 system, an electronic. doublet coupled to a single mode
of vibration, is introduced as an elementary example and is used to illustrate features
characteristic of Jahn-Teller systems. The spin resonance of Cu™ ™ in various materials is
considered and the particular case of Cu™* in a cubic crystal field is used to introduce the E® €
Jahn-Teller system. The linear and quadratic E ® € systems are discussed, and the linear case is
used to illustrate the appearance of the Berry phase in a quantum system. The role of the
Jahn-Teller effect in high-temperature superconductivity is also discussed. In particular, the
JTE-based superconductivity theories of Englman er al. [Physica C 169, 314-324 (1990)] and
Weber et al. [Physica C 162/164, 307-312 (1989)] are briefly reviewed. The possible roles of the
Jahn-Teller effect in Cg (buckminsterfullerene) and superconducting K;Cq, are also

considered.

I. THE JAHN-TELLER THEOREM AND
SYMMETRY BREAKING

The Jahn-Teller interaction is an example of electron-
phonon coupling that is very simple to understand in its
primitive form, which yet produces a rich variety of phe-
nomena to study. The use of the term electron-phonon
implies that there are both heavy and light particles to be
considered, with the motion of the heavy particles (ions)
being discussed in terms of normal coordinates or phonons.
The peculiarity of the Jahn-Teller interaction is that there
must be a multiplicity of electronic states interacting with
one or more normal modes of vibration, and the Jahn-
Teller theorem says that for almost any set of degenerate
electronic states associated with a molecular configuration
there will exist some symmetry-breaking interaction in
which molecular distortion is associated with the removal
of the electronic degeneracy.

The first full explanation of the effect was given by Her-
mann Jahn and Edward Teller in the spring of 1936, at the
Washington meeting of the American Physical Society. !
However, the roots of a theoretical understanding of the
effect can be found 2 years earlier in Copenhagen, during
overlapping visits by Teller and Lev Landau to the institute
of Niels Bohr.? At that time Teller and Landau had several
discussions concerning degenerate electronic states in lin-
ear molecules such as CO,. Landau’s intuition was that a
molecule in an orbitally degenerate electronic state would
be inherently unstable with respect to symmetry-lowering
distortions of its nuclear configuration. Teller managed to
convince Landau that linear molecules were an exception
to this general supposition. In doing this, Teller was able to
rely on the work of Rudolph Renner, a recent Ph.D.
student of his at Gottingen, whose thesis had dealt with
linear triatomic molecules.® The following year, while in
London, Teller returned to the topic and addressed the
question of whether there existed any other exceptions to
Landau’s hypothesis. In this he was joined by Jahn, and
together they demonstrated that linear molecules were the
sole exception in cases of orbital degeneracy. The other
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exception, Kramers degeneracy, cannot be lifted through
any nuclear displacement since it is due to time reversal
invariance of the Hamiltonian.*

The proof of this theorem rests on group theory: one lists
all the possible point symmetry groups under which a sys-
tem such as a molecule may be invariant, and one also lists
all the normal modes of each system, classified by their
symmetry. Since all electronic states in such a system can
also be classified by symmetry, and each labeled by an
irreducible representation of the point group for the sym-
metric ionic configuration, one can show that a linear
electron—-phonon interaction is permitted by considerations
of symmetry in almost every case. The exceptions are lin-
ear molecules and molecules in Kramers-degenerate elec-
tronic states. This is as far as the proof goes—the interac-
tion is allowed—but we normally make the usual
assumption: that anything allowed will actually occur.’
The ionic distortions capable of lifting the degeneracy can
also be be classified by symmetry using irreducible repre-
sentations, and group theory tells us which these are. For
even-electron systems, the irreducible representation sym-
metry label for the distortion must occur in the symmetric
square formed using the electronic state’s irreducible rep-
resentation; for odd-electron systems, the antisymmetric
square is used. The ionic distortions, or phonon modes,
defined in this way are called the “Jahn-Teller active”
modes.

The simplest possible illustration is that of a doubly de-
generate electronic state interacting with a single mode of
vibration. The Hamiltonian for this system can be written

18 1 -Q 0
where Q is the normal mode coordinate and the matrix
operates within the pair of electronic states as basis.

This Hamiltonian can serve to represent all the possible
two-by-one Jahn-Teller interactions, since all can be trans-
formed into this form in which all masses and vibrational
frequencies have been transformed out. The only parame-
ter left in, k, tells us how strong the Jahn—Teller effect is in
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Fig. 1. The potential %in kQ of Eq. (2). The Jahn-Teller energy Ejr is
the energy difference between the potential minimum of the symmetric
configuration and the energy minimum of the distorted configuration.

comparison with the separation of the vibrational energy
levels, #iw. It is because so many systems can be reduced to
simple Hamiltonians like this one, and there are only a few
of them, that discussions of the Jahn-Teller effect usually
concentrate on working out the implications of such
Hamiltonians.

This simple Hamiltonian has a simple set of solutions. It
can be rewritten as a pair of Hamiltonians:

1 & 1
H= —ia—Q'z-}-EQz:l:kQ. 2)

These represent a pair of harmonic oscillators with origins
displaced a distance =+ k from Q=0 and potential minima
of E=—Kk2/2. The potentials for such a pair of oscillators
are shown in Fig. 1.

Although it is quite simple, this picture can be used to
illustrate some important ideas. First we see the effect of
the size of parameter k. If k is large, by which we mean
k> 1, then the lowest energy levels are localized in the
bottom of the two wells with very little overlap. The
ground state of the combined system is still doubly degen-
erate, but there is little overlap between its two compo-
nents, and for all practical purposes there are two alterna-
tive, equally probable, ground states corresponding to the
two distortions Q- Q4 k. These distorted states are of
lower symmetry than the uncoupled states, and it is in this
sense that the Jahn-Teller interaction is symmetry break-
ing. It is sometimes said that this interaction also lifts the
degeneracy, but it is clear that the twofold degeneracy of
the ground state still exists even though the two compo-
nents are disjoint. If, on the other hand, the coupling is
weak, say k<1, then there is a substantial overlap between
the two ground states [the overlap is actually given by
S=exp(—k*/2)] and any measurement of the properties
of the electronic states will produce reduced values due to
the effect of the Jahn-Teller interaction.

The essential tool that underlies our discussion is the
adiabatic or Born-Oppenheimer approximation. In the
adiabatic approximation, the equations for the electronic
(light) motions are solved to provide an effective potential
for the vibrating masses to move in, the adiabatic potential
energy sheet (APES). This is the process commonly used
to discuss vibrations in molecules and it leads to a Schro-
dinger equation in which the kinetic energy is that of the
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(heavy) atoms and the potential energy is given by the
APES. It is generally assumed that the APES of lowest
energy is well separated from all the others, whose influ-
ences can be ignored. Jahn-Teller systems are those in
which this process leads to more than one APES being
degenerate at some configuration of high symmetry, so that
motion on all the low lying surfaces must be included. The
potential “surfaces” in Fig. 1 are one example of a pair of
APES:s. A further approximation that is not strictly part of
the Born—-Oppenheimer approximation is often made: to
ignore any changes in the electronic part of the wave func-
tion as the atoms move. This is quite well justified in non-
degenerate systems as long as the energy is near the mini-
mum, but the changes in the electronic wave functions are
important in analyzing Jahn-Teller systems.

We accordingly start work with a set of APES which are
assumed to be well separated from any others, allowing
completely for changes in the electronic wave function as-
sociated with motion on this set, but ignoring any other
sources of variability. This method then produces a new set
of APES from combinations of the old ones, and the adi-
abatic approximation can be used again if the Jahn-Teller
coupling is strong enough.

II, IONS IN CRYSTAL FIELDS, SPIN RESONANCE

Some aspects and implications of the Jahn-Teller cou-
pling can be well illustrated by considering the spin reso-
nance of Cu* * ions in various materials. We choose Cu**
because this one ion in various environments exhibits many
of the interesting Jahn-Teller effects. Also, its appearance
in the high T, superconductors has intensified the interest
in its properties. This ion has a d° configuration, so thefe is
a single hole in a closed d shell; when it is in surroundings
that approximate to an octahedron of negative charges,
these d-electron states split into a doublet and a triplet with
the doublet lying higher. The hole thus goes into the dou-
blet, which belongs to the E representation of the O, (cu-
bic) symmetry group, and being degenerate must suffer a
Jahn-Teller interaction. Forming the symmetric square, as
described in the previous section, shows that in the cubic
group an E electronic doublet requires as partner an E pair
of doubly degenerate vibrations.

A. E®¢
The Hamiltonian for such a system can be written as
1/8# & —Qs O
H== k ‘l.
2(@+@+Q§+Q§) +k| o Qe] (3)

The first term represents the kinetic and potential energies
of two simple harmonic oscillators with coordinates Q, and
Q.. These coordinates are two of the normal mode coor-
dinates of an octahedral (cubic) arrangement of atoms; the
subscripts (6 and €) indicate their symmetries with respect
to O, (see Fig. 2). The second term represents a linear
coupling between the vibrational modes and a pair of de-
generate electronic states {|vy),|1¥,)}. Note that this set
has the same set of symmetry labels as the pair of normal
mode coordinates. The Hamiltonian 5 therefore repre-
sents the interaction of a doublet of electronic states with
two modes of vibration in a surrounding octahedral ar-
rangement of ions. Representing each pair by its O, sym-
metry label, we identify this interaction as “E ® € (using a
lower case greek epsilon to distinguish the vibrational set).
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Fig. 2. The normal mode coordinates Q, and @y for an octahedral ar-
rangement of atoms, such as would occur in a molecule ML,.

A consideration of the interaction term shows that the Q,
mode acts to split the degeneracy while the @, mode mixes
the |1 and |¢,) electronic states.

In what follows, it will be convenient to reexpress 7 in
terms of the polar coordinates {R,0}. Writing Qy=R cos 6
and Q,=R sin 6, the time-independent Schrodinger equa-
tion is

glve]_[_ 118 8 1 & L o
Lpe]—[—z(xai ﬁ*“ﬁfﬁéﬁ)ﬁ
. Yo
+kR( —cos Bo,+sin 6o,) e (4)

where o, and o, are the two real Pauli matrices, and the
vector [iy,1,] is in the space of the two electronic states. It
is worth noticing that this is one form of the only possible
two-by-two Jahn-Teller Hamiltonian, other than those
that reduce to 2 two-by-ones, and it occurs very generally.
It is thus worth giving it detailed attention. If we omit
the kinetic energy and diagonalize the rest, we get a pair of
APESs V'=+kR+ iR This looks very similar to the
APES:s for the pair of displaced harmonic oscillators in the
previous section, but now we are in a coordinate space of
two dimensions and the absence of 0 in the formula means
that these APESs are surfaces of revolution. Rotating the
potentials of Fig. 1 through 27 produces the famous Mex-
ican Hat potential shown in Fig. 3.

We shall go more carefully into the question of solutions
to this Hamiltonian when the kinetic energy is included in
the next section, but for the moment we should notice that
the Mexican Hat potential has a continuum of minima in
the (Qy,0Q.) coordinate space instead of the well-defined
local minima that we might have expected. This is an ex-
ample of accidentally high symmetry, and such symmetries
have been usefully exploited in Jahn-Teller studies. Having
a continuum of minima means that the system is still open
to other interactions to come in and play their part in
doing some more symmetry breaking. We so far have in-
cluded in the Hamiltonian only terms in the electron-
phonon interaction that are linear in the s, so it makes
sense to look at the next higher term, the quadratic Jahn—
Teller interaction. The form of this interaction is pre-
scribed by symmetry just as the linear one was, and it can
be included in Eq. (4) by adding a term

KR?(—cos 260,+sin 260,)
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Fig. 3. The “Mexican Hat” adiabatic potential surface of the linear E® €
Jahn-Teller interaction (Ref. 52).

with K<1. Because of its dependence on R? this term only
becomes important when R is large, so it is important in
molding the potential minimum when the linear coupling
is strong. The result of including such a term is shown in
Fig. 4: The circular minimum has been replaced by a set of
three hills and three valleys; the effect on the Mexican Hat
has been called “warping.”

The arbitrary introduction of the quadratic interaction
raises the question whether we should not add anything
else we fancy, however there is a good reason for stopping
here—the symmetry of the warped hat is the cubic sym-
metry of the original complex, which must also be the
symmetry of the Hamiltonian, so we must not put in any
terms that further lower the symmetry.

B.Cu*t

The three minima in the warped hat correspond to three
tetragonal distortions of the cube along its three axes, ei-
ther expansions or contractions depending on the relative
signs of k and K. In the case of Cu™* there is a strong
tendency for the formation of complexes in which the near-
est neighbors form a square and there are two other neigh-
bors out of the plane forming an extended octahedron.
Very often, as in the layered superconducting compounds

I
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Fig. 4. The warped “Mexican Hat,” the adiabatic potential surface of the
quadratic E® € interaction (Ref. 52). At right, a contour map of this
surface shows the three “hills” and “valleys;” the minimum of each *“val-
ley” represents a particular distortion of the complex.
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discussed later, the arrangement of the crystal favors one
cubic axis for the extension, but in more isotropic sur-
roundings extensions along all the cubic axes may be
equally probable; then the potential of Fig. 3 can be used to
model the behavior even though we cannot pretend that
the detail of such a surface is either correct or calculable.
In such a situation in strong coupling the ground state
wave function is strongly localized in the three minima,
and the lack of overlap between wave functions in each
minimum means that we can think in terms of three
equally probable, noninteracting ground states, which may
be of slightly different energy as a consequence of local
strains. When a spin resonance experiment is done on this
sort of Cutt at a very low temperature, spectra from all
three types of distortion are seen simultaneously, looking
as if there were three crystallographically equivalent sites
with different axes of distortion. The spectra from the dif-
ferent wells differ because the electronic wave function be-
longing to the lowest APES changes as we move about in
coordinate space, and while such changes can be ignored in
the locality of each well, the change from well to well is
important. (The actual wave function is given in a later
section.) These spectra are identified by the “g-tensor,” the
term in the spin Hamiltonian that describes the interaction
of the effective spin with the B field. This interaction with
B is strictly electronic, and contains no part depending
directly on the normal mode coordinates, but because the
electronic wave function changes from well to well, each
well has a different g-tensor. This way in which vibronic
properties influence electronic effects is a very important
aspect of the Jahn-Teller effect.

If the temperature is raised in a Cu™t + system with three
equivalent wells, thermal averaging of the three spectra
may be seen. This means that the barrier between the wells
is small enough for thermal activation to jump the system
from well to well fast enough for averagmg to take place. It
was this phenomenon in a Cut ™ salt, observed by Bleaney
and Ingram,® and discussed by Abragam and Pryce,’ that
was the first appearance of the Jahn-Teller interaction to
be clearly recognized for what it was. At this time only the
averaged spectrum was seen, and finding the transition to
the low temperature form had to wait for the development
of equipment able to work at lower temperatures.®

If the barriers between the wells are small enough there
may be quantum mechanical tunneling between them, and
the wave functions will exist over extended regions of co-
ordinate space. This means that the changing electronic
basis must be allowed for properly when electronic prop-
erties are calculated. This can be done in a neat and effi-
cient way as set out by Ham,'° using reduced matrix ele-
ments (now naturally called “Ham factors”). These work
in the following way: If the wave function on the lowest
adiabatic surface is written u(r,Q)¢(Q), where r repre-
sents all the electronic coordinates and Q all the normal
mode coordinates, and if ¥ (r) is an operator in the elec-
tronic states, then we form the ratio

Jo*(Q)(u(r,Q) | V() |u(r,Q))d(Q)dQ
(u(r,Qo) | V(r) | u(r,Qp)) ’

where u(r,Q,) represents the uncoupled electronic state,
and ¢(Q) is normalized. This ratio is the reduced matrix
element or Ham factor for the operator V(r). It is clearly
the result of an electronic operation averaged over a vi-
bronic state, and it reduces to 1 when there is no coupling.
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(The great advantage of this way of working is that the
Ham factors for any particular problem can be classified by
symmetry, so that we know exactly how many have to be
found.) We can write general formulas using Ham factors
as parameters, and so may get by without knowing about
¢(Q) in detail. In the case of E ® € there are two important
Ham factors, called p and q. The Ham factor p relates to an
operator of A, symmetry and ¢ to one of E symmetry. The
Ham factor p goes from 1 to O as the linear Jahn-Teller
coupling strength is turned up, and ¢ from 1 to about 1/2.
These reductions are analogous to reductions in the over-
lap S mentioned in Sec. I, but their behavior is somewhat

. more comphcated than exp(—k*/2). Using these Ham

factors the spin resonance spectrum can be worked out, but
first we must have a look at the ground states. In the next
section we show that in the absence of warping all the
vibronic states are twofold degenerate, while with warping
the lowest state is still a doublet but the next one up is a
singlet. These three states have to come together when the
warping is strong to make up the threefold degenerate
ground state, but as long as they are separated, the spin
resonance spectrum shows up the doublet ground state,
with the singlet coming in as it becomes thermally popu-
lated. The angular variations of these spectra are quite
different from those of the usual Kramers doublet. Such
spectra were found bg Coffman and co-workers for Cu*t

in MgO and CaO.!

The system Cu * in CaO has also been investigated by
Raman scattering!® and provides a nice confirmation of the
reality of the energy level structure with a moderate
amount of warping. Guha and Chase'® found transitions
between a number of the vibronic levels, and used stress on
the crystal to be sure of their identification. The effect of
stress along one of the cubic axes of a complex can be
represented as moving one of the three wells up or down
compared to the other two, and so it has a most useful
diagnostic effect on observed energy levels.

III. THE BERRY PHASE

The term “Berry phase” refers to a phase acquired by a
quantum system moving adiabatically around a circuit in
the parameter space of the system. It was introduced by
Berry' in 1984, and is a concept that has thrown light on
a wide variety of phenomena A useful general account of
this concept has been given by Aitchison.’> As will appear,
introducing the Berry phase into a discussion of the Jahn—
Teller effect does not actually produce any new informa-
tion, but it does clear the mind wonderfully to think care-
fully about phases, and these systems can give a nice
demonstration of the working of Berry’s theorem.

In the context of Jahn-Teller systems the term “Berry
phase” refers to a change of phase that may take place
when the electronic basis function is taken around a closed
curve in the vibrational phase space. Berry'* showed that a
phase change could be expected to take place if the circuit
enclosed a point where APESs were degenerate, while if
no degeneracy was enclosed the phase change would be
zero (or equivalently 2n7w). We shall demonstrate the
meaning of the term in the context of the E ® € Jahn-Teller
system, but must first discuss solutions of Eq. (4) in a
little more detail.
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A. The ground state at strong coupling

We set out to apply the adiabatic approximation to the
Hamiltonian in Eq. (3) by looking for a solution to the
Schrodinger equation in the form

Y=9y(R,0)u(R,06,r), (5)

where u, the electronic wave function, is a vector in the
electronic space {|¥),|¥.)} and r represents all the elec-
tronic coordinates. The vector u is chosen to diagonalize
the 2 X2 matrix, cos fo,+sin 00, , whose eigenvalues are
=+ 1. Substituting this ¥ into the Schrédinger equation we
get

—3[uV2p+ 2V Vu+yV?u] +iR%u + kRopu = Epu,
(6)

where V is the usual coordinate momentum operator. Ap-
plying closure to this equation with u gives

— V29—V (u| Vu) —3(u | VPu) + GR? £ kR) y=E¥.
(7)

It is usually justifiable in the Born—Oppenhelmer approx1-
mation to neglect the terms in Vu and V?u, and the remain-
ing equation does not then depend on u; however, for
Jahn-Teller systems the dependence of # on vibrational
coordinates cannot be neglected.

To apply this to £ ® € we note that the Jahn-Teller in-
teraction is diagonalized by making a unitary transforma-
tion to a pair of bases that includes the normalized eigen-
vector for the elgenvalue —1, which is [—sin(68/2),cos(6/
2)] (that is, —sin(30|) +cos(30)|¥.)). This is one
possible form for u, but not the only one. Without altering
anything else it can be multiplied by a phase factor of
modulus 1, and this phase factor can also be made to de-
pend on 0. If we are to work in the usual coordinate space
in which 6 goes from 0 to 27 only, then we need to have u
periodic in the same interval. As given here, « changes sign
when 6 increases by 27, but that can be cured by multi-
plying u by the phase factor exp(i6/2). Using this form of
u with the complex phase factor and remembering that the
components of V in the coordinate space {R,0} are
[0/9R,(1/R) (3/96)] we can work out the terms in Eq.
(7) and find as follows

(u|Vu)=[0,(1/2R)i},

a vector in coordinate space (8)

and
(u|Vu)=—1/2R% (9)

Equation (7) thus becomes

119 48 1 & i a 1
[-i(iaﬁRﬁJrz?w)Waﬁm
1
+5 R*—kR |y=FE4. (10)
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Although this partial differential equation cannot be solved
in general, a good approximation can be made if k is large
enough. It can be seen from this equation that the APES
here is given by

=3R?—kR, (11)
which is a circular trough in coordinate space of radius k&
and depth K/2, the “Mexican Hat” potential. When the
trough is deep the wave function for low-lying states will
be concentrated at its bottom, the distance from the next
surface will be large (22), and the conditions for use of
the adiabatic solution will be satisfied. The appropriate
concentration of the wave function in the trough happens
when we separate the variables, extracting a radial part
that is a harmonic oscillator wave function centered along
the bottom of the trough. If this function of R is factorized
out of ¥ as the radial dependence, we are left with an
equation in 6 which is

1 8 i 93
( ??+?ao+?+ (1 k2))f(9) Ef(0).
(12)

This equation for motion around the trough can now easily
be solved by substitution. We just have to remember that u
and ¥ are both periodic in 8 of period 2m, so appropriate
solutions are of the form exp(im0) with integral m. Sub-
stitution gives an equation for E

1
sa(m=2=E—3(1-K), (13)

which shows that there is a set of double energy levels with
pairs of degenerate states corresponding to m and (—m
+1).

The preceding calculation was set out to show in detail
how energy levels on the lowest APES may be calculated
using a complex phase factor to force the symmetry repeat
in the wave function to conform with the repeat in the
coordinate space. However, there is another option in
which the natural symmetry of the real electronic basis
state is allowed to dominate, and this is the one more often
used in past calculations. For this case we take u=
[—sin 6/2,cos 6/2], and this time find that

(u|{Vu)=0 (14)
as is always the case if u is real and normalized, and
(u|V?u)=—1/4R% (15)
The analog of Eq. (10) is now
1/1 0 3 1 & 1
( (R arR ® aR+_f'62)+§Ef+ R? kR)"’ Ed,
(16)
and the analog of Eq. (12) is
1 & 1
_ —(1— = . 7
( A kz))f(e) Ef(6) (17)
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This equation is also solved by substitution of exp(iM9),
giving

M2 =E—-3(1-Kk%), (18)

but now the periodicity in 6 is 41, so M can be integral or
half-integral. One more constraint is needed, which is that
when 0 changes by 27, 4 changes sign, so, to allow for the
fact that this change of @ brings about the same molecular
configuration, f(0) must change sign. This condition
means that M can only be half-integral, and comparison of
Egs. (13) and (18) shows that the same set of energy
levels is produced by each method.

B. The Berry phase in E®¢

As we have seen, the phase factor in u is arbitrary at
each point, but in Berry’s treatment the further restriction
is made that u is single valued in the vibrational coordinate
space. This means that in E @ € we should use

u=[ —exp(if/2)sin 6/2,exp(i6/2)cos 6/2]

as in the first symmetry choice. A convenient way of rep-
resenting the phase is by the construction of an effective
vector potential,

A=i(u|Vu),

which has the property that the Berry phase, y(c), is given
by

(19)

y(c)= § A-ds. (20)
c

Here, then, A ds= —3d6, which gives a phase change of 7
for each circuit enclosing the origin, where the degeneracy
occurs, and is zero otherwise. The simplicity of this result
is not confined to this simple case, but is a result of the fact
that the Jahn-Teller interaction is expressed as a real ma-
trix, so that ¥ can always be written as the product of a
phase factor and a real, normalized vector: u=exp(ia)v,
say. Because of the normalization, (v|Vv) =0, we have

and y(c) is just the change of a around the curve c. Be-
cause u is real, it can only change around a closed circuit
in coordinate space by a factor of =+ 1, and correspondingly
the only Berry phase changes are 0 or .

The phase change of 7 can be directly related to the
degeneracy of the ground state. This is particularly clear if
we look at Eq. (16) in which the twofold degeneracy
(from M+3}) is visible; the fact that M is half-integral
arose from the need to take an expanded range of 6 (0,4r).
If we had been looking at a problem with a similar circular
trough in the APES, but no degeneracy (and so no phase
change in the electronic vector u,) then the range would
have been (0,27), M would have been integral, with the
lowest state an M =0 singlet. This effect on the nature of
the energy levels was pointed out by Ham,'® who also first
introduced the discussion leading to Eqs. (13) and (18).

Ham'® has also recently looked at the Berry phase in an
E @ € system with “warping.” The warping can be written
as an extra energy term S cos 360 in the trough and has no
other effect on the ground state as long as it is small. The
effect is thus to replace Eq. (17) with

1 & 1 2
(—5,;2 55:+B cos 39+ (1— ))f(G) =Ef(6).
(22)

This equation has a singlet ground state when the interval
is (0,27) and a doublet ground state when the interval is
(0,47). The former case would correspond to, for instance,
the hindered rotation of methyl groups, and the latter, of
course, to the Jahn—Teller interaction. Ham!® uses an ele-
gant theorem about differential equations to prove this re-
sult and to get out the sequence of degeneracies which is
doublet, singlet, doublet,..., but here we should just like to
point out the relationship with the overlap of wave func-
tions. In the Jahn-Teller case the potential in Eq. (22)
contains six equivalent wells, and the lowest energies
clearly correspond to a linear combination of lowest har-
monic oscillator states in each well. We might expect to
have six such states, but the limitation of a change of sign
under a transformation through 27 reduces them to three,

A=—-Va (21) which can be written by inspection:
1
l)=/J6)(f1 = fo + fimfi + fs—fe); overlap=—6S/6,
|E0>=(1/\/ﬁ)(2f1 + fa — [f3—=2fs — fs+fe); overlap=+6S5/12, (23)
|E.) =3 + f + f3 —  fs—f¢); overlap=2S/4,

where the labeling follows the remaining sixfold symmetry of the equation. The overlap shown is normalized, and we
assume an overlap S between the nearest neighbor wells. One can show, by considering the curvature of the wave function,

that maximum overlap leads to minimum energy, so we get an E doublet lying below an 4 singlet. By comparison, in the
27 repeating well the states are:

[O=/3)(fi  + f2 + f3); overlap=3S/3,
|Egy=(1/6)(2f1 — f» — f3); overlap=—3S/6, (24)
|E.y=(1/2)( + fi — f3); overlap=—5/2,
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Fig. 5. (a) The structural elements from which the Cu-O planes are
constructed: the octahedron of the La,CuO, compounds and the pyramid
of the YBa,Cu;0; compounds. The common element is a Cu-O planar
array (at right). (b) Bonding between a Cu** ion and two O*~ ions.
Only the 3d° states of Cu which hybridize with the 2p§( 5 States of O are
considered.

and this produces an A4 singlet below an E doublet.

We conclude this section by reiterating that it is neces-
sary to take the geometric phase properly into account to
get the correct ordering of the energy levels, and thinking
about Berry’s discussion of the geometric phase, though
not a necessary step to this end, is an immensely helpful
one.

1V. HIGH-TEMPERATURE SUPERCONDUCTIVITY

As alluded to earlier, the Jahn-Teller-active Cu* ¥ ion
plays a central role in the new copper oxide superconduct-
ors. All superconducting copper oxides have perovskite-
type crystal lattices, with oxygen octahedra (or pieces-
thereof) centered around Cu*™ ions. The two most
studied families of compounds, La—(Ba,Sr)-Cu-O and
Y-Ba-Cu-O, contain, respectively, sheets of corner-
sharing CuOg octahedra and sheets of CuOs pyramids. The
electron transport and the physical processes leading to
superconductivity are believed to take place within the
Cu-O planes common to both materials [Fig. 5(a)].

These planes have an electronic structure built up from
the hole state of Cu?*(3d°) and the 2p states of oxygen.
In La,CuO,, the insulating parent compound of the La-
based superconductors, the CuOg octahedra are elongated:
Cu-O distances are 1.90 A within the plane and 2.40 A
perpendicular to it due to this distortion which is at least
partly driven by a Jahn-Teller interaction. (The pyramidal
structure of YBa,Cu;0-, the insulating parent compound
of the Y-based superconductors, can be thought of as an
extreme elongation in which one of the polar oxygens has
been removed to form an incomplete octahedron). In dis-
torting, the doublet and triplet states of pure octahedral
symmetry are split in such a way that the hole in the 3d
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shell goes into the highest antibonding Cu—O state which is
of predominantly 3d (x2—y?) character [see Fig. 5(b)].

Superconductivity arises as the parent compounds,

YBa,Cu;0, and La,CuQ,, are doped with holes. Within
the Y-based compound, oxygen defects are introduced to
produce the superconducting material YBa,Cu;O0,_5 (0
<8<0.7),!" while replacing La** with M=Ba?* or Sr**
to produce (La;_,M,),CuO, has the same result in the
La-based compound. In both compounds, the effect of dop-
ing is to introduce holes into the Cu—O planes,'® with these
holes going chiefly into O 2p orbitals, as has been shown by
electron energy loss spectroscopy.'® (La, _,M,),CuO, and
YBa,Cu;0,_; are thus both p-type superconductors, and it
is essentially the pairing of these holes which creates the
supercurrent—though the pairing mechanism is unknown
at present.

The question remains whether the Jahn-Teller effect
plays any role in high-7, superconductivity beyond that of
producing the static distortions of the CuOg octahedra.
Many of the earliest efforts at explaining high-7", super-
conductivity invoked exotic magnetic interactions.**2
However, recent experimental and theoretical research has
revealed a strong connection between phonon states and
superconductivity in the Cu—O compounds.?® Optical spec-
trosco;g',24 Raman and infrared scattering measure-
ments,” and neutron scattering measurements®® have un-
derlined this interpretation. In particular Arai et al.?* have
recently pointed out that an anomaly in the phonon states
in the short-range region, associated with a local structural
distortion, is a common feature of the high-7", oxide su-
perconductors at 7',. Given these indications, it is reason-
able to consider the possible ways in which the Jahn-Teller
effect might influence superconductive pairing. A number
of researchers have proposed models in which Jahn-Teller
interactions give rise to superconductive pairing.>’*° In
what follows, we shall briefly outline the theories of Engl-
man et al.?’ and Weber et al.?®

A. Reversed-sign pairing model

Englman et al.?’ have outlined a Jahn-Teller based the-
ory which pairs holes in the dg and d, orbitals (modified by
hybridization with the O 2p orbitals). The origin of the
pairing mechanism arises from the local E® € interaction
term of Eq. (3), which can be expressed as follows:

K{Q9| ¢0>(¢9| _Qeldje) (¢e| +Qe|¢9> (¢e| +Qe|¢e)
X ¥p| }- (25)

Considering a square planar array of such Jahn-Teller cen-
ters and transforming to a k-space representation produces

kz Vk,g{ (a'g,q"" 09, —q) 01I;+q,aek,a_ (aaq’}' Qg —q) 61};+q,o£k,a
g0

+ (az,q+ae,—q)0;rc+q,ofk,a+ (aE,q+a€,—q)ez+q,06k,a}(’26)

where operators have been written in their second-
quantized forms. a}‘,q(a,;q) creates (destroys) a phpnon. of
energy #im, ,, having wave vector q, whose type of vibration
with reference to the local CuO, unit in the planar network
is specified by i=0,e. The electronic operators 6; ., €x,>
etc., are wave mode representatives arising from localized
antibonding d, d, states hybridized with oxygen 2p states,
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and ¥;, is the transformed couphng parameter. Per-
formmg a canonical transformation’! to remove the pho-
non operators, up through a second-order expansion in
powers of the electronic operators, produces an effective
interaction for triplet pairing of the form

- kz ViaV—k-{Crg 10k 1 o€ kg€ — ki
T
+Ck,q,291+q aET k—gq, 6k,¢70—k,0}' (27)

Within (27), the Cj,; represent the energy-dependent
parts of the electron-pﬁonon interaction,

1
Chgi zﬁw"’q[ (Eg,k—E\=),k+q)2(ﬁ"?"’q)2
1
28)
t (Ee,—k—Ee,—k—-q)z_ (ﬁa)thewq)z (
and
C, fiw :
k2™ "egq (Eo,_k—Ee,—k—qYE_ (ﬁwe’q)z
1
(29)

+
(Ee,k_EG,k‘i-q)zi (ﬁwe,q)z

Within the above, £y, is the energy of the hybridized elec-
tronic state of 6 symmetry, and fiwg, is the vibrational
energy of the same symmetry, etc.

Equations (28) and (29) show that the interaction be-
tween holes in the 0- and e-symmetry electronic states is
negative (that is, attractive) for electronic energy differ-
ences larger than the vibrational quantum #w and positive
for smaller energy differences. Englman et al.?’ emphasize
that this behavior is the opposite to that displayed by the
standard BCS interaction and that this interaction can lead
to large superconductive energy gaps without causing a
lattice instability.

B. d—d excitation model

In the d-d excitation model of Weber et al.?® the Jahn-
Teller levels of Cut* act as excitonic centers for the pair-
ing of oxygen holes. This model assumes that the electronic
structure of the copper oxide planes is best described by a
localized picture for the Cu™ ™ states and by an itinerant
picture for the 0, holes introduced by doping. The basic
Hamiltonian consists of these two parts and an effective
interaction between them,

y—:%o‘*_%d—d’ (30)
where
6/2 T
Hy=2 fkpkapka+[ T —6/2] (31)
and
Wor Wek
- ' kot
Hd-a % Wep —Wey|PkoPke (32)

The term 57, gives rise to an oxygen band and to two
copper levels separated by A = \/( & +4T%) in energy. As
was the case in Eq. (3), the states { | ¥,),|¢,)} form a basis
for the matrix. Within the matrix, § measures the differ-
ence in energy between the states of the split Jahn-Teller
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Fig. 6. The structure of Cq: a truncated icosahedron. There are 32 faces
(12 regular pentagons and 20 hexagons), with a carbon atom at each
vertex. The bond lengths forming the pentagons are 1.47 A; the other
bond lengths are about 1.41 A (Ref. 39).

doublet; T represents a hopping between these two states
(due to effective interactions with the oxygen holes).

The interaction term #°,_; leads to an effective attrac-
tion between holes in the oxygen band,

V= —{{W3) (A —8%) + (W) 82} (1/A3). (33)

(Here, the brackets ()re 2present Fermi surface averages of
the quantities W% and W2.) The attractive interaction, Eq.
(33), mediates spin s1nglet pairing and the superconduct-
ing transition temperature is given by

T, =Aexp] —1/8(EF) V4], (34)

where g(Ep) i is the density of states at the Fermi energy Ep
of the p holes.”

A further BCS analysis of the d—d excitation model in
the weak coupling limit has been carried out by Jarrell
et al.*® who include the effects of local and extended Cou-
lomb interactions at the oxygen sites. For reasonable values
of these fields and assuming low filling in the p hole band,
they find that s-wave (spin singlet) pairing dominates
other pairing symmetries. At higher band fillings, d-wave
pairing is preferred.

V. Cg: BUCKMINSTERFULLERENE

The recent discovery of the soccer-ball shaped Cg, mol-
ecule,” and the subsequent realization that solid Ceo could
become superconducting when intercalated with alkali
metal atoms, has led to an explosion in research reminis-
cent of the copper-oxide superconductors.’> As was the
case with the latter compounds, the number of supercon-
ductmg Cgo compounds has increased at an astomshmg
pace since 1991: 18 K (K;Cg),>* 28 K (RbyCyp),** 33 K
(Cs/Rb doped Cg,),% and 42 K (Rb/TI doped C,).>’
geometry of the Cg, molecule, which is central to the prop-
erties of these compounds (the “fullerides”), is that of a
regular truncated icosahedron (Fig. 6). In its ground state,
neutral Cg, possesses a closed shell electronic structure and
thus no Jahn-Teller interaction is expected. However,
because the lowest unoccupied molecular orbital (LUMO)
is threefold degenerate, a Jahn-Teller interaction will
be possible when Cq, is exc1ted to this orbital and for
anions such as Cg and Cw (the charge state in alkali-
doped solids such as Rb;Cg,).3®
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Although there are 180 degrees of freedom (3<60) for
each C4 molecule, the icosahedral symmetry gives rise to
a number of degenerate modes, so that only 46 distinct
mode frequencies are expected.** For an ionic configura-
tion with icosahedral symmetry, an electronic triplet will
interact only with the fivefold-degenerate distortion modes
labeled by Ay, an irreducible representation of the icosahe-
dral group (that is, five normal mode coordinates which
form a basis for a five-dimensional representation of this
group) The triplet electronic states of excited Cgy, Cgp,
and Cz; thus will be sensitive to distortions described by hg
Jahn-Teller active modes.*3

Given that the molecular orbitals will be delocalized
over a relatnvely large surface area (Cg, is roughly 10 A in
diameter),*’ it is unlikely that any Jahn-Teller distortions
will be large. However, Cg, does distort along Jahn-Teller
active coordinates upon being excited into one of its low-
lying triplet orbitals (either the LUMO or the next lowest,
which is also threefold degenerate). Negri ez al.*® have cal-
culated the Jahn-Teller distortions for these cases and find
their results in good agreement with spectroscopic data.
Their quantum chemical calculations show that the A,
mode near 260 cm ™! in wave number, corresponding to a
squashing of the icosahedron, is the mode most strongly
involved of the Jahn—Teller modes available.*

The Jahn-Teller activities of the negatively charged spe-
cies of Cgy, such as Cg and Cly, are of interest due to the
possibility of an electron—phonon source for the fullerides’
superconductivity.33 When electrons are added to Cg, they
begin to fill the triply degenerate orbital, previously the
LUMO for neutral Cg,. This picture of orbital filling is
useful even for the solid Cg compounds: Solid Cg is
weakly bound by van der Waals forces and intermolecular
interactions are an order of magnitude smaller than the
intramolecular energies. This assumption is in keeping
with the molecular dynamics studies of solid Cq, which
show that individual molecules rotate freely at tempera-
tures above 260 K.* The Jahn—Teller interactions within
the Cgo and C35 anions themselves thus should be of con-
siderable importance, and the Jahn-Teller case to be con-
sidered is again that of an orbital triplet interacting with a
fivefold 4, distortion mode.

The mteractlon of such a triplet with an hg vibrational
mode has been analyzed by Lannoo et al®? who draw on
the earlier Jahn-Teller work of Opik and Pryce* and
O’Brien.*® They estimate that the intra-Cy electron-
phonon coupling arising from Jahn-Teller interactions is
sufficiently strong to account for the observed Tf values in
the fullerides. In related work, de Coulon et al.*® have es-
timated a lower bound of 24 meV for the Jahn-Teller dis-
tortion energy Ej1, of Cg. In calculating this energy, de
Coulon et al.>® consider an A, distortion symmetric with
respect to one of the icosahedron’s fivefold symmetry axes.
Such a distortion breaks the icosahedral symmetry in a
minimal way yet is capable of stabilizing the added elec-
tron in an equatonal orbital on the molecule.”* This dis-
tortion symmetry is in keeping with the earlier results of
Negri et al®® who also have calculated the Jahn-Teller
distortions in Cg;.

VI. FINAL COMMENTS

For a Jahn-Teller interaction to occur, the requirement
is simple: a degenerate electronic state surrounded by a
high-symmetry ionic configuration. The simplicity of this
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condition ensures the existence of a wide range of physical
examples, from molecules in solution to defect states in
crystals. Even so, the Jahn-Teller effect seems not to be
generally known in physics—possibly, in part, because it
lies in the middie ground between atomic and condensed
matter physics. Yet, as the recent examples of the Berry
phase, high-temperature superconductivity, and Cg, dem-
onstrate, the JTE still has a significant part to play in
current physics.

The brevity of this introduction to the Jahn-Teller effect
has necessarily kept us from discussing several general
physics topics in which the effect is involved. Notably, the
physics of structural phase transitions in solids doped with
J ahn—Teller active ions has been reviewed by Gehring and
Gehrlng Also, because Jahn-Teller interactions cause
changes in the energies and wavefunctions of molecules
and crystals, changes in optical and other spectra can be
expected. A review of optical manifestations of the Jahn-
Teller effect has been given by O’Brien;*® electron
paramagnetic resonance spectra are discussed by Ham,*
and Challis and de Goer® cover the phonon spectro-
scopy of Jahn-Teller ions. Finally, the physics of defect
states in semiconductors, and the role of the Jahn-Teller
effect, has been studied by Stoneham is his general work on
defect states.”!
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