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How is it that complex numbers, involving the imaginary i= \/—_1 play such an important role
in physics, which always measures real quantities? An answer can be given in the framework of
the vector algebra of three-dimensional space, in which an associative, invertible product of
vectors is defined. In this mathematical structure, also known as the Pauli algebra, i arises
naturally and carries geometrical significance. In particular, i enters as the unit volume element,
and imaginary vectors are pseudovectors which represent planes, such as planes of rotation or
reflection. The 7 from the vector algebra is related to common applications of imaginary numbers
in physics, including rotations in a plane, electromagnetic waves, and phase factors and operator
relations in quantum mechanics. Moreover, the same algebra of real three-dimensional vectors
which yields complex numbers also forms the basis for a complex four-dimensional space with
the Minkowski metric and provides a natural formalism for compact, covariant treatments of

relativistic phenomena.

L. INTRODUCTION

Physics is a human discipline designed to describe the
real physical world. It has been remarkably successful at
modeling phenomena and their observation and measure-
ment with mathematics. Through a single small set of uni-
versal laws, physics accurately relates events from the
smallest scale of quark interactions to the largest scale of
the structure of the universe. The beauty with which often
highly abstract mathematics unifies the real world is a con-
tinuing source of joy and wonder for the practicing phys-
icist.

In fact, it may work too well! One’s wonder verges on
puzzlement. A simple but important example of applicable
abstraction is the use of imaginary numbers in physics.
Although imaginary numbers were rejected by mathema-
ticians as prominent as René Descartes (1596-1650),!
Gottfried Leibniz (1646-1716) called them ‘“a fine and
wonderful refuge of the divine spirit, almost an amphibian
between being and non-being.”? The imaginary i= \[:T
enters mathematics through solutions to quadratic equa-
tions such as x2+1=0, but many of its uses in electronics,
electromagnetic theory, and quantum mechanics transcend
these modest beginnings to involve mathematical struc-
tures over the complex field C. Yet the events physics secks
to describe occur, as far as we understand, in real three-
dimensional space R®, and the input and output of any
physical theory should reflect measurements of only real
quantities.

Often, it may be argued, complex numbers are intro-
duced for mathematical convenience and require little ex-
planation. Thus even though the physicist may ultimately
be interested in a function of real values, she/he may be
able to learn more about the asymptotic properties of the
function and be able to integrate it more simply if it is
“continued” into the complex field. Furthermore, a com-
plex number can be represented as a point in two-
dimensional space, and there is no problem reversing this
procedure to represent the position in a plane by a complex
number—no problem that is until we start using powers
and other algebraic properties of the numbers and expect
them still to have meaning in terms of the position in the
plane. In many cases, imaginary numbers can be exorcised
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from the mathematics with conciseness as the only sacri-
fice, but someétimes, as in quantum theory, i plays such a
central role that there is no way to make sense of equations
separated into real and imaginary parts.

In this paper, we seek some of the origins of the ubiqui-
tous i in the vector algebra of three-dimensional space.
Imaginary numbers and the complex field C are seen to
arise naturally when one attempts to develop more power-
ful methods of manipulating vectors. Most physicists have
an acquaintance with the geometric algebra (also known as
the “multivector” or “Clifford” algebra) of space-time
through its representation in terms of the Dirac gamma
matrices of relativistic quantum theory. Although the im-
portance of geometric algebras has been recognized for
some time in quantum field theory, there has recently also
been a movement to exploit their power in classical phys-
ics.>1* We concentrate here on the relatively simple geo-
metric algebra of three-dimensional space, also known as
the Pauli algebra. The standard matrix representation of
this algebra replaces basis vectors by 2 X2 Pauli spin ma-
trices, and many physicists will be familiar with some ap-
plications of the algebra in this form.!® However, specific
representations encumber the mathematics with unneces-
sary baggage, and we find it simpler to work directly in the
algebra without reference to any matrices.

The present article is similar in many respects to an
article two decades ago by Hestenes,* whose many contri-
butions have pioneered the development and geometrical
interpretation of the Dirac and Pauli algebras in physics.
In his 1971 paper, Hestenes showed how complex numbers
arise in the Pauli algebra and how the algebra unites them
with vectors and spinors. The message bears repeating even
today, but our emphasis is somewhat different. We empha-
size here how common uses of / in traditional physics can
be explained in terms of the geometric / of the Pauli alge-
bra. However, a more important difference between the
present contribution and Ref. 4 concerns the treatment and
significance of inverse elements. We show the involution of
“spatial reversal” to be proportional to the inverse for any
invertible element of the algebra, and in the product of an
element with its spatial reverse, we recognize the
Minkowski-space norm of a four-vector. This leads to a
natural formalism for relativistic phenomena: the Pauli al-
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gebra is able to provide a covariant description of physics
while maintaining the qualitative difference between time
and space variables in any given frame. Even in the quan-
tum Dirac theory, the usual results can be efficiently ob-
tained within the framework of the Pauli algebra. It is
therefore possible to avoid the introduction of a more gen-
eral geometric-algebra formulation, with its often unfamil-
iar products and its allowance for a noncommuting volume
element (which in the Dirac algebra has more in common
with a fifth dimension than with the imaginary /). Our
treatment stays close to the traditional vector and scalar
operations and, as a result, should be readily accessible to
the average physics reader.

Section II introduces the Pauli algebra, and Sec. III re-
lates the algebraic product of vectors to the usual dot and
cross products, and shows how the trivector element of the
algebra plays the role of i. Its geometrical interpretation is
discussed in the following section, and its role in rotations
and reflections is emphasized with examples in Sec. V.
Some traditional uses of i are best explained by looking at
the subalgebras of the Pauli algebra, which we do in Sec.
VI, and in Secs. VII and VIII we then study applications in
special relativity and electromagnetic theory. The paper
finishes by showing how the 7/ in quantum theory can be
associated with spin.

II. VECTOR ALGEBRA

The descrlptlon of motion in three-dimensional (Euclid-
ean) space R? requires many vectors: relative positions,
velocities, accelerations, forces, electric and magnetic
fields, and others are part and parcel of the familiar mer-
chandise of physics. Every vector of R® can be written as a
linear combination

a=dle, (1)

(the convention of summing over repeated indices is
adopted here) of the orthonormal basis vectors e, j=1,2,3:

ej-ek=8jk. (2)

Traditional vector notation in physics can be traced back
to J. Willard Gibbs (1839-1903) and Oliver Heaviside
(1850-1925);'# it relies on the rather restricted manipula-
tions of vectors required in a vector space with a Euclidean
inner product vector addition a+b, the dot or inner prod-
uct asb=a'b* ere,=|a| |b| cos 6, and multiplication Aa of
vectors a by scalars A. One additional product has been
added to the standard repertoire of vector calculations,
namely the cross product

aXb Glb leel, (3)

where €j; is the usual Levi-Civita symbol which is
+1( —1) if j, k, I is a cyclic (anticyclic) permutation of
1,2,3 and vanishes if any two of the indices are equal. Other
products of vectors are traditionally represented by tensors
of Cartesian components, in which, for example, compo-
nents of the cross product are elements of an antisymmet-
ric second-rank tensor @/b*—ba*. Of course the use of
components requires the specification, at least implicitly, of
an axis system and defeats some of the beauty of the
component-free Gibbsian vectors.

The manipulations defined in a vector space are quite
limited compared to the those available for scalars.
William Rowan Hamilton (1805-1865), in his develop-
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ment of quaternions,'® sought an algebra which would give
to vector computations much of the manipulative power
one has with real numbers. We follow here the somewhat
more general approach of William Kingdon Clifford
(1845-1879), who was able to unite the efforts of Hamil-
ton and the German mathematician Herman Grassmann
(1809-1877).

The essential ingredient missing from the vector calcu-
lations of Gibbs and Heaviside 1s an associative, invertible
product of vectors which is distributive over vector addi-
tion. Neither the dot nor the cross product by itself is
invertible, since knowing both a and ab (or both a and
aXb) does not allow one to determine b. Further, neither
product is associative. Let us postulate an associative, in-
vertible product, which for simplicity we indicate by ab,
and try to work out its properties. We will not assume the
product to be commutative: ab may not equal ba. It is
sufficient to find the relations for products of the three unit
basis vectors e; since those for linear combinations thereof
will then follow easily. Later, we can make the notation
component free.

It’s useful to anticipate some results. In  three-
dimensional space, we can divide elements into four geo-
metric classes: scalars (elements of zero dimensions), lines
(one-dimensional elements), surfaces (two-dimensional el-
ements), and volumes (three-dimensional elements). Di-
rected lines are, of course, just vectors. Algebraic products
of two vectors could contain information about the plane
in which the vectors lie and an area determined by them.
Products of three vectors could contain information about
the volume, say, of the parallelepiped whose edges are
given by the vectors.

III. ALGEBRAIC PRODUCTS OF VECTORS

To determine the basic rule for vector products, it suf-
fices to consider the product of a vector with itself. The
square of a real vector a cannot contain a vector part,
because the only direction singled out is that of a itself, but
a’=(—a)? so that there is no reason to choose a over —a.
Furthermore, , 10 plane or volume contammg a is uniquely
specified by a’. We must evidently choose a® to be a scalar,
and the obvious choice is

a’=dd'ep,=ara=dd. (4)

This constraint gives the basic multiplication rule for the
vector algebra. Since it holds for any vector components
&a¥, we can equate the factors multiplying da*(=a*e’):

ee,+exe;=25;. (5)

The product of any number of vectors is completely de-
termined by the rule (5). The product of two orthogonal
vectors is called a bivector and, as discussed below, gives
information about the plane in which the vectors lie. There
are just three linearly independent bivectors which can be
formed from products of the e;: e,e,, e,e;, and e;e;. In the
product of three orthonormal bas1s vectors, if any two of
the vectors are the same, the result is & the remaining one:

eeje;=e;= —ee,e; (6)

and so on. In three dimensions, the only triple products of
basis vectors which are not linear combinations of the basis
vectors themselves are permutations of the trivector
€,e,e3=1, which may be interpreted as the signed volume
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of the unit cube of sides e;, e,, e;. That’s it! That exhausts
the possible products of basis vectors. Any product of four
basis vectors of three-dimensional space must contain at
least two identical factors and can, with the help of (5), be
re-expressed as a product of two basis vectors. Similarly,
all higher-order products of the e; can be reduced to li-
near combinations of the 8  basis forms
{15 ey, €y, e3; €1e,, €263, e3¢5 M}

Note that the three distinct bivectors can be written as
products of the trivector i with a vector, for example

€1€,=1¢,€,€383=7)€3="7)€24€;-

More generally,

e — exe;=211€;x ). 7N
The vector ¢; k81 is called the (Hodge) dual of the bivector
ey Jj ;ék and is normal to the surface represented by the
bivector.'® Although the vectors and bivectors do not gen-
erally commute with each other, one can verify that the
trivector i does commute with all the basis forms in &, for
example by (5)

€171=@1€1€,6; = — €,€,€,€3=2,€,€3€|; =17€. (8)

Similarly, 7 commutes with any vector and hence with any
product of vectors. Furthermore,

2
N =e,e,63€,€,€3=€16,€18;=— 1. (9

In the vector algebra of three-dimensional space, the
trivector 17 has the same properties as the imagin z, and
we can therefore use the symbols mterchangeably 17—1
This is how the imaginary / arises in the Pauli algebra.'®

From products of three-dimensional vectors, we have
thus generated an eight-dimensional real vector space 7~
whose elements are real linear combinations of eight basis
forms in four subspaces:

one scalar (1€77),
three basis vectors (ej,e;,e3€77(),

three bivectors (ie,,iesie;e? ,),
and
the trivector (n=ie?";).

Since we can identify #";=i7"; and 7",=i7",, the eight-
dimensional real space ¥ =740 7@ 7", ® 7", can also
be considered a four-dimensional complex vector space.
Every element is then a complex linear combination of the
four basis elements {1,e;,e;,e;} of 7’g& 77;. The algebra of
real three-dimensional vectors thus generates a complex
four-dimensional space and provides a natural introduction
of complex numbers into the real world of physics.

By adding (5) and (7) we can also express the product
rule by

e, ="0+ i€ e, (10)

Readers may recognize this rule as a relation obeyed by the
2X 2 Pauli spin matrices
0 11
- 1). (11)

0 1 0 —i 1
91:(1 o)’ 92:(:‘ o)’ 93:(0

Indeed, the Pauli matrices provide a lowest-dimensional
faithful matrix representation of the algebra and give the
algebra its name: the Pauli algebra. The representation is
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realized simply by replacing every unit vector e, by the
corresponding matrix g,. Of course, many other represen-
tations are possible. The algebra is more general than any
one of them, and by avoiding any specific matrix represen-
tation, we can express the elements of the algebra in a
coordinate-free form, independent of any coordinate axes.
Thus our use of the term “Pauli algebra” refers to the
algebraic structure, the geometric algebra of three-
dimensional Euclidean space, and not to any particular
matrix representation.

IV. GEOMETRICAL SIGNIFICANCE

Thus any element p of the Pauli algebra & can be writ-
ten as the linear combinations

p=p'e,+q'ie,= (p'+ig")e, (12)

where for simplicity we have put e¢,=e;, k=1,2,3, and
e,=1. The association of the imaginary i with the volume
element of the vector algebra of three-dimensional space
lends geometrical meaning to imaginary numbers and vec-
tors, and the physical significance of (12) is clearer if we
cons1der p to be the sum p=p,+p+iq+igy of a scalar
po_p , a vector p=p-e;, a bivector or pseudovector iq
=iq’e;, and a trivector or pseudoscalar i igo=iq". These four
parts are distinguished by their behavior under rotation
and spatial inversion. Rotation affects both vectors and
pseudovectors in the same way and leaves scalars and pseu-
doscalars invariant. Spatial inversion, on the other hand,
replaces the unit vectors e; by —e; and thus changes /
=e,e,¢; to —i; it consequently changes right-handed co-
ordinate systems into left-handed ones and reverses the
sign of vectors and pseudoscalars but not of scalars and
pseudovectors.

Scalars include common physical quantities like charge,
mass, length, density, time, and energy whlch are un-
changed by either rotations or inversions.' Relative posi-
tions, momenta, velocities, forces, acceleration, and electric
fields are examples of vectors. Pseudovectors in & are
bivectors and represent planes, such as planes of rotation
and planes of reflection. Cross products of vectors, such as
angular momenta and magnetic fields, are the duals of
pseudovectors: they point in a direction normal to the sur-
face represented by the pseudovector. The dual vector to a
plane of rotation lies along the axis of rotation. We call the
dual to a bivector (in three-dimensional space) an axial
vector.”® Pseudoscalars represent signed volumes in three-
dimensional space. For example, the dot product of the
average velocity (a vector) in m/s at some position down
a pipe of a confined ﬁuld with the cross-sectional area (a
pseudovector) in m? of the pipe at that posmon gives a
pseudoscalar representing the volume flow in m 3s.

V. EXAMPLES

A. Dot and cross products

Consider some simple examples. (These and many oth-
ers have been presented in detail elsewhere; see especially
Ref. 5.) Let a, b be any two vectors. From the general
multiplication rule (10) of the algebra, it follows that
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axb

bxa

Fig. 1. The bivectors iaXbh and /X a= —iaXb represent plane areas of
opposite orientation whose edges are parallel to the vectors a and b. In
three dimensions, they are also pseudovectors and their duals are axial
vectors aXb and bXa normal to the plane. The orientation of the plane
is related to the sense of circulation of & and b around its periphery.

ab=ab+iaXb
=|a| |b]| (cos 0+i8 sin 6)
=|a| |b|exp(i9), (13)

where 0 is the angle from a to b and the direction @ (the
“hat” indicates a unit vector) is parallel to aXb. The sca-
lar part of the product is the dot product, which is sym-
metric in the two factors a and b:

a‘b=(ab-+ba)/2. (14)

The bivector or pseudovector part gives the orientation of
the plane formed by a and b and its magnitude is equal to
the area of the parallelogram bordered by a and b (see Fig.
1). It is the antisymmetric part of the product:

iaXb=(ab—ba)/2. (15)

The vector dual to the plane is the cross product aXb.
From (13), parallel vectors commute whereas perpendic-
ular ones anticommute:

a|| b<>ab=ba,

al boab+ba=0. (16)

B. Algebraic functions of vectors

The exponential expression in (13) is meaningful be-
cause in the vector algebra we can easily calculate any

power of a vector, and thus any analytic function f of it:

|a]”,
" ||al|"a, n odd,

fa)=f,(la])+af_(|a]), (17)

where f . (x) =3[ f(x) = f( —x)] is the even or odd part of
S(x). Such a function is an element of the algebra with, in
general, both scalar and vector parts, both of which may be
complex. The scalar part is the even part of the function,
and the vector part, which is parallel to the vector argu-
ment, is the odd part.?!

Functions of vectors are often useful even when the
function cannot be expanded in a series of positive powers.
An important example is the inverse a—' of a vector. Since
a’ is a scalar, the vector

a~'=a/a?

n even,
n

(18)
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is evidently the inverse of a. As long as a2=£0, relation (17)
can be extended to negative integer power.

C. Rotations in a plane

The physical significance of ﬁf=exp(i9) becomes clear
if we multiply it from the left by any vector r lying in the
i0 plane:

r exp(if) =exp(—iO)r
={(cos 0—i0 sin Or

=F COS 0+5Xr sin 6. (19)

The result describes the vector r after a rotation: one can
regard @ ab=exp(i@) as the operator which rotates any vec;
tor in the plane i@ by the angle 6 which separatgs fand b
in the plane. As a special case, it rotates @ into b:

aexp(if) =ﬁ§b=b, (20)

but qore generally, it rotates any vector in the plane of @
and b by 6.

The axial vector dual to the plane of rotation 9is B, the
axis of rotation. Successive rotations about the same axis
commuie and ,combine by adding the angles:
exp(i6,68)exp(i0,0) =exp[i(6,+6,)0]. The usual trigono-
metric identities for the sine and cosine of a sum of angles
is obtained by expanding both sides of this result as in
(19). This natural algebraic formalism for rotating vectors
in a plane should look familiar, since it is closely related to
the Wessel-Argand diagrams of complex scalars, which is
frequently used to describe such rotations. The precise re-
lationship between the two formalisms will be established
in the next section, but first we want to show how the
algebraic formalism, because it contains information about
the rotation axis and the orientation of the rotation plane,
can be extended to three-dimensional rotations.

D. Rotations in three dimensions

If the vector r does not lie in the rotation plane ié,
then we rotate only that part r; =r—r) perpendicular to 6:

(21)

This is the general algebraic expression for rotations in
three-dimensional space. Any three-dimensional rotation
can be represented by elements *exp(—i6/2) of the
group SU(2). The product of any two rotations is another
rotation, whose angle and rotation -axis can be found di-
rectly by expanding the exponentials as in (19). The non-
commutivity of rotations about different axes is seen to be
a result of the noncommutivity of vectors in different di-
rections.

r_,r"_i_exp( —i0)l‘l=eXP( —10/2)1' exp(iG/Z).

E. Rotating frames

The algebraic formalism for rotations is well suited to
handling transformations to and from rotating systems,
where @=wt. Thus if r is any vector in a frame rotating at
constant angular velocity o, the corresponding vector in
the laboratory frame is

r'=exp(—iwt/2)r exp(iwt/2) (22)

and its time derivative is
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I'=exp(—iwt/2)[ — (i/2) [o,r] +1]exp(iwt/2)

=exp(—iot/2) (o Xr+r)exp(int/2). (23)

Although this relation is traditionally written without the
explicit rotation operators, their presence accurately de-
scribes the relation between the frames and is essential for
unambiguous treatments. Higher-order derivatives are sim-
ilarly calculated.

The algebra of rotations can also give concrete descrip-
tions of, say, cycloid motion:

r(z) =Vt+exp(—iot)ry, (24)

where the constant vectors V and r lie in the plane iw. The
term exp(—iwmt)r, describes uniform circular motion
about the axis o, and V1 gives the position of the axis. Such
motion, for example, solves the Lorentz-force equation for
a charge in crossed electric and magnetic fields; V is then
the drift velocity and e the angular cyclotron frequency.

F. Reflection in planes

A vector r is reflected in a plane /a by the simple trans-
formation

(25)

The last equality follows directly from (16) when r is split
into parts parallel and perpendicular to 3. Because i@
=exp(ima/2), the reflection (25) is seen to be equivalent
to a 180° rotation in the plane / [see (21)] together with an
inversion r— —r. N

Two successive reflections in planes /2 and ib

r— b(ia)r (i) b= (ba)r(ab) =exp(—if)r exp(if)
(26)

is equivalent to a rotation by 26, twice the angle between
the two planes (see Secs. V C and D) about an axis along
the intersection of the planes. The combination of three
reflections in orthogonal planes is easily seen to be the
same as spatial inversion. For example, successive reflec-
tions of r in the ie;, fe,, and Je; planes transforms r into

r— (/a)r(/a) = —ara=r—2r<aa.

(ie;) (iey) (ieg)r(iey) (ie;) (ie3) = —eje e rejee3= —r,
(27

since e;e,e;=i= —e;e,e,. This, of course, is the principle
of the corner-cube reflector.

G. Angular momentum

A further example illustrating the use of planes in alge-
braic products is the orbital angular momentum L, where
iL is just the pseudovector part of the product rp:

iL=(rp—pr)/2=irXp. (28)

Now, L is the axial vector normal to every vector in the
orbital plane, and because of the geometrical significance of
i, iL is the bivector representing the orbital plane itself. Its
magnitude is the area of the parallelogram formed by r and
p and hence 2m times the rate at which the orbital area is
swept out. Of course it is just this relationship that con-
nects the conservation of angular momentum to Kepler’s
second law.

The product abe=(ab)c=a(be) of three vectors has
both a vector and a trivector part, and in three dimensions
the trivector is also a pseudoscalar iaXb-c which gives the
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axb

o

iaxb- ¢

Fig. 2. The oriented volume of the parallelepiped whose edges are parallel
to vectors a, b, ¢ is given by the trivector part of abe, and in three
dimensions this trivector is the pseudoscalar /aXb-c, whose magnitude
gives the numerical size of the volume. In the figure, the aXbec is negative
because aXb is roughly opposite to c.

volume of the })arallelepiped with edges parallel to a,b,c
(see Fig. 2).%* Since the dot product of vectors or
pseudovectors is symmetric with respect to interchange of
the two factors [see (14)], (ab)c,c(ab) = (ca)b, and b(ca)
= (bc)a all have the same pseudoscalar parts. The rela-
tions

axXbec=cXab=bXca=abXc

follow immediately.

Note that in contrast to the field of real numbers, the
algebra of vectors contains a noncommutative product
(13) as well as some zero divisors (divisors or factors of
zero): nonzero elements whose product vanishes, for ex-
ample (1+e3)(1—e;)=0. Therefore, the vectors do not
form a field, and one must pay attention to the order of
vector factors and be careful not to divide by a zero divisor.
It is precisely these added complications which endow the
Pauli algebra & with its rich mathematical structure ca-
pable of describing a wealth of physical phenomena.

VI. STRUCTURE OF Z

So far, we have seen how complex scalars and vectors
arise naturally in the vector algebra & of three-
dimensional space. The general element (12) of & con-
tains both. As Hestenes®> has emphasized, the imaginary
carries important geometrical information in the algebra.
We still need to show how this geometrical i is related to
the many occurrences of / in traditional formulations of
physics. Some of the relations are most clearly seen if the
structure of # is understood. Thus before we investigate
further examples of / in relativity, electromagnetism, and
quantum theory, we should pause to look at the shape,
especially the subalgebras and involutory transformations
of #.

There are three basic involutory transformations p—p’
in Z which take elements into other elements. They are
said to be involutory because when applied a second time,
they return the elements to their original identities p’— p.
Spatial inversion, mentioned in Sec. IV, is such a transfor-
mation. Reversal, effected by reversing the order of multi-
plication of all vectors, is another. Because it simply
changes the sign of the pseudoscalar /=e,e,e;, it is also
referred to as Hermitean conjugation and is denoted by 2
dagger: p—p™. If both operations of spatial inversion and
reversal are performed, the result is spatial reversal; it
amounts to changing the signs of vector and pseudovector
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Table I. The basic involutory transformations of Z.

Operation Action Summary
Identity P—P=pPotp-+ig+ig ++++
Spatial inversion p-pt =py—p+ig—igy +— =
Reversal =Hermitean conj p-pt=py+p—iq—ig, e
Spatial reversal P—DP=po—p—iq+igg 4——4

parts and is denoted by a bar: p—p. Table I defines the
action of these transformations on an arbitrary element p
and summarizes the results by specifying the relative signs
of the scalar, vector, blvector, and trivector parts of the
transformed elements.??

An element p is said to be even iff (if and only if) p=p™;
it is a (complex) scalar (scalar and/or pseudoscalar) iff
p=p; and it is real iff p=p™. The matrix representation of
any real element is Hermitean. From the effect of these
transformations on elements, it is seen that when they are
combined, the order of their application is immaterial.

There are several important subalgebras of the Pauli al-
gebra 2. One is the center Z°=7"40 7y of P, that is,
the part of % which commutes with all elements. The
inverse ¢! of any nonzero element ce Z° is identified by
noting that the product cc* is a (real) scalar. Thus ¢~ -1
=c%/(cc™). Because the elements of Z°¢ all commute and
every nonzero element has an inverse, the subalgebra Z°¢is
said to be a field; indeed it is the field C of complex num-
bers. A closely related commutative subalgebra can be
formed from the vectors in a plane by multiplying them by
one of the unit vectors in that plane. Consider for example
the real vector r=xe;+ye, in the plane ie;. Multiplying
each vector r by e; we obtain e;r=x+y(ie;), a real linear
combination of the basis elements {1,ie;}. The set of such
elements is closed under addition and multiplication and
forms a subalgebra with a one-to-one linear correspon-
dence to the complex field C.2* This correspondence _]ustl-
fies the common use of C not only to represent positions in
a plane with respect to a given coordinate system, but also
to describe rotations in the plane Since r’=(e;r)* (e;r)
and 2rr'=(e;r) " (e;r')+(e;r') T (e;r) it also explains
why the square of a vector is represented by z*z and why
the dot product of two vectors takes the form R{z*z'}. Of
course & has the advantage of giving a coordinate-free
representation of positions and rotations in three dimen-
sions.

Because of the correspondence between positions in a
plane and the field of complex numbers, uniform circular
motion (see Sec. V D) is described in C by the phase factor
exp(—iwt). Since the simple harmonic motion of oscilla-
tors is the projection of uniform circular motion, it is only
a small step to the use of such factors in oscillating circuits.
Including an exponential decay exp(—7¢) of the amplitude
leads one to speak of “complex (angular) frequencies” w
—iy.

Another subalgebra is the even Pauli algebra Z#*
= 7"g® 7", which consists of all scalars and bivectors of
Z . Since the product of two bivectors is a linear combina-
tion of a scalar and a bivector, Z T is closed under multi-
plication as well as under addition and thus does indeed
form a subalgebra of #. It is isomorphic to Hamilton’s
quaternion algebra 7% which is a division algebra because it
contains no zero divisors.
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VII. SPECIAL RELATIVITY

In special relativity, the four-vector is a basic covariant
entity, and products of four-vectors give other covariant
quantities. Many three-dimensional vectors, such as posi-
tion and momentum, arise as the spatial parts of four-
vectors in Minkowski space-time. Others, like angular mo-
mentum and electric and magnetic fields, result from
products of four-vectors. We seek a covariant formulation
of relativity which treats four-vectors and their products as
single entities and Wthh can avoid, as the Pauli algebra
does for vectors in R>, cumbersome component notation.
While the notation must be covariant, it should also main-
tain close ties to physical measurements. Although space
and time components are mixed by Lorentz transforma-
tions, the time dimension is qualitatively distinct from spa-
tial dimensions in any given frame: no observer would con-
fuse the two in measurements performed in his laboratory.
Ideally our notation, while fully covariant, should allow a
qualitative distinction between time and space in any given
frame. We shall see below how these apparently contradic-
tory goals of covariance, on the one hand, and of the dis-
tinction of space and time in any given frame, on the other,
can be reconciled in the Pauli algebra.

A natural way to extend the advantages of a multivector
algebra to-special relativity is to use the geometrlc algebra
based on Minkowski space-time instead of on R*. Consid-
erable work along these lines has been published by
Hestenes, Salingaros, and others, and the geometric alge-
bra of space-time has a familiar representation based on the
Dirac gamma matrices.>* This multivector algebra,
known also as the Dirac algebra, has the somewhat awk-
ward feature that the volume element 7% of the algebra
anticommutes with vectors and pseudovectors and so is
obviously distinct from the usual i.

However, as surprising as it may seem, there is no need
to leave the relatively simple Pauli algebra in order to han-
dle problems in relativity. We saw in Sec. III that the
algebra of real three-dimensional vectors generates a com-
plex four-dimensional space. Now we shall show that the
Minkowski metric arises naturally in this space when one
finds the multiplicative inverse of a general Pauli element.

An element p has an inverse if there exists another ele-
ment, say p' whose product with p is a nonvanishing com-

plex scalar pp = pp' = p'p=~0. Indeed, the inverse is then
simply p'~'=p'/(pp’). The square of any real vector p is a
scalar, so that as seen in Sec. V B, the inverse of p is
p~'=p/(p?). However, the square of a general element P
does not necessarily belong to Z°=C. Only the product pp
is always its own spatial reverse and is therefore a complex
scalar. Therefore, as long as pp does not vanish, p has the
inverse ,

p~'=p/(pp). (29)

Evidently the (complex) scalar pp plays the same role
for an element p of the comglex four-dimensional vector
space of Z that the scalar r* plays for a vector r in real
three-dimensional space: we will refer to pp as the norm of
p. If the element p=p,+p is identified with the real four-
vector (po,p), its norm

pp=(po+p) (Po—p) =p3— (30)

is also real, and its form gives the Minkowski metric of the
four-dimensional space. The scalar part of p is the zero or
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“time” component of the four-vector (here we use units
with the speed of light c=1). Four-vectors with a vanish-
ing norm are said to be light-like: pi=p®. They are seen to
be zero divisors and hence noninvertible elements of the
algebra. Transformations which leave pp invariant for any
four-vector p are called Lorentz transformations. Spatial
inversion is an example of an improper Lorentz transfor-
mation. Any scalar invariant under Lorentz transforma-
tions is said to be a Lorentz scalar.

Lorentz transformations that can be realized physically
by a sequence of infinitesimal transformations are called
restricted Lorentz transformations (proper and orthochro-
nous); they are represented by a simple generalization of
rotations (21):

p—LpL*, 31)
where L is any unimodular element: LL=1, which can be
written as the product L=exp(w/2)exp(—i6/ 2).26 When
0=0, L=exp(w/2) and is real; its application (31) gives a
boost with the boost parameter equal to the vector w.
When w=0, then L rotates the four-vector by the angle 6
about the axis 8. As before (see 21), the rotation plane is
6. We thus see the familiar relation that a boost takes the
form of an imaginary rotation, but now there is added
physical meaning to the fact that the rotation parameter /6
is a bivector whereas the boost parameter w is a vector.

As a simple example, consider the transformation of the
four-velocity # from its rest-frame value u,=1:

u=Lu LT =¢". (32)
The scalar and vector parts of this relation provide the
usual relations between the boost parameter w and the
four-velocity # achieved by the boost: 4=y =cosh|w| and
u=yv=Ww sinh|w| The resultant four-velocity  is inde-
pendent of the initial rotation angle 8 and can be identified
with the square of the boost element exp(w/2). The appli-
cation of two successive boosts gives the rule for velocity
composition:

U=exp(w'/2)u exp(w'/2) =u'(u0+u|| Y+u;, (33)

where u) and u, are the 1parts of u parallel and perpendic--

ular to o', respectively.!! The result is particularly simple

when the boost parameters w and w’ are parallel: U=u"u.
The composition of parallel four-velocities is thus given not
by their sum but by their product. We can expand the
relation into scalar and vector parts Uy=T=¢y(1+4v'+v)
and U=I'V=9'y(v+V') in order to obtain the traditional
form of the relationship. It is not much more difficult to
expand the noncollinear case (33). Since the product of
real elements is real only if the elements commute, the
composition of boosts is a pure boost only if the boost
directions are collinear. Otherwise, the product is the com-
bination of a boost and a rotation.!!

The four-vectors, like p or u, transform as covariant
elements as in Eq. (31) but may, in any given frame, be
expanded into scalar (time) and vector (spatial) parts.
The distinction between scalars and vectors mirrors the
qualitative difference between time and space components.
In this way, the Pauli algebra is able to accommodate both
covariance and the distinctiveness of space and time com-
ponents in any given frame. Further examples can be found
in Refs. 3, 12, and 27.
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VIII. ELECTROMAGNETIC THEORY

The transformation properties of products of four-
vectors are easily found from the four-vector transforma-
tion (31) and the unimodularity of L. An important ex-
ample is d4, where d=3d/3+—V is the four-vector
differential operator and A=¢-+A is the four-potential.
Let us first define a generalization of the vector dot prod-
uct. If a=ate,=ay+a and b=>b"e,=by+b are any two
elements of ﬁ",t where the components a*, b* may be com-
plex, then the dot product is simply the complex scalar
part of the product ab:

a-b=(ab-+ab)/2=azhy+ab. (34)

Products of four-vectors transform simply if vectors are
alternated with spatially reversed vectors. The product d4
transforms under restricted Lorentz transformations as

A—LIL* (LAL*)=LAL*L*AL=L3AL.  (35)
Its scalar part is a Lorentz scalar:
9A—LIAL=3ALL=3"A. (36)

The remaining vector plus bivector together is called a
six-vector and although it transforms like any vector under
rotations, its characteristic boost transformation is seen to
be distinct.

The scalar, vector, pseudovector (bivector), and pseu-
doscalar (trivector) forms of Z, which belong to the four
subspaces ¥, #7,77,,7";, respectively, can thus be com-
bined to make various covariant quantities:

Lorentz scalar €7,

four-vector €70 7,
six-vector €107,
pseudo-four-vector eV, 07,

Lorentz pseudoscalar €77;.

The product of 2 four-vectors is generally a Lorentz scalar
plus a six-vector. Similarly, the product of 3 four-vectors or
of a four-vector and a six-vector can be shown to be a
four-vector plus a pseudo four-vector, whereas the product
of 2 six-vectors is a Lorentz scalar plus a Lorentz pseudo-
scalar plus another six-vector.

By writing out the individual terms, one sees that the
six-vector part of d4 gives the electromagnetic field:

_ JA
04—3-A=— (E+V¢) +iVXA=E+B=F. (37)

The electric field E is a vector but the magnetic field B
enters as a pseudovector /B, emphasizing the role of the
plane /B perpendicular to B. The scalar, vector, pseudovec-
tor, and pseudoscalar parts of the single field equation

IF=47Kj (38)

are exactly Maxwell’s usual four microscopic equations:

d JE
(—+V)(E+z’B)=V-E+ (——va)

ar at
JB
+i(—+VxE) +iV-B
ot
=47K(p—j). (39)
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Here, j=p+j is the current density and K is a constant
depending on units (=1 in Gaussian units, = 1/4me; in SI
units, and =1/4r in Heaviside-Lorentz units). Magnetlc
monopoles can be added by making j and 4 complex.

The general plane-wave solution to the wave equation
(38) in source-free space ( j=0) is'?

F(x) =% Ef (k-x) =5 > Grimyen, (40)
where k=w-+k_is a constant propagatlon four-vector
which satisfies kl;\—co k =0, é’ is any unit vector in the
plane normal to k, n—kxé’, and f is any scalar function.
Rotations of F about k are equivalent to multiplications by
a phase factor:

F—exp(—igk/2)F exp(ipk/2)

=exp(—ipk)F=exp( —ig)F, (41)

where we noted that AF=w(1 —-/l;)F=O. The phase factor
belongs to the group U(1) of “duality rotations,” which
mix the vector and pseudovector parts of a six-vector, in
this case the electric and magnetic fields. Thus if the func-
tion f(k-x) varies as exp(Fik-x) where k' x=wt—k-x,
then at fixed x, the phase of F advances at the rate *o,
which is equivalent to a rotation at the angular rate o
about +k. The plane-wave solution then represents a cir-
cularly polarized wave. On the other hand, if the phase of
f(k-x) is constant, the solution is plane polarized.

A similar complex form is familiar to most physicists;
one usually takes the real part to represent the electric field
of a circularly polarized plane wave. The phase of f(k-x)
then gives the direction of E in the plane k. In Z, the
polarization is not necessarily circular, and the real and
imaginary parts of F have definite meaning: the real part is
a vector and hence the electric field, and the imaginary part
is a pseudovector identified with 7 times the magnetic field.
Further examples may be found in Refs. 12 and 29.

IX. QUANTUM THEORY AND SPINORS

The imaginary / seems to be used in quantum theory in
a fundamentally new way. Before, when terms with / ap-
peared, we could separate the equations into real and imag-
inary parts, or into scalar, vector, pseudovector, and pseu-
doscalar parts. However, the basic equations

[ px’x] = lﬁ’
ifidpp=Hy, (42)

seem to make no sense when separated in the same way.>°
One may question the very structure of these equations.
Thus p, and x are both spatial components of four-vectors;
how can their commutator be a pseudoscalar? One would
expect it to contain only scalar and six-vector parts. Fur-
thermore, both 3, and H are time components of four-
vectors; their ratio should be a scalar, not a pseudoscalar or
volume element. The i from quantum operators and com-
mutation relations seems to be distinct from the 7 for the
volume element of geometric algebras or, equivalently,
from that of the duality transformations of electromagne-
tism.

The resolution of this puzzle lies in the properties of the
wave function 1. The operator equations (42) only have
physical meaning when applied to such a wave function. In
relativistic quantum theory, fermion wave functions v are
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constructed from 2 two-component spinor functions A.
=A(1=%e;)/2 which together form a spinor A=A +A_
in & that represents the Lorentz transformation of the
particle from its rest frame to the observer’s frame.’!"
Spinors are more fundamental objects than four- or six-
vectors in that four- and six-vectors can be constructed
from spinors but not vice versa. If A; and A, are two Lor-
entz spinors in &, they are defined to transform under
Lorentz transformations according to the simple rule

If e is any invariant quantity, the spinors may be combined
into the bilinear covariants AeAy = Aet Af to form four-
vectors (+ 31gn) and pseudo-four-vectors (—sign), and
into AjeA; '+ A A ! to form complex scalars (+ sign)
and six-vectors ( — sign), since these covariant classes are
defined by their behavior under Lorentz transformations,
spatial reversal, and Hermitean conjugation. The bilinear
covariant AAJr is the probablllty current dens1ty, whereas
—iAe;A™Y, where e; is a fixed unit vector in the fermion
rest frame, is the spin six-vector S. The two-component
spinors A, may be seen to be eigenelements of S:

SA:¢:=:FI.A:¢:. (44)

In the traditional formulation of the Dirac theory, the
Dirac wave function ¥ combines components of A_ with
those of (A )*. As a consequence, multiplying ¢ by a
phase factor exp(zG) is equivalent to multiplying A, by
exp(Fi6) and hence to rotating the system by an angle 26
in the plane of the six-vector S about the spin direction.
Such a “rotation” generally includes a boost component
for a moving particle; however, it is equivalent to a pure
rotation of its rest frame by 260e;. Thus the time depen-
dence exp(—iEt/#i) of a stationary state of eigenenergy E
corresponds to the rotation of the system about its spin axis
at the angular frequency 2E/7 equal, for a free particle, to
the Zitterbewegung frequency.

Expressing the basic quantum relations (42) in terms of
the spinor A, we find

[Prx]A=—7SA
#3,(SA)=HA.

The quantum use of i in relations (42) has been replaced
by the spin Sin (45), where S is a six-vector which reduces
to a pseudovector (representing a spatial plane) in the rest
frame. In these forms, since SA is another spinor, the equa-
tions make structural sense. It thus appears that the i in the
quantum theory of fermions is associated with the spin of
the particle.

X. SUMMARY

In seeking a better understanding of the success of math-
ematical abstraction in physics and in particular of the
wide applicability of imaginary numbers in theories of
physical phenomena, we found that the algebra of real
three-dimensional vectors generates a complex four-
dimensional vector space with a Minkowski metric. The
algebra, known as the Pauli algebra or the geometric alge-
bra of three-dimensional space, thereby provides both a
source of complex numbers in physics and also a covariant
formulation of relativistic phenomena, one, however,
which is able to maintain the qualitative distinction be-
tween time and space dimensions in any one frame. The
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imaginary 7 in the algebra carries geometric meaning: when
multiplied by a scalar, it is a trivector or a pseudoscalar
which represents a volume element, whereas when multi-
plied by a vector it is a bivector or pseudovector which
represents a plane. We have been able to unify many of the
varied uses of / in physics and to give them physical inter-
pretations by relating them to the geometrical i of the Pauli
algebra. The i in quantum expressions for fermions can be
understood within the framework of the Pauli algebra as
representing the spin six-vector.
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A solid-state low-voltage Tesla coil demonstrator
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A low-voltage demonstration Tesla coil using a solid-state photovoltaic relay to replace the
conventional spark gap has been analyzed and then built. This relay incorporates an isolated
LED to illuminate a silicon photovoltaic stack which drives a bidirectional FET. Component
values for the inductances and capacitances have been determined theoretically from measured
parameters. Computer simulation by integrating the coupled circuit equations shows excellent
agreement with oscilloscope traces. Energy transfer between the primary and secondary circuits
is demonstrated, along with continuous secondary oscillations after the primary circuit is
interrupted. This low-voltage design is easier to build and diagnose than high-voltage Tesla coils.

I. INTRODUCTION

Nikola Tesla invented the Tesla coil late in the nine-
teenth century, exploring many hlgh-power variations in
his Colorado Springs laboratory.! They were all basically
air-cored high-frequency transformers, generating very
high voltages. Many of his experiments were complicated,
using large coils made with heavy copper wires to conduct
very high currents. His high-voltage capacitors used hun-
dreds of salt water-filled Leyden jars made from the local
Manitou Springs mineral water bottling plant. Tesla doc-
umented his achievements with multiple-exposure photo-
graphs which show his small wooden building filled with
curved sparks up to 40 m in length. Using spark length is
how Tesla often diagnosed his experiments.

Tesla’s ultimate goal was to generate high enough volt-
ages that he could transmit useful electrical power freely
through the atmosphere One contemporary account
claimed he succeeded in sending enough power to energize
a bank of light bulbs 40 km away.” However, he never
completed his final and largest experiment on Long Island,
New York, which he designed inside a 60-m-high wooden
tower. Although lack of funding was the primary reason
the tower was torn down, in the light of today’s knowledge,
it never would have succeeded in the manner he envi-
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sioned. While Tesla was advanced for his time, he didn’t
have electronic diagnostic tools to study his experiments.

Even though Tesla’s grandiose plans would not have
worked, we remain fascinated with high-voltage Tesla
coils. Generating fiery arcs and lighting fluorescent tubes at
a distance are always exciting demonstrations. In the last
60 years, instructions for building high- voltage Tesla coils
appeared occasionally in popular magazines, ]oumals,
newsletters, and books.>* A useful instrument in many
physics laboratories is the hand-held Tesla coil used to
excite gas discharges and find leaks in vacuum systems.
There has also been some interest in using very large Tesla
coils to test military aircraft with simulated lightning,'*
and using smaller coils to generate electron beams.'*> While
any of these Tesla coils can be experimental subjects, de-
tailed measurements to compare with theoretical predic-
tions requires sophisticated equipment to deal with high
voltages.

A conventional Tesla coil consists of tuned primary and
secondary circuits. An interrupter in the primary circuit
stimulates oscillations from the charge stored in a large
capacitor. The primary circuit interrupter design is critical
to maximize power transfer to the secondary circuit. High-
power Tesla coils use variations on rotating spark gaps to
extinguish the high-voltage spark,'® a technique that hasn’t
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