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The shape function of a laminar liquid jet issuing from a circular orifice and falling vertically in air

under gravity is analyzed. The diameter of the jet is observed to decrease with the axial distance

from the nozzle. The governing equation for variation of the jet radius with the axial coordinate is

derived from a modified Bernoulli’s law, including the interfacial energy density and viscous

losses. The analytical solution found in terms of dimensionless group numbers agrees well with

experimental data. VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4819196]

I. INTRODUCTION

When a fluid pours from an outlet into the air, it forms a
free-falling stable jet that accelerates, stretches, and narrows
under the influence of gravity.1 The jet flow behavior is of
considerable interest in fluid mechanics and engineering
practice and has found a wide variety of applications such as
the sol-gel process in the production of small fluid particles,
the spinning processes in fabrication of polymer fibers, and
biomedical devices. Recently, a liquid microjet has been pro-
duced2 that can be used in spacecraft propulsion, fuel injec-
tion, mass spectroscopy, and ink-jet printing.

The key challenge when analyzing a jet flow is to find the
jet shape function (JSF);3–8 that is, the relationship between
the jet radius r and the axial distance z from the exit orifice.
For laminar flow of an isothermal liquid with a density q,
issuing from a circular orifice of radius R0 with exit velocity
t0 in a gravitational field g, dimensional analysis predicts the
following functional dependence for the JSF:

~z ¼ f ð~r; Fr;We;ReÞ: (1)

Here, ~z ¼ z=R0 and ~r ¼ ~z=R0 are the reduced jet length and
jet radius, respectively, and the key dimensionless group pa-
rameters in the problem are the Froude number ðFrÞ, the
Weber number ðWeÞ and the Reynolds number ðReÞ, given
by

Fr ¼ t2
0

2R0g
; We ¼ 2R0qt2

0

c
; Re ¼ 2R0qt0

g
: (2)

These quantities represent, respectively, the relative effects
of gravity ðgÞ, surface tension ðcÞ, and viscosity ðgÞ in com-
parison to inertia, with each defined to be large when inertial
effects are comparatively large.

Neglecting the surface tension effect, Clarke9 derived an
analytical JSF for viscous fluids in terms of the Airy func-
tion. However, his JSF is valid only for high Re because at
low Re the effect of the surface tension becomes more signif-
icant than the viscosity10 and cannot be ignored.11 Adachi12

analyzed the effects of the fluid viscosity and surface tension
in the asymptotic regions of high and low Reynolds number.
No analytical equation for the JSF over a wide range of all
three dimensionless group numbers is known. For inviscid

fluids (the limit of large Re but still laminar flow), an analyti-
cal form of JSF proposed by many authors can be summar-
ized as13

~z ¼ Fr
1

~r4
� m

� �
� n

Bo

1

~r
� 1

� �
; (3)

where the first term is due to gravity while the second is the
surface tension term due to the curvature of the liquid-air jet
surface. Here Bo ¼We=Fr ¼ 4R2

0qg=c is the Bond number,
characterizing the relative effect of gravity with respect to
surface tension, while m and n are parameters of the model.
According to Kurabayashi,5 n ¼ 8, whereas the slenderness
approximation used by Anno6 yelds n ¼ 4. For n ¼ 0 and
large Bond numbers, Eq. (3) reduces to the well-known
Weisbach equation14

~z ¼ Fr
1

~r4
� 1

� �
: (4)

The effects of surface tension and viscosity on the form of
the stationary jet are active research topics15–17 and not yet
fully understood. In this paper, we develop an analytical
approach based on energy considerations to derive the gov-
erning differential equation for the jet radius as a function of
axial position. We formulate a modified Bernoulli equation18

for a free-falling jet that includes the jet interfacial energy
density and losses due to the fluid viscosity. An analytical
equation for the JSF derived in terms of the dimensionless
group numbers is compared with experimental observations,
and good agreement is obtained.

II. FORMULATION OF THE PROBLEM

Consider isothermal, laminar flow of an incompressible
Newtonian fluid with viscosity g, surface tension c, and den-
sity q, issuing downward from a circular orifice of radius R0

into the air with initial velocity t0 and falling in a gravitational
field gẑ (z being measured vertically downward) in the form
of an axisymmetric jet narrowing downward (see Fig. 1).

For this jet flow, a modifed Bernoulli-type equation18 along
the streamline, including energy losses due to fluid viscosity19

and free surface energy of the jet, can be written in the form
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Pþ a
2
qt2 þ qgzþ c

@A

@V

� �
þ wlos ¼ constant: (5)

Here P is the mechanical pressure and t is the velocity aver-
aged over the jet cross section. The coefficient a accounts for
the velocity profile distribution:20 for a uniform profile a ¼ 1
while for a nonuniform profile a > 1; for laminar flow with a
parabolic velocity profile a ¼ 2. The term qgz is the hydro-
static pressure and cð@A=@VÞ represents the jet interfacial
energy density.18 To understand the physical meaning of the
latter term, consider a fixed volume element of the liquid dV
moving along the streamline through the orifice. The increase
in the interfacial surface energy of the jet associated with
this volume element is cdA, where dA is the increase in the
free surface area of the jet, and cðdA=dVÞ will be the density
of the interfacial surface energy. Finally, the term wlos in Eq.
(5) denotes the dissipation energy density due to the viscous
resistance.

To estimate the surface tension term, notice that the deriv-
ative @A=@V can be written in terms of two components, one
being tangential and the other normal to the jet-air interface
and can be expressed as

@A

@V
¼ @A

@z

� �
@z

@V

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Tangential

þ @A

@r

� �
@r

@V

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Normal

: (6)

For a cylindrical jet segment of volume dV ¼ pr2dz and free
surface dA ¼ 2prdz, we find that ð@A=@zÞð@z=@VÞ ¼ 2=r
and ð@A=@rÞð@r=@VÞ ¼ 1=r, where 2=r is due to formation

of a fluid-air interface and 1=r accounts for its curvature. The
physical meaning of these two effects can be clarified by con-
sidering the corresponding values of the free energies.
Whereas Vcð@A=@zÞð@z=@VÞ ¼ 2prcdz is the interfacial sur-
face energy, the value Vcð@A=@rÞð@r=@VÞ gives VDP
ðDP ¼ c=rÞ, the excess free energy due to the pressure jump
across the interface. These two effects have to be considered
together, and therefore the surface tension term in Eq. (5) is

cð@A=@VÞ ¼ 3c=r: (7)

We apply Eq. (5) for two arbitrarily chosen jet cross sec-
tions at points z1 and z2, taking into account Eq. (7) and the
fact that P1;ð2Þ is the atmospheric pressure, to obtain

a
2

qt2
1 � qgz1 þ

3c
r1

¼ a
2

qt2
2 � qgz2 þ

3c
r2

þ Dwlos; (8)

where r1;ð2Þ is the jet radius at the chosen points 1 and 2, and
Dwlos is associated with the head pressure loss across the
region l ¼ z2 � z1 due to the viscous resistance.

To calculate Dwlos, the Poiseuille equation for viscous
flow in a pipe cannot strictly be applied because of the steep
change of the velocity profile from a fully developed parab-
ola at the nozzle exit, where a ¼ 2, into a “flat” or “plug”
profile far away from the nozzle,21,22 where a ¼ 1. However,
the Poiseuille equation can be still used to include the vis-
cous losses in the derivation of a suitable mathematical
model. To this end, we introduce a correction factor d < 1
into Poiseuille’s equation to get

Dwlos ¼
8dgt

r2
ðz2 � z1Þ; (9)

where t and r are the local jet velocity and jet radius. This
approach can be justified using dimensional analysis.23

Now, understanding that all mathematical derivations
refer to a streamline of the laminar jet flow, Eq. (8) can be
rewritten as

a
2
ðt2

1 � t2
2Þ þ gðz2 � z1Þ þ

3c
q

1

r1

� 1

r2

� �

¼ 8dg
q

t
r2
ðz2 � z1Þ; (10)

where a and d are model parameters that can be determined
from experiment.

Taking into account, the uncertainty of the local variables
t and r in the right-hand side of Eq. (10), we replace this
equation by its differential analog, setting (see Fig. 1)

z1;2 ¼ z 7 Dz=2; r1;2 ¼ r 6 Dr=2; t1;2 ¼ t 7 Dt=2:

(11)

After substituting Eq. (11) into Eq. (10), we divide both sides
by Dz and take the limit as Dz tends to zero to obtain

at
dt
dz
¼ g� 3c

q
1

r2

dr

dz
� 8dg

q
t
r2
: (12)

To simplify the analysis, we use the dimensionless variables,
~t ¼ t=t0, ~r ¼ r=R0, and ~z ¼ z=R0, where t0 ¼ tð0Þ is the
average jet velocity at the exit nozzle and R0 ¼ rð0Þ is the
exit nozzle radius. As a result, Eq. (12) becomes

Fig. 1. Sketch of the fluid jet fragment in cylindrical polar coordinates show-

ing relevant variables.
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a~t
d~t
d~z
¼ 1

2Fr
� 1

We

6

~r2

d~r

d~z
� 16d

Re

~t

~r2
; (13)

where the dimensionless group numbers, Fr, We, and Re are
as in Eq. (2), and ~r and ~t are related by the non-dimensional
equation of continuity,

~r2ð~zÞ~tð~zÞ ¼ 1: (14)

Differentiating Eq. (14) with respect to ~z, we find

� 2

~r2

d~r

d~z
¼ 1

~t1=2ð~zÞ
d~t
d~z
; (15)

and then using Eqs. (14) and (15) in Eq. (13), we obtain

a~t
d~t
d~z
¼ 1

2Fr
þ 1

We

3

~t1=2

d~t
d~z
� 16d

Re
~t2: (16)

Equation (16) implies an increase in viscous resistance with
the average jet flow velocity in proportion to ~t2. This means
that at a sufficient distance from orifice, tangential accelera-
tion along the streamline vanishes, i.e., ~tðd~t=d~zÞjz!1 ¼ 0,
resulting in asymptotic scaling for the jet flow velocity and
jet radius far away from the nozzle:

~t1 ¼ ðK=32dÞ1=2; ~r1 ¼ ð32d=KÞ1=4: (17)

Here, K ¼ Re=Fr is the renormalized dimensionless group
number, describing the ratio of the gravitational force 2R0qg
to the viscous resistance force gt0=2R0.

In the same manner, we obtain from Eq. (13) the govern-
ing equation for the dimensionless jet radius ~rð~zÞ:

�2a
1

~r5

d~r

d~z
¼ 1

2Fr
� 6

We

1

~r2

d~r

d~z
� 16d

Re

1

~r4
; (18)

which can be directly integrated with the initial condition
~rð0Þ ¼ 1 to yield

~z ¼ 3

~r1Bo

�
2 arctanð~r1=~rÞ � 2 arctanð~r1Þ

�ln
1� ~r1=~r

1þ ~r1=~r

� �
1þ ~r1
1� ~r1

� ��
� aFr

~r4
1

ln
1� ð~r1=~rÞ4

1� ~r4
1

:

(19)

The advantage of this analytical JSF is its mathematical consis-
tency modified by the dimensionless group numbers based on
the gravitational force. In the physically interesting case when
the viscosity relative to gravity becomes negligible (K� 32d),
we can expand all terms in Eq. (19) with ~r1 < 1, using the
approximations arctanð~r1=~rÞ � ~r1=~r , arctanð~r1Þ � ~r1,
lnð1 6 ð~r1=~rÞ4Þ � 6ð~r1=~rÞ4, and lnð1 6 ~r4

1Þ � 6~r4
1, to

obtain

~z ¼ aFr
1

~r4
� 1

� �
þ 12

Bo

1

~r
� 1

� �
; (20)

which is Eq. (3) with n ¼ 12 and m ¼ 1 modified by the fac-
tor a. At large Bo, when the surface tension effect becomes
negligible compared to gravity, the first term in Eq. (19) can
be omitted, resulting in a JSF governed by gravity and vis-
cous resistance:

~z ¼ � aFr

~r4
1

ln
1� ð~r1=~rÞ4

1� ~r4
1

; (21)

which at ~r1 < 1, i.e., K� 32d, reduces to the Weisbach
equation (3) modified by a multiplicative constant a:

~z ¼ aFr
1

~r4
� 1

� �
: (22)

III. EXPERIMENT

Fluid gravity-fed from a tank was discharged from a
nozzle of radius R0 into a beaker mounted on a force sensor.
The flow rate Q was controlled by a valve mounted between
the tank and the nozzle. The force sensor, connected through
a data logger to a computer, continuously recorded the fluid
weight mðtÞg exiting from the nozzle as a function of time,
so that the average flow rate Q could be determined from the
slope of

Q ¼ 1

q
dmðtÞ

dt
; (23)

and the average jet velocity at the nozzle exit was calculated
as t0 ¼ Q=pR2

0. The Teflon nozzle of radius R0 ¼ 2:775 mm
was cut off sharply and conically at the exit end to prevent
the liquid from wetting and attaching to the horizontal end
plane facing downward. Thus, the fluid issued from the verti-
cal nozzle was observed to separate from the solid wall at
the position of z ¼ 0 and r ¼ R0 over the flow rate range typ-
ically used in experiments, 4 to 20 cm3=s. The jet radius r as
a function of length z was measured from digital images
using ImagePro4 software. Using the nonlinear fitting proce-
dure available in MATHEMATICA,24 Eq. (19) was fit to meas-
ured data of zðrÞ taking a and d to be fitting parameters.

IV. RESULTS AND DISCUSSION

Ordinary tap water at temperature 258C with density
q � 994:5 kg m�3, viscosity g � 0:89 mPa s, and surface
tension c � 0:063 N m�1, was tinted to produce a visible and
stable laminar jet free-falling under gravity into air (see the
photograph in Fig. 2(a), taken at a distance of 40 cm). A
millimeter ruler was placed in the plane of the jet for cali-
brating the distance in the image. At a constant volumetric
flow rate Q � 6:97 cm3=s, the average jet velocity at the noz-
zle exit was t0 � 7:2 cm=s. The dimensionless group num-
bers computed from Eq. (2) are Re ¼ 447, Fr ¼ 0:095,
Bo ¼ 4:77, and K ¼ Re=Fr ¼ 4700. The fit of Eq. (19) to ex-
perimental data zðrÞ with a ¼ 1:397 and d ¼ 0:2514 in Fig.
2(b) is excellent. Fit parameters indicate that the velocity
profile of the jet flow is not uniform (a > 1) and the friction
coefficient is kðtÞ ¼ 64d=Re � 16=Re. The jet radius and
the jet velocity far from the nozzle exit calculated by Eq.
(17) are, respectively, r1 � 0:56 mm and t1 � 2:4 m=s. As
K� 32d � 8 and r1=R0 � 0:2 < 1, the viscous losses are
negligible and the JSF can be described by Eq. (20), gov-
erned by gravity and surface tension forces alone. Indeed, as
seen from Fig. 2(b), the fits of Eq. (19) to measured data and
predicted by Eq. (20) are identical. For comparison with ex-
perimental data and the predictions of Eq. (3), we also show
in Fig. 2(b) the JSF for different values of the parameter n. It
is seen that Eq. (3) with n ¼ 0,17 n ¼ 4,6 and n ¼ 8,5 only
qualitatively describes the experiment data, while the fit
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predicted by Eq. (20) with n ¼ 12 is excellent. Moreover,
the comparison of the JSF at different n suggests that the sur-
face tension acts against the contraction of the jet. To test the
validity of this assumption, we compare in Fig. 3 two experi-
mental JSFs produced by liquid soap with c � 35 mN �m�1

and water with c � 70 mN �m�1. As expected, under the
same conditions, the water jet is narrowed less than the
liquid soap jet.

V. CONCLUSION

We have considered the effect of surface tension and
viscosity on the jet shape function (JSF) of an axially-
symmetric, laminar jet of an incompressible Newtonian vis-
cous fluid issuing from a circular orifice and falling vertically
under gravity into the atmosphere.

Our main results can be summarized as follows:

1. We have developed a simple analytical model to infer
qualitatively and quantitatively the JSF over a wide range
of the key dimensionless group numbers.

2. The derived analytical JSF is in good agreement with the
observed shape of the free surface of a laminar jet.

3. At high Bond numbers, when surface tension is negligible and
in the limit of large Reynolds numbers, when the influence of
the fluid viscosity becomes negligible, the JSF reduces in to
the modified equations known from the literature.

4. An asymptotic scaling for the jet flow velocity and jet ra-
dius far from the exit orifice has been found in terms of
the reduced dimensionless group number K ¼ Re=Fr, rep-
resenting the ratio of the gravitational to the viscous re-
sistance force.
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