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I show how the pressure in Fermi and Bose systems, identified in standard discussions of quantum
statistical mechanics by the use of thermodynamic analogies, can be derived directly in terms of the
flux of momentum across a surface by using the quantum mechanical stress tensor. In this approach,
which is analogous to classical kinetic theory, the pressure is naturally defined locally. The approach
leads to a simple interpretation of the pressure in terms of the momentum flow encoded in the wave
functions. The stress-tensor and thermodynamic approaches are related by an interesting application
of boundary perturbation theory for quantum systems. I investigate the properties of
quasi-continuous systems, the relations for Fermi and Bose pressures, shape-dependent effects and
anisotropies, and the treatment of particles in external fields, and note several interesting problems
for graduate courses in statistical mechanics. ©2004 American Association of Physics Teachers.

@DOI: 10.1119/1.1737395#
a
o
rg
n

ta

ge

l
s
l
sy

ct
on
ta

i
e

o-
s are
tic
eta-

of
ill
int

hid-
ap-

of

and
ons
d-
for
and
x-
st-
s.

er

ace.
ce
y

s. I
ll

the
um
I. INTRODUCTION

The concept of pressure in quantum systems is usu
introduced in equilibrium statistical mechanics using therm
dynamic analogies. For example, the Helmholtz free ene
F is identified with the logarithm of the canonical partitio
function Z, and the thermodynamic potentialV, with the
logarithm of the grand partition functionZ by the relations

F52kBT ln Z, V52kBT ln Z. ~1!

Here,Z is the usual sum over the energies in the system

Z5Tr e2bH5(
a

e2bEa, ~2!

with b51/kBT. A separate partition functionZN can be de-
fined for each particle numberN. Z is then defined as

Z5(
N

eNbmZN , ~3!

wherem is the chemical potential.
The pressure is customarily determined by one of the s

dard thermodymanic relations

P52]F/]V5~kBT/Z!~]Z/]V!, ~4a!

or

PV52V, ~4b!

with F evaluated at fixed temperatureT and particle number
N, andV at fixedT andm. In the second case, the avera
particle number and chemical potential are related byN
52]V/]m.

The relations in Eqs.~4! can be confirmed in classica
particle statistical mechanics by an appeal to the result
kinetic theory, and can be further motivated by an appea
the concept of generalized forces when the energy of a
tem depends explicitly on external parameters such as
volume. However, standard discussions do not show dire
how the pressure relations arise in a kinetic-theory-like c
text in quantum statistical mechanics. For a sampling of s
dard treatments, see Refs. 1–9.

The objective of this paper is to derive the pressure
Fermi and Bose systems using ideas analogous to thos
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kinetic theory; specifically, the relation of pressure to m
mentum flow and the quantum stress tensor. These idea
well defined in quantum systems, give a ‘‘quantum kine
theory’’ approach to pressure, and lead to a direct interpr
tion of the pressure in Fermi and Bose systems in terms
the momentum flow encoded in the wave functions. I w
show that the pressure is naturally defined locally, a po
that is obvious in the stress-tensor approach but that is
den in the usual thermodynamic approach. The two
proaches are connected by an interesting application
boundary perturbation theory for quantum systems.

The basic ideas and relations are developed in Sec. II,
their use for systems of noninteracting fermions and bos
is given in Sec. III. I then consider several examples, inclu
ing the properties of quasi-continuous systems, relations
Fermi and Bose pressures, shape-dependent effects
anisotropies in Sec. IV A, and examples for particles in e
ternal fields in Sec. IV B. The results lead to several intere
ing problems for graduate courses in statistical mechanic

II. PRESSURE IN STATISTICAL SYSTEMS

A. Pressure and the stress tensor

The pressureP(x,t) of a system at a pointx on a surface
S at timet can be defined as the rate of momentum flow p
unit area across a surface elementdS5n̂dS, that is, in terms
of the force per unit area or stress acting across the surf
P depends implicitly on the orientation of the surfa
throughn̂, but I will not indicate this dependence explicitl
for notational simplicity, and because the apparentn̂ depen-
dence is absent for extensive, quasi-continuous system
will apply this definition in the quantum context, and wi
show that

P~x,t !52^n̂•TI•n̂&, ~5!

where TI is the quantum mechanical stress tensor, and
average is over the statistical distribution of the quant
states occupied at temperatureT.

For definiteness, consider a quantum system ofN identical
particles with the Lagrangian density
1082p © 2004 American Association of Physics Teachers
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~c* ] tc2] tc* c!2

\2

2m (
l 51

N

~“ lc* !•~“ lc!

2c* Vc, ~6!

wherec5c(x1 ,...,xN ,t) is the many-particle wave functio
of the system and V(x1 ,...,xN) is the potential. The corre
sponding Schro¨dinger equation is

i\] tc52
\2

2m (
l 51

N

“ l
2c1Vc. ~7!

The momentum density at the pointx for a system in a
stateua& with wave functionca is

pa~x,t !5
\

2i (l 51

N E ~ca*“ lca2“ lca* ca!d3

3~x2xl !d
3x1¯d3xN , ~8!

a result obtained by integrating the sum of single-parti
momentum operators (\/2i )(ca*“ lca2“ lca* ca) over the
coordinates of the particles that are not observed. The i
grations are over the volumeV in which the system is con
fined. Similarly, the local number density is
ce

su

on

e

ta
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na~x,t !5(
l 51

N E ca* cad3~x2xl !d
3x1¯d3xN . ~9!

After some rearrangements, the time derivative ofpa can be
written as

dpa~x,t!

dt
5

\

i (
l 51

N E ~] tca*“ lca2“ lca* ] tca!d3

3~x2xl !d
3x1¯d3xN

1
\

2i (l 51

N E “ l~ca* ] tca2] tca* ca!d3

3~x2xl !d
3x1¯d3xN . ~10!

It is convenient to switch to a component labeling ofpa

and consider] tpa,i . I use the Schro¨dinger equation~7! to
eliminate the time derivatives in Eq.~10!, split the double
sums that appear into terms with identical and different p
ticle labels, and organize the results as much as possible
a set of divergences. After a straightforward calculation
find that
dpa,i~x,t !

dt
52(

l 51

N E ca* ~¹l ,iV!cad3~x2xl !d
3x1¯d3xN2

\2

2m (
l 51

N

(
k51

3 E ¹l ,k~¹l ,ica* ¹l ,kca1¹l ,kca* ¹l ,ica!

3d3~x2xl !d
3x1¯d3xN1

\2

2m (
l 51

N E ¹l ,i~¹l ,kca* ¹l ,kca!d3~x2xl !d
3x1¯d3xN

1
\2

4m (
l 51

N E ¹l ,i~ca*“ l
2ca1“ l

2ca* ca!d3~x2xl !d
3x1¯d3xN1surface terms. ~11!
e
m

The surface terms result from the integration of divergen
“ l 8•(•) in variablesxl 8 other than the selected variablex
5xl using Gauss’ theorem. These terms vanish for the u
boundary condition for the energy eigenstates; that is,ca

50 for any of the coordinates on the boundary of the c
fining volumeV.

The first term on the right-hand side of Eq.~11! is the
force densityFa,i(x,t) at x. The remaining terms are in th
form of a divergence, and the result can be written as

dpa,i

dt
~x,t !5Fa,i~x,t !1¹kTki

a ~x,t !, ~12!

or, in dyadic notation,

dpa

dt
~x,t !5Fa~x,t !1“•TJa~x,t !, ~13!

whereTki
a is the quantum stress tensor evaluated in the s

ua&,
s

al

-

te

Tki
a 5

]L
]~]kc* !

] ic* 1
]L

]~]kc!
] ic2Ldk,i

52
\2

2m (
l 51

N E F¹l ,ica* ¹l ,kca1¹l ,kca* ¹l ,ica

2dk,i“ lca* •“ lca2
1

2
dk,i~ca*“ l

2ca

1“ l
2ca* ca!Gd3~x2xl !d

3x1¯d3xN . ~14!

Upon integrating Eq.~12! over a volumeV8#V, one finds
that the total momentumP in V8 changes both because of th
bulk action of the forces, and from the flow of momentu
across the boundary surfaceS85]V8,

dPa,i

dt
~ t !5E

V8

dpa,i

dt
~x,t !d3x

5E
V8

Fa,i~x,t !d3x1E
S8

dSkTki
a ~x,t !, ~15!

or, in dyadic notation,

dPa

dt
~ t !5E

V8
Fa~x,t !d3x1E

S8
dS•TJa~x,t !. ~16!
1083Loyal Durand
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With the conventional definition of the quantum mechani
stress tensor in Eq.~14!, dS•TJ is the rate of momentum flow
across the surface elementdS5n̂dS into the volumeV8,
with n̂ the outward normal to the surface. The pressure atx is
given by the momentum-flow per unit areaout of V8. That
is,

Pa~x,t !52n̂•TJa~x,t !•n̂, ~xPS8!. ~17!

For equilibrium quantum statistical mechanics, the r
evant statesua& are stationary states~that is, energy eigen
states!, with ca5ca(x1 ,...,xN)e2 iEat/\. In this case, the ex
plicit time dependence drops out in Eqs.~11!–~17!, andca
can be taken in these and the following expressions as
spatial wave functionca(x1 ,...,xN). The pressure, stres
tensor, and force density are then independent oft; that is

Pa(x,t)→Pa(x), TJa(x,t)→TJa(x), and Fa(x,t)→Fa(x).

Furthermore,dpa /dt50, so that2“•TJ5F, and the diver-
gence of the local stress is balanced by the force densi
will focus on this case for the remainder of the paper and
the definition

Pa~x!52n̂•TJa~x!•n̂, ~xPS8! ~18!

for the pressure atx in the stateua&, whereTJa(x) given by
Eq. ~14! with ca the spatial wave function.

I will first consider the case in whichV85V is the volume
in which the system is confined, and will consider a mo
general case in Sec. III. Forx on the boundary surfaceS
5]V, ca and the derivatives ofc parallel to the surface
vanish. Thus, from Eq.~14!,

Pa~x!5
\2

2m (
l 51

N E ~ n̂•“ lca* !~ n̂•“ lca!d3

3~x2xl !d
3x1¯d3xN , ~19!

and the pressurePa(x) in the stateua& depends only on the
normal derivatives ofca at x. To obtain the average pressu
P(x), I weight Pa by the statistical factore2bEa/Z and sum
over all energy eigenstates, with the result

P~x!5
1

Z

\2

2m(
a

(
l 51

N E ~ n̂•“ lca* !~ n̂•“ lca!e2bEad3

3~x2xl !d
3x1¯d3xN . ~20!

Here, Z is the canonical partition function in Eq.~2!. The
sums are over all the completely symmetric states for B
systems, and over all the completely antisymmetric states
Fermi systems.

The sums over eigenstates include sums over the e
quantum numbers necessary to label the states comple
For observables such as the total number density or pres
which do not depend on the internal structure, thec’s can be
reduced to spatial wave functions, and the right-hand sid
Eq. ~20! multiplied by the appropriate degeneracy factorg. I
will follow this convention throughout the paper.

Equation~20!, or the more general form in Eq.~18!, gives
my basic ‘‘quantum kinetic theory’’ result. The difference
between fermions and bosons enter only through the sym
try properties of the wave functions and the resulting diff
ences in the sums over states. Before investigating these
pressions in simple cases, I emphasize that the kin
1084 Am. J. Phys., Vol. 72, No. 8, August 2004
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definition of the pressure is intrinsically local and is e
pressed through the action of the momentum opera
2 i\“, as would be expected on the basis of classical kin
theory. It is not immediately clear how this definition of th
pressure is connected with the usual thermodynamic de
tion in Eq. ~4!. I will first show that the two definitions are
equivalent when one considers local variations of the volu
in the relationP5kBT] ln Z/]V.

B. Pressure from the partition function

The thermodynamic definition~4! of the pressure in terms
of the canonical partition function gives the relation

P52
1

Z (
a

]Ea

]V
e2bEa. ~21!

A comparison of Eq.~21! with Eq. ~20! suggests that
]Ea /]V should be expressible in terms of the normal deriv
tive of ca on the boundary surface for local variations inV.
This relation is easy to show using boundary perturbat
theory. I consider a small change in the volume of the sys
implemented by displacing the boundary surface outw
over a small surface patchDS through a normal displace
ment dx5n̂dx(x) that varies smoothly overDS and van-
ishes elsewhere. The energyEa8 of the system in the distorted
volume will differ from the energyEa of the original system,
with Ea85Ea1dEa . The perturbed spatial wave functionca8
and the original wave functionca satisfy the time-
independent Schro¨dinger equation~7!, as follows:

Ea8ca852
\2

2m (
l 51

N

“ l
2ca81Vca8 , ~22a!

Eaca52
\2

2m (
l 51

N

“ l
2c1Vc. ~22b!

I multiply the adjoint of Eq.~22a! on the right byca and Eq.
~22b! on the left byca8* , subtract the resultant expression
and find

dEaca8* ca52
\2

2m (
l 51

N

“ l•~“ lca8* ca2ca8*“ lca!,

~23!

where I have assumed that the potential V is unchanged
integration over the original volume gives

dEaE
V
ca8* cad3x1¯d3xN

52
\2

2m (
l 51

N E
S
dS~x!•E

V
~“ lca8* ca

2ca8*“ lca!d3~x2xl !d
3x1¯d3xN , ~24!

where the surface integration is defined in terms the varia
x.

The wave functionca vanishes on the original surfaceS,
so that the first term in parentheses in Eq.~24! vanishes.
Similarly, ca8* 50 on the distorted surfaceS8, so that the
second term vanishes, except on the patchDS where the two
surfaces differ, and the surface integration reduces to
1084Loyal Durand
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patchDS. For small normal displacementsdx5n̂dx(x), ca8
can be approximated to first order onDS using the first non-
zero term in its Taylor series expansion relative toS8, ca8
'2dx•“ca8'2(n̂•“ca8 )dx, where the variation ofca8 for
small displacements parallel toDS does not contribute to the
first order. Finally, takingca8 equal toca in leading order
and using the normalization condition for the wave functio
I find a first-order expression fordEa ,

dEa52
\2

2m (
l 51

N E
DS

dSdxE
V
~ n̂•“ lca* !~ n̂•“ lca* !d3

3~x2xl !d
3x1¯d3xN . ~25!

The integrand in the volume integral can again be taken
constant to leading order forx on DS. The remaining surface
integral gives the volume changedV5*DSdSdx, so that

]Ea~x!

]V
52

\2

2m (
l 51

N E
V
~ n̂•“ lca* !~ n̂•“ lca* !d3

3~x2xl !d
3x1¯d3xN . ~26!

The substitution of this expression in Eq.~21! reproduces Eq.
~20!, and the kinetic and thermodynamic definitions of t
local pressureP(x) agree. For homogeneous isotropic sy
tems, the factor (n̂•“ca* )(n̂•“ca* ) in the integral in Eq.
~25! has the same value at all points onS, the surface inte-
gral can be extended to the entire surface, and the calcula
reproduces the usual x-independent expressionP
5kBT] ln Z/]V.

C. Generalizations

1. Electromagnetic interactions

The results described in Sec. II can be generalized in v
ous ways. For example, in the presence of electromagn
interactions, the Lagrangian in Eq.~6! becomes

L5
i\

2
~c* ] tc2] tc* c!2

1

2m (
l 51

N F S i\“ l2
e

c
Al Dc*

•S 2 i\“ l2
e

c
Al Dc2c* F ic G , ~27!

whereAl andF l are the respective vector and scalar pot
tials evaluated at the positionxl of particle l , and the par-
ticles are treated as identical, with chargee. The pressure of
the system is related to the rate of change of the kin
momentum mv5p2eA/c summed over the particles. A
rather lengthy calculation for a stateua& gives

d

dt S p2
e

c
AD

a

~x,t !5Fa~x,t !1“•TJa~x,t !, ~28!
1085 Am. J. Phys., Vol. 72, No. 8, August 2004
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whereF is the Lorentz force density

Fa~x,t !5(
l 51

N E eca* Ecad3~x2xl !d
3x1¯d3xN

1
e

2mc(l 51

N E F S i\“ l2
e

c
Al Dca* 3Blca

2ca* Bl3S i\“ l2
e

c
Al DcaGd3

3~x2xl !d
3x1¯d3xN , ~29!

andTki
a is the gauge-invariant stress tensor

Tk,i
a 52

1

2m (
l 51

N E F S i\¹2
e

c
AD

l ,i

ca* S 2 i\¹2
e

c
AD

l ,k

3ca1S i\¹2
e

c
AD

l ,k

ca* S 2 i\¹2
e

c
AD

l ,i

3ca2dk,i S i\“2
e

c
AD

l

ca* •S 2 i\“2
e

c
AD

l

ca

1
1

2
dk,i S ca* S 2 i\“2

e

c
AD

l

2

ca

1S i\“2
e

c
AD

l

2

ca* caD Gd3~x2xl !d
3x1¯d3xN . ~30!

The force density has the expected form,F;eE1(e/c)v
3B.

The pressure is given by Eq.~17!, or, for the case of static
fields A andF and stationary statesua&, by Eq. ~18!. If the
latter is evaluated on the confining surface where the spa
wave functionca vanishes, theA-dependent terms in Eq
~30! vanish, and the time-independent pressurePa(x) is
again given by the expression in Eq.~19! and depends only
on the normal derivatives ofc and c* . The more genera
expression in Eq.~18! can be used for a surface element
the interior of the confining volume.

A calculation similar to that in Sec. II B also reproduc
Eq. ~19! for static fields and stationary systems. T
A-dependent terms again drop out on the confining surfa
and the expression fordEa obtained in boundary perturba
tion theory reduces to Eq.~25!.

2. Wave-type equations

Quantized systems of bosons such as photons, meson
phonons in a solid satisfy wave-type equations; for exam
the standard wave equation

1

c2 ] t
2f2(

l 51
“ l

2f1
m2c2

\2 f50, ~31!

with or without the extra mass term or potenti
m2(x1 ,...,xN). The normalization off is given in terms of
the covariant current density,10 and reduces for positive en
ergy eigenstates to
1085Loyal Durand
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~f* ] tf2] tf* f!d3x1¯d3xN

5
2E

\c E f* fd3x1¯d3xN51. ~32!

An appropriate Lagrangian density for such systems is

L5\cS 1

c2 ] tf* ] tf2(
l 51

N

“ lf* •“ lf2f*
m2c2

\2 f D .

~33!

The corresponding momentum densityp(x,t) is

p~x,t !52
\

c (
l 51

N E ~“ lf* ] tf1] tf*“ lf!d3

3~x2xl !d
3x1¯d3xN . ~34!

Calculations ofdp/dt similar to those above give the sam
formal result for the pressure as in Eq.~18!, but with the
stress tensor now given by

Tki52\c(
l 51

N E ~“ l ,if*“ l ,kf1“ l ,kf*“ l ,if

2dk,iL!d3~x2xl !d
3x1¯d3xN . ~35!

Equation~35! can be written in an energy eigenstateua& with
wave functionf5fa(x1 ,...,xN)e2 iEat/\ as

Tki
a 52\c(

l 51

N E @“ l ,ifa*“ l ,kfa1“ l ,kfa*“ l ,ifa

2dk,i“ lfa* •“ lfa 2 1
2 dk,i~fa*“ l

2fa1“ l
2fa* fa!#

3d3~x2xl !d
3x1¯d3xN . ~36!

The corresponding pressure forx on a boundary surfaceS
5]V wheref[0 is given by

Pa~x!5\c(
l 51

N E ~ n̂•“ lfa* !~ n̂•“ lfa!d3

3~x2xl !d
3x1¯d3xN , ~37!

and depends only on the normal derivatives off on the
boundary. For a general surfaceS8,V, the full form of Tki

a

must be used. The pressure in the canonical ensemble i

P~x!5
1

Z (
a

Pa~x!e2bEa. ~38!

It is easy to show that the same result follows from t
usual thermodynamic relation in Eq.~21!. Thus, from Eq.
~31!,

Ea
2

\2c2 fa52“

2fa1
m2c2

\2 fa . ~39!

An equation of the same form with a perturbed energyEa8
holds for the perturbed wave functionfa8 that results from a
local displacement of the boundary. By combining the t
equations, I find, as the analog of Eq.~23!, that
1086 Am. J. Phys., Vol. 72, No. 8, August 2004
2EadEa

\c
fa8* fa52\c(

l 51

N

“ l•~“ lfa8* fa

2fa8*“ lfa!. ~40!

Manipulations equivalent to those following Eq.~23! and the
use of the normalization condition~32! give the result

]Ea

]V
~x!52\c(

l 51

N E ~ n̂•“ lfa* !~ n̂•“ lfa!d3

3~x2xl !d
3x1¯d3xN , ~41!

for local variations of the boundary surface. Finally, the u
of the thermodynamic relation Eq.~21! reproduces the ex
pression for the local pressure in Eq.~38!. I emphasize, how-
ever, that the equationPa(x)52n̂•Ta•n̂ for the local pres-
sure in a stateua& holds more generally than Eq.~37! and
does not require thatx be on the boundary surface.

III. PRESSURE IN NONINTERACTING BOSE AND
FERMI SYSTEMS

A. Bose systems

As a first example, I consider the important case of no
interacting bosons in an external field. The Hamiltonian
N noninteracting particles is a sum ofN identical single-
particle HamiltoniansH1 : H5( l 51

N H1(xl). The wave func-
tions ck for the single-particle statesuk& satisfy the Schro¨-
dinger equationsH1ck(xl)5Ekck(xl) . I will suppose that
the energy eigenvalues have been ordered so thatE1,E2

,E3,¯ . The total energies are simply sums of sing
particle energiesEk , and can be labeled by the number
particles in each single-particle eigenstateuk&, as

En1 ,n2 ,...5n1E11n2E21¯ , ~42!

wheren11n21¯5N. The full wave function forN bosons
with n1 in state uk1&, n2 in state uk2&,¯ is then a fully
symmetric sum of product wave functions,

~43!

where the sum is over all permutationsP of N objects, and
wave function factors withnk50 are to be replaced by 1
The coordinates of the successive wave functions withnk

Þ0 are given in each term in the sum by the correspond
coordinates in the permutationP of x1 ,...,xN . The set of
nk’s gives a unique labeling of the state. Their values
restricted by the condition(knk5N.

The number density of particles at a pointx is given for a
definite state by Eq.~9!. The total density reduces after th
integrations to

nn1 ,n2 ,...~x!5(
k

nkck* ~x!ck~x!, ~44!

and a final integration overx gives the total number of par
ticles N because(knk5N. Similarly, from Eq. ~19!, the
pressure on the boundary surface associated with the g
state is
1086Loyal Durand
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Pn1 ,n2 ,...~x!5
\2

2m(
k

nk~ n̂•“ck* ~x!!~ n̂•“ck~x!!.

~45!

More generally, for a surfaceS85]V8, V8,V,

Pn1 ,n2 ,...~x!52(
k

nkn̂•TJ k
•n̂, xPS8, ~46!

where the tensorTi j
k is given in Eq.~14!.

It is difficult to work with the canonical distribution fo
bosons because of the restriction(knk5N. I will therefore
change to the grand distribution as is usually done. I multi
Eq. ~44! by the Boltzmann factore2bEn1 ,n2 ,... for the speci-
fied energy and by a factorebmN, which will be used to
enforce the correct average number of particles, sum ove
nk andN, and find that

n~x!5
1

Z (
k

(
n1 ,n2 , ...

(
N

dn11n21...,Nnk

3ck* ~x!ck~x!eb(mN2( j njEj )

5
1

Z (
k

S (
nk

nkck* ~x!ck~x!e2b(Ek2m)nkD
3 )

k8Þk
S (

nk8

e2b(Ek82m)nk8D
5

1

Z (
k

ck* ~x!ck~x!
e2b(Ek2m)

~12e2b(Ek2m)!2

3 )
k8Þk

S 1

12e2b(Ek82m)D , ~47!

where convergence of the sum requires thatEk2m.0. Z is
the grand partition function

Z5)
k

S 1

12e2b(Ek2m)D , ~48!

so that Eq.~47! reduces to

n~x!5(
k

ck* ~x!ck~x!~eb(Ek2m)21!21. ~49!

Equation ~49! is just the result that would be expecte
Each product of wave functionsck* ck appears with a weigh
that is just the average occupation number of the stateuk&, as
calculated for the usual Bose distribution for noninteract
particles.1–9

If there are spin or other internal degeneracies, the inte
factors in the wave functionsc’s in Eq. ~49! can be sup-
pressed and the wave functions reduced to their spatial c
ponents, provided that the right-hand side of Eq.~49! is mul-
tiplied by the appropriate degeneracy factorg and the sum is
taken to run only over nondegenerate energies.

The integral ofn(x) gives the average number of particl
N in the entire distribution,

N5(
k

~eb(Ek2m)21!21. ~50!

Equation~50! gives an implicit relation form in agreement
with the thermodynamic expressionN5kBT(] ln Z/]m).
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A similar calculation gives the result for the pressure atx,
again of a form that could be anticipated from the sing
particle forms of Eqs.~14!, ~18!, and~19!:

P~x!52(
k

n̂•TJ k
•n̂~eb(Ek2m)21!21 ~51!

5
\2

2m(
k

~ n̂•“ck* ~x!!~ n̂•“ck~x!!

3~eb(Ek2m)21!21. ~52!

The first form holds forx on a surfaceS8 inside the confining
volume, and the second form forx on the confining surface
S5]V. For T→0, Eq. ~52! gives P(x)→(N\2/2m)(n̂
•“c0* (x))(n̂•“c0(x)). Note that the pressure does not va
ish exactly for a system confined in a finite volume even
T50, a result connected to the kinetic picture and the unc
tainty relation.

The pressure in systems of noninteracting bosons also
isfying the wave equation~31! is given formally by the ex-
pression in Eq.~51!, with T now given by the single-particle
form of Eq. ~37!. The analog of Eq.~52! is therefore

P~x!5\c(
k

~ n̂•“fk* ~x!!~ n̂•“fk~x!!

3~eb(Ek2m)21!21. ~53!

B. Fermi systems

The composite state ofN noninteracting fermions is spec
fied completely by the number of particlesnk in each single-
particle stateuk& wherenk50 or 1. The energy of the stat
un1 ,n2 ,...& is just En1 ,n2 ,...5(knkEk , as in Eq.~42!. The
corresponding wave function is given by the completely a
tisymmetric sum

~54!

where (2)P is the signature of the permutationP of N ob-
jects and(knk5N. The factors of wave functionsck with
nk50 are to be replaced by 1. The coordinates of succes
wave functions withnk51 are given in each term in the sum
by the corresponding coordinates in the permutationP of
x1 ,...,xN . The n’s are restricted by the condition that the
sum beN.

The number density and pressure of the particles in
specified state are given at a pointx by Eqs.~9! and ~19!,
respectively, and reduce after the integrations are perform
to the expressions in Eqs.~44! and ~45!, or more generally
Eq. ~46!, just as for bosons. The difference between the t
cases is entirely in the allowed values of then’s. The sum
for fermions can be performed simply in the grand statisti
distribution, with, for example,
1087Loyal Durand
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n~x!5
1

Z (
k

(
n1 ,n2 , ¯ 50,1

(
N

d
n11n21... , N

nk

3ck* ~x!ck~x!eb(mN2( j njEj )

5
1

Z (
k

ck* ~x!ck~x!e2b(Ek2m)

3 )
k8Þk

~11e2b(Ek82m)!

5(
k

ck* ~x!ck~x!~eb(Ek2m)11!21, ~55!

where I have used the relation

Z5)
k

~11e2b(Ek2m)!. ~56!

The expression in Eq.~55! is again what would be ex
pected because the final factor is the average occupa
number of the stateuk& in the grand ensemble. Similarly
using Eq.~45!,

P~x!5
\2

2m(
k

~ n̂•“ck* ~x!!~ n̂•“c~x!!

3~eb(Ek2m)11!21, ~57!

or, more generally,

P~x!52(
k

n̂•TJ k
•n̂~eb(Ek2m)11!21, ~58!

where TJ k is the single-particle version of Eq.~14!. If the
system has internal spin-type degeneracies, thec’s in Eq.
~57! can be reduced to the spatial factors in the full wa
functions, and the sum restricted to the nondegenerate sp
eigenstates after multiplying the right-hand side of Eq.~14!
by the degeneracy factorg.

IV. EXAMPLES

A. Quasi-continuous systems

1. General considerations

The systems to which statistical descriptions are app
most frequently are large, extensive systems in which
potentials are uniform or periodic. A well-known theore
shows that the number of eigenvaluesEk smaller than a fixed
valueE increases proportionally with the volume of the sy
tem for V→`. @See Kac11 for a famous discussion of thi
result and its history in the context of the spectrum o
drum.# The eigenvalues therefore pack together for largeV,
surface effects on the spectrum become negligible, and
plausible that the sums over states in the preceding sec
can be converted to integrals when there are many states
energies less thankBT. The main question concerns the b
havior of the wave functions in the limit of largeV. We
expect that the productsc* (x)c(x) and “c* (x)•“c(x)
will each reduce for largeV to the sum of a term describin
their smooth average behavior, and extra rapidly oscillat
terms that average approximately to zero. The result sho
again be insensitive to surface effects for sufficiently la
V.
1088 Am. J. Phys., Vol. 72, No. 8, August 2004
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These ideas can be illustrated for a uniform system inD
dimensions in a box with sidesLi , i 51,2,...,D. The wave
functions and energies are

c$n%~x!5)
i 51

D A2

Li
sin

pnixi

Li
, E$n%5(

i 51

D

ni
2 h2

8mLi
2 ,

~59!

where$n%5(n1 ,...,nD) with ni51,2,... only. Equation~59!
gives

c$n%* ~x!c$n%~x!5
1

VD
)
i 51

D S 122 cos
2pnixi

Li
D , ~60!

whereVD5) iL i is the volume of theD-dimensional paral-
lelepiped in which the system is confined, and the state la
k in earlier equations is now given explicitly by the mult
index n1 ,n2 ,...,nD .

The typical index for states excited at temperatureT is
nex;(8mkBTV2/D/h2)1/2. If nex is large, many states will be
excited as required for the conversion of sums to integr
and the oscillating terms in Eq.~60! will average to zero over
small regions of the box. Then, for observations over su
regions,c* c'1/VD , a result independent of the shape
VD . This result is the same as that obtained using the s
dard approximation of running waves with periodic boun
ary conditions,c'(1/AV)exp(i(jpnjxj /Lj). An independent
argument shows that the sums of the oscillating terms va
rapidly at fixedx as the numbers of significant terms in th
summations grow. Because the level spacings tend to
for VD→`, either argument shows that only the leadi
term in Eq.~60! is important for large systems.

If I drop the oscillating terms in Eq.~60!, the expression
for the local number density for uniform Fermi and Bo
systems becomes

n~x!'
1

VD
(

n1 ,...,nD

~eb(En1 ,...,nD
2m)61!21, ~61!

where the upper and lower signs refer to Fermi and B
systems, respectively. The sums can be converted app
mately to integrals by repeated use of the Euler–Maclau
summation formula

(
n51

`

f ~n!5E
0

`

f ~n!dn2
1

2
f ~0!2

1

12
f 8~0!1

1

720
f-~0!

1¯ . ~62!

The odd-order derivativesf (2k11) that appear in the Euler–
Maclaurin formula vanish atni50,̀ for the function in Eq.
~61!. The first two terms in Eq.~62! are therefore all that
survive up to exponentially small corrections that can
investigated using Poisson summation. I retain only the le
ing corrections, which yields

n~x!'
1

VD
E

0

`

dn1dn2¯dnD~eb(( i (h
2/8mLi

2)ni
2
2m)61!21

3S 12
1

2 (
i

d~ni !1¯ D . ~63!

At this point, a change to the momentum variablespi

5(h/2Li)ni gives the familiar expression for the leadin
term, plus corrections that vanish asVD

21/D for VD→`:
1088Loyal Durand
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n~x!5E dDp

hD ~eb(pD
2 /2m2m)61!21

2(
i

h

2Li
E dD21p

hD21 ~eb(pD21
2 /2m2m)61!21

1O~1/L2!, ~64!

where pD21 is the momentum vector in theD21 dimen-
sional subspace orthogonal to thei direction. The momentum
integrations extend over the infinite interval (2`,`), a Bril-
louin zone, or otherwise as appropriate. The corrections
of order \/ p̄iLi for p̄i , the typical value of thei th compo-
nent of the momentum in the leading term; that is, of ord
\/AmkBTLi for nondegenerate systems.

Note that the final result for the leading term is isotropic
momentum space even though the original spectrum in
~59! involves different excitations for motions in the diffe
ent directions. With enough energy levels occupied in
thermal distribution, the shape-dependent features of
spectrum become unimportant, as noted by Kac.11 This isot-
ropy in leading order appears to be general for qua
continuous systems; see, for example, Sec. IV B 1.

2. Fermi and Bose pressures

A calculation of the pressure using the above method
either of Eqs.~51! or ~52! for nonrelativistic Bose systems
or Eqs.~57! or ~58! for Fermi systems, leads to analogo
results for the pressure on a surface with normaln̂,

P~x!5E dDp

hD

~ n̂•p!2

m
~eb(pD

2 /2m2m)61!211¯ ~65!

5
2

D E dDp

hD E~p!~eb(E(p)2m)61!211¯

5
2

D
^E&1¯ , ~66!

with corrections that again vanish asVD
21/D for VD→`. The

Bose and Fermi statistical factors in the integrals are iso
pic in momentum space. Thus, the leading term in the
pression for the pressure is independent of the direction on̂,
and the results can be expressed in terms of the ave
energies as indicated.

I emphasize that this result for the local pressure follo
directly from the definition of the pressure in terms of t
stress on a surface. The factors ofn̂•p in Eq. ~65! arise from

the momentum operators2 i\“ in 2n̂•TJ•n̂, and corre-
spond directly to the momenta that appear in the elemen
classical derivation of the pressure in a gas. That is, the p
sure is associated with ‘‘particles bouncing off the wall.’’

The thermodynamic definition gives the same pressure
the quasi-homogeneous system under consideration, an
two definitions are connected by boundary perturbat
theory, as shown in Sec. II B. The derivation given there c
be generalized to an arbitrary surface inside the volumeV,
but is only useful provided that, as here, enough is kno
about the wave functions to allow explicit evaluation of th
derivatives.

It is easy to derive the nonclassical properties of the Fe
and Bose pressures. An integration by parts in spherical
ordinates brings Eq.~66! to the form
1089 Am. J. Phys., Vol. 72, No. 8, August 2004
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P~x!56kBTE dDp

hD ln~16e2b(pD
2 /2m2m)!

57kBTE dDp

hD ln~17ñ~p!!, ~67!

whereñ(p) is the Fermi or Bose statistical factor in Eq.~66!.
If I use the inequalities2 ln(12x).x and ln(11x),x, and
the fact that the integral ofñ(p) gives the number density
n(x), I find that

PBose~x!,n~x!kBT,PFermi~x!. ~68!

The difference clearly arises in the momentum flow or str
picture from the necessity that the occupied single-part
states all be different for Fermi–Dirac statistics. This r
quirement forces the appearance of higher momentum s
than are needed in the Bose–Einstein case, and a higher
sure for fixedN andT.

As an example of Bose pressure, I will calculate the pr
sure of an equilibrium system of noninteracting neutral m
sons with massm. The system will be taken as extensive
quasi-continuous in dimensionD. The pressure on the
boundary surface is given in a stateua& by Eq. ~37!. It also
can be calculated on an interior surface using the stress
sor in Eq.~36! and the definition in Eq.~18!, giving the same
average result for large volumesVD . I will use Eq.~37! and
the single-particle wave functions in a box normalized a
cording to Eq.~32!:

fp1 ,..., pD
~x!5A \c

2E~p! )i 51

D A2

Li
sin

pixi

\
,

pi5
h

2Li
ni , ~ni51,2,...!. ~69!

By averaging with the Bose statistical factor, I obtain t
pressurePi in the i direction as

Pi~x!5
1

VD
E dDp

hD

~pic!2

2E~p!
~eb(E(p)2m)21!21, ~70!

whereE(p)5Ap2c21m2c4. In the limit m→0, Eq. ~70! re-
duces to the expression for the pressure for black-body
diation or for phonons in a solid up to the necessary inc
sion of the statistical factors for spins or polarizations a
the use of the correct ranges of integration in the case
phonons. Thus, for black-body radiation in three dimensio
including the spin degeneracy factor 2, and using the is
ropy in momentum space and the fact thatm50 because
photon number is not conserved, I find

P~x!5
1

3V E d3p

h3

pc

ebpc21

5
\

3p2c3V E
0

`

dv
v3

eb\v21
5

^E&
3V

, ~71!

which is the usual result. However, I again emphasize t
the calculation is direct, and is clearly connected to the fl
of momentum across the surface through the discussio
Sec. II C 1. No thermodynamic relations were used.

An example for Fermi systems that makes a good hom
work problem and shows the relation of pressure to mom
tum flow is the calculation of the Fermi pressure atT50
starting from the stress tensor. The usual argument for c
1089Loyal Durand
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pletely degenerate Fermi systems shows that all energy
els up to a Fermi energyEF determined byN must be occu-

pied. Then, from Eq.~58!, P(x)52(ku(EF2Ek)n̂•TJ k
•n̂,

whereu is the step function, andu(x)51(0) for x.0 (x
,0). The remaining calculation is simple for continuo
systems, and leads directly to the thermodynamic result w
out the use of any thermodynamic relations.

3. Anisotropic pressures

The corrections from the conversion of sums to integr
in Eq. ~64! and the corrections from finite-sized effects in t
spectrum11 are shape dependent. This shape depende
leads to anisotropic stresses or pressures for finite syst
Consider, for example, the limit in which one of the dime
sions of the rectangular box, sayL1 , becomes small while
the other dimensions remain large. If the lowest energy
motion in the 1 direction is large on the scale ofkBT,
h2/8mL1

2@kBT, the sum overn1 converges rapidly, and con
version of that sum to an integral with only small residu
corrections is not possible. If I keep only the leading term
n1 and treat the large dimensions in the continuum limit,
number density becomes

n~x!→ 2

L1
sin2

px1

L1
E dD21p

hD21 ~e2b(pD21
2 /2m2m8)61!21,

~72!

wherem85m2E1 with E15h2/8mL1
2 the ground state en

ergy for motion in direction 1. Higher terms in the sum onn1

are nominally suppressed by powers of exp@2(n1
2

21)E1 /kBT#!1, n1.1, but the situation becomes mo
complicated and some excitation must occur for Fermi s
tems in which the Fermi energy forN particles in D21
dimensions exceedsE1 . I will not consider this refinement.

The leading factor in Eq.~72! is the absolute square of th
normalized wave functionc1(x1) and integrates to unity
The momentum integral is independent of the remaining
ordinatesx2 ,...,xD , so that an integration ofn(x) over the
full volume VD gives the total particle numberN as

N5VD21E dD21p

hD21 ~e2b(pD21
2 /2m2m8)61!21. ~73!

The number density can therefore be written as

n~x!5
N

VD21

2

L1
sin2

px1

L1
. ~74!

The pressure on the wall of the box atx150 can be cal-
culated using the expressions in Eqs.~53! and~58!, with the
result

P15
h2

4mL1
3

N

VD21
52E1

N

VD
. ~75!

All particles must be in then151 state inx1 for kBT!E1 ,
with the effects of Fermi or Bose statistics absorbed in
integral factor in Eq.~72! and the corresponding factor in th
expression forP1 . The same result forP1 holds on the sur-
facexi5L1 . Note thatP1 is independent of the coordinate
x2 ,...,xD that specify the locations on the surfaces atx1

50, L1 on which the pressure is observed.
In contrast, the pressure on any of the remaining walls
1090 Am. J. Phys., Vol. 72, No. 8, August 2004
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Pj Þ1~x!5
2

L1
sin2

px1

L1
E dD21p

hD21

pj
2

m

3~e2b(pD21
2 /2m2m8)61!21

5
2^E&D21

D21

N

VD21

2

L1
sin2

px1

L1

5PD21

2

L1
sin2

px1

L1
, ~76!

where ^E&D21 is the average single-particle excitation e
ergy for a continuous system inD21 dimensions andPD21

is the corresponding pressure. The pressurePj is indepen-
dent of the coordinatesx2 ,...,xD , but is modulated with re-
spect to x1 by the factor uc1(x1)u25(2/L1)sin2(px1 /L1)
which specifies how theN particles are distributed with re
spect tox1 . When the distribution inx1 is not observed,x1

can be integrated out andPj reduces toPD21 . The effective
dimensionality of the system is therefore reduced by one
kBT!E1 , the limit in which the no thermal excitations in th
1 direction are possible.

The effects of anisotropies are small in practice, w
E1 /k50.2 K for a helium atom confined in a gap withL1

51 nm. Anisotropies in the pressure would only be obse
able at lower temperatures. The situation is more com
cated for electrons because of the effects of Fermi–D
statistics.

B. Pressure and number density in an external field
1. WKB approximation

It is simple to treat the problem of otherwise nonintera
ing particles in a one-dimensional external potentialV(x)
using the standard Wentzel–Kramers–Brillouin~WKB! ap-
proximation discussed in most texts on quantum mecha
~see, for example, Ref. 12!. The single-particle energiesEk
are determined in this approximation by the semiclass
quantization condition that

S k1
1

2Dh52E
x1

x2
p~E,x!dx, ~77!

for E5Ek , k50,1,2,..., Here, p(E,x)5A2m@E2V(x)# is
the local momentum,h is Planck’s constant, andx1 , x2 are
turning points in the classical motion wherep(E,x)50. The
approximation can be shown to be good when there
many local wavelengthsh/p between the turning points, bu
tends to be good even for low-lying states in the spectru
Because the typical excitation energy in statistical system
E'kBT, the WKB approximation will be valid provided tha
h21*p(kBT,x)dx@1. If I treat k and E as continuous, the
density of statesdk/dE implied by Eq.~77! is

dk

dE
5

1

h Ex1

x2A 2m

E2V~x!
dx. ~78!

The WKB wave functions can be written between t
turning points as12

ck~x!'NkS 2m

Ek2V~x! D
1/4

cosS jk~x!2
p

4 Ddx, ~79!

jk~x!5
1

\ E
x1

x
A2m@Ek2V~x!#dx, ~80!
1090Loyal Durand
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and decrease exponentially outside that region. If I ignore
small contributions from the exponential regions and repl
the square of the cosine by its average value of 1/2 for m
oscillations over regions in whichE2V changes signifi-
cantly, I find that the normalization constant is related to
density of states by

N k
25

2

h

dE

dk
. ~81!

Thus, following the previous discussion of quas
continuous systems, the local number density in the sys
is

n~x!'(
k

N k
2A 2m

Ek2V~x!
cos2S j~x!2

p

4 D
3~eb(Ek2m)61!21

'
1

h E dEA 2m

E2V~x!
~eb(E2m)61!21

5E
2`

` dp

h
~eb[ p2/2m2m1V(x)]61!21, ~82!

where in the last two lines I have first replaced the squar
the cosine inck* ck by its average value 1/2 and convert
the sum overk to an integral overE using Eq.~81!, and then
converted fromE to p as the integration variable withp
defined by the relationp2/2m5E2V(x). The replacemen
cos2→1/2 may be taken as a local averaging when there
many oscillations in the region observed. Alternatively
note that the zeros of successive eigenfunctions interwe
so that the zeros in the individual terms inn(x) are washed
out in the sum when many states are excited.

The result in Eq.~82! is just that obtained through thermo
dynamic arguments6 by dividing the system into small vol
umes over whichV(x) can be taken as constant, and th
considering the equilibrium of the subsystems. The resu
to replace the chemical potentialm in the corresponding ex
pression for free particles bym2V(x). However, it is clear
from the WKB-based derivation that there are two key poi
in the quantum treatment. First, the average numberk of
excited states must be large enough and vary smoo
enough for energies on the scale ofkBT that the sum over
states can be replaced by an integral. Second, the squa
the wave function must oscillate sufficiently rapidly over r
gions in whichE2V(x) changes significantly so that th
replacement cos2→1/2 is valid in the sum in Eq.~82!. The
second requirement is closely linked to the conditio
needed for the validity of the WKB approximation, and f
the replacement of the sum by an integral. It is worth not
in this connection that the wave function is defined over
entire volume in which the system is confined, and not j
the subvolumes as in Ref. 6.

The expression in Eq.~82! can be extended immediate
to three dimensions for systems with additive potentialsV
5( iVi(xi). It can be extended to general potentialsV(x) in
the form

n~x!5E d3p

h3 ~eb[p2/2m2m1V(x)]61!21, ~83!

using thermodynamic arguments as in Ref. 6, or directly
ing functional integral methods such as those in Refs. 13
14. It is again required that the oscillations inc be rapid on
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the scale at whichE2V(x) changes significantly. The gen
eral result in Eq.~83! could probably also be derived in thre
dimensions using a WKB-like phase-integral approximat
such as that investigated by Gutzwiller,15 but I have not at-
tempted it.

Finally, the total number of particles in the system is giv
by the spatial integral ofn(x) over the confining volume,

N5E d3xd3p

h3 ~eb[p2/2m2m1V(x)]61!21, ~84!

giving a result that can be used to determinem.
The pressure or stress in the external potential can

treated similarly. I will work in the interior of the total vol-
ume and use the general expression for the pressure giv
Eq. ~18!, and the single-particle form of the stress tensor
Eq. ~14!, specialized to one dimension. The key step involv
the recognition that the derivatives in Eq.~14! can be taken
to act only on the cosine factor inck , Eq.~79!. This assump-
tion gives

dck

dx
'2Nk

1

\ S 2m

Ek2V~x! D
1/4

A2m@Ek2V~x!#

3sinS jk~x!2
p

4 Ddx. ~85!

The term omitted is of relative orderl (dV/dx)/8p(E
2V), and can be neglected in the region in which the WK
approximation is valid;12 namely, when the change in th
potential over a wavelengthl5h/p is small, on the scale o
E2V. Furthermore, the correction term oscillates out
phase with the main term, and interference effects can
neglected in averagingck* ck A similar result holds for the
second derivatives, with the neglected terms just those
which the WKB wave function fails to satisfy the exa
Schrödinger equation. The result of the calculation is

P~x!'(
k

N k
2A2m@Ek2V~x!#~eb(Ek2m)61!21

'
2

h E dEA2m@E2V~x!#~eb(E2m)61!21

5E
2`

` dp

h

p2

m
~eb[ p2/2m2m1V(x)]61!21. ~86!

The expression in Eq.~86! can be generalized to more d
mensions using thermodynamic arguments or functional
tegral methods, and should be properly stated in terms of
stress across a surface with normaln̂, as

2n̂•TJ•n̂5E dDp

hD

~ n̂•p!2

m
~eb[p2/2m2m1V(x)]61!21.

~87!

The final factor in parentheses in Eq.~87! is isotropic inp, so
that the stress at a given pointx is the same in all directions
even for V(x) anisotropic. Thus,̂ (n̂•p)2&5^p2/D&, and
P(x)5 (2/D) K(x), whereK(x) is the average kinetic en
ergy density atx with the average taken over the local st
tistical distribution.

I next consider two examples that illustrate the effects
external fields in interesting physical situations. Both lead
useful homework problems for graduate courses in statist
physics.
1091Loyal Durand
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2. Example: Particles in a linear potential

For particles in a linear potentialV(z)5zV0 /z0 with zero
potential for the motion in the transverse directions, the m
tion in z can be described in the WKB approximation as
Sec. IV B 1. while the motion in the transverse coordina
can be described in terms of running waves with mome
p'5(px ,py). The single-particle energies are

En~p'!5
p'

2

2m
1

V0

z0
S 9h2z0

32mV0
D 1/3S n2

1

4D 2/3

,

~n51,2,...!, ~88!

where the second term is the WKB energy of the verti
motion. Many states of the vertical moton will be excited
the thermal energykBT for (kBT/V0)3/2(8mV0z0

2/9p2\2)1/2

@1, a condition that is always satisfied under realistic c
ditions for gases in a gravitational field withV05mgz0 or
electrons in a constant electric fieldE0 , V05eE0z0 . The
sums overk can be replaced by integrals over a moment
pz defined to reduce the second term in Eq.~88! to the stan-
dard form

pz
2

2m
[

p0
2

2m S n2
1

4D 2/3

, ~89!

wherep0
2/m[ V0 /z0 (9h2z0 /32mV0)1/3. The corrections for

Fermi or Bose statistics are unimportant for gases in a gr
tational field under normal conditions. I follow the develo
ment in Sec. IV B 1 with the Fermi or Bose factors replac
by the simple Boltzmann factore2b(Ek2m) and obtain the
classical barometric equations

P~z!5P~0!e2mgz/kBT, n~z!5n~0!e2mgz/kBT,

P~0!5n~0!kBT. ~90!

For a system with areaA, the number densityn(0) atz50 is
given in terms of the total number of particlesN by

N5E d3xn~x!5n~0!E
0

`

d3xe2mgz/kBT5n~0!A
kBT

mg
.

~91!

Hence,n(0)5(N/A)(mg/kBT) and P(0)5Nmg/A, as ex-
pected. Note that, as remarked previously, the pressur
isotropic at any point,Tx,x5Ty,y5Tz,z , even though the po
tential is not, and isotropy was not used in the derivati
This result holds generally for quasi-continuous system
sufficiently high excitation.

A more interesting result with respect to the gravitation
field is the existence of a Bose–Einstein condensate in
ideal system at sufficiently low temperatures, an exam
that makes a good homework problem. The particle num
for the Bose system is given in Eq.~50!, which becomes

N'
3A

p0
3h2 E d2p'E

0

`

dpz pz
2~eb[p2/2m2m]21!21

,
3A

p0
3h2 E d2p'E

0

`

dpzpz
2~ep2/2m21!21 ~92!

for the energy spectrum in Eq.~88!, with sums converted to
integrals andpz defined through Eq.~89!. The inequality
follows from the convergence requirement thatE02m.0
and the approximation in Eq.~92! that E0'0.
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The inequality is clearly violated for a fixedN at suffi-
ciently low temperatures or large values ofb. It is then nec-
essary to single out the ground state because this sta
given zero weight in the transition from a sum over states
an integral overE or p, and include its occupation numbe
N0 explicitly. N is then given by

N5N01
3A

p0
3h2 E d2p'E

0

`

dpzpz
2~ep2/2mkBT21!21. ~93!

The integrals can be evaluated by changing to spherical
ordinates, and then to the variablet5p2/2m after performing
the angular integration. The final integral gives a product
a generalized factorial or gamma function with the Riema
zeta function

E
0

`

dt
tz21

et21
5G~z!z~z!. ~94!

The inequality in Eq.~92! can just be satisfied for a give
N at a temperatureT5Tc determined by setting the right
hand term equal toN, and fails at lower temperatures. Th
calculation gives

N5
3p3/2A

4p0
3h2 ~2mkBTc!

5/2z~5/2!, ~95!

corresponding for a gravitational potential to

kBTc5F mg

z~5/2! S h2

2pmD 3/2N

AG2/5

. ~96!

At lower temperatures,

N05N@12~T/Tc!
5/2#. ~97!

The power ofT/Tc in Eq. ~97! is different from that for an
ideal system with no field present. The critical temperat
Tc also is higher for fixedN than the critical temperatureTc

0

in the absence of the gravitational field,Tc /Tc
0

5@z(3/2)/z(5/2)#2/3'1.56, a difference attributable to th
greater density of the gas near the ground. Finally,
ground-state wave function is compact inz with a character-
istic extentzmax'E1 /mg5(81h2/512mg)1/3'5.4 mm for he-
lium, and the condensate ‘‘falls to the floor.’’

It is interesting that the presence of a gravitational pot
tial leads to the appearance of Bose–Einstein condensa
in a two-dimensional system withV(z)5zV0 /z0 and free
motion in a box of lengthL in the transverse direction, with

N05@12~T/Tc!
2#, kBTc5

1

m S 2p0
3h

p3

N

L D 1/2

. ~98!

In contrast, there is no condensation for free motion in t
dimensions.

The calculations of the local number density and press
in an external field are simple for dilute systems for whi
the Fermi and Bose statistical factors reduce in leading o
to the usual Boltzmann factor. The calculations cannot
done exactly when quantum corrections are important, w
many particles within a volume of of linear dimension equ
to the thermal wavelength, but are similar numerically to t
calculation ofN(x) in the following example.
1092Loyal Durand
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3. Example: Bosons in a harmonic trap

An example of interest in connection with Bose-Einste
condensation is that of atoms confined in a harmonic t
with V(x)5( i 51

3 1/2mv i
2xi

2 . The total number of particles in
the system is given by Eq.~84!, specifically,

N5E d3xd3p

h3 ~eb( i [ pi
2/2m1(mv i

2/2)xi
2] 2bm21!21. ~99!

The integral can be simplified by changing to the dimensi
less variablesxi85v iAm/2kBTxi , pi85pi /A2mkBT, and
then going to the six-dimensional coordinatess5(x8,p8),
s25( i(pi8

21xi8
2), and working in the spherical represent

tion. The result is

N5
1

p3 S kBT

\ D 3 1

v1v2v3
E

0

` s5ds

es22bm21
E dV6 . ~100!

Here,dV6 is the element of solid angle in six dimension
and*dV65p3.

The remaining integral is maximized form50, and can be
evaluated exactly in this limit by changing the integrati
variable froms to t5s2 and using Eq.~94!. The resulting
equation determines the critical temperatureTc for the onset
of Bose–Einstein condensation for fixed particle numberN,

kBTc5\S v1v2v3

N

z~3! D
1/3

. ~101!

For a spherical trap with oscillation frequencyn
5150 Hz andN543104, fairly typical conditions for origi-
nal experiments with Rb atoms,16–18 Eq. ~101! gives Tc

56.77 nK3N1/35232 nK. Note that \v/kB57.20 nK
!Tc , so that a large number of oscillator states are exc
at Tc , and the use of the integral approximation to the s
over states is legitimate.

The number of particles in excited states forT,Tc , m
50 is Nexcited5N(T/Tc)

3, and the number in the groun
state is therefore

N05N@12~T/Tc!
3#, ~T,Tc!, ~102!

with N050 for T.Tc . These calculations illuminate th
conditions under which a real Bose–Einstein condensate
be formed in a gas, and make good homework problems

The number density in a spherical trap follows from E
~99!,

n~r !5N0~T!uc0~r !u21
1

h3

3E d3p~eb(p2/2m1mv2r 2/2)21!21, ~103!

for T,Tc , wherer 5Ax2, and

c0~r !5
1

p3/2r 0
3 e2r 2/r 0

2
, r 05A\/mv. ~104!

The actual evaluation of the local number density in
trap from Eq.~103! requires some numerical calculation, b
gives a striking illustration of the emergence of the cond
sate. It is useful to scaler by r 0 , n(r )5d3N/d3r by N, and
T by Tc , and change tot5p2/2m as the variable in the fina
momentum integration. Then, if I use Eqs.~101!, ~102!, and
~104!, I obtain
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1

N

d3N

d3~r /r 0!
5

1

p3/2F12S T

T0
D 3Ge2r 2/r 0

2

1
1

&p2z~3!
S \v

kBTc
D 3/2S T

Tc
D 3/2E dtAt

3~et1 1/2(\v/kBTc)(Tc /T)(r 2/r 0
2)21!21. ~105!

The original number distribution atTc has a characteristic
width 'AkBTc /m^v2&. A very sharp ground-state peak a
pears in the number distribution asT is lowered belowTc . A
comparison of the calculation with the number distributi
observed in the original experiments on Bose–Einstein c
densation in Refs. 16–18 shows qualitative agreement,
gives a real feeling for how the theory describes to the
served emergence of a condensate.

The pressure in the trapped system can be calculated u
similar methods, and balances the force from the confin
oscillator potentials. However, because of the long mean
path for particle intractions, it is not relevant for the expa
sion of the condensate when the confining interactions
suddenly removed.

V. COMMENTS

The main objective of this paper has been to give dir
derivations of the pressures in Fermi and Bose systems u
the relation of pressure to momentum flow and the quan
stress tensor. This quantum kinetic theory approach is sim
conceptually, and shows that the pressure is naturally defi
locally, a point of interest for particles in external fields.
leads also to a direct understanding of the difference in Fe
and Bose pressures at fixed particle number and tempera
in terms of the different momentum states excited, a po
often argued qualitatively. A bonus of the analysis was
appearance of the simple examples of the use of boun
perturbation theory to establish the connection of the us
thermodynamic arguments for particles and fields to the
sults obtained directly in a stress-tensor approach.

I also discussed the properties of extensive, qua
continuous systems, showed the role of excitations high
the scale ofkBT in obtaining isotropic pressures in intrins
cally anisotropic systems, and illustrated the appearanc
anisotropies and the effective reduction of the dimension o
system at low enough temperatures. Finally, I gave an
plicit WKB derivation of the usual expressions for the num
ber density and pressure of particles in an external field,
presented several examples that illustrate the use of
stress-tensor method in real physical problems. I have fo
these examples to make good homework problems i
graduate course on statistical mechanics.

ACKNOWLEDGMENTS

The author would like to thank the Aspen Center for Ph
ics for its hospitality while parts of this paper were writte
This work was supported in part by the U.S. Department
Energy under Grant No. DE-FG02-95ER40896.

a!Electronic mail: ldurand@hep.wisc.edu
1David S. Betts and Roy E. Turner,Introductory Statistical Mechanics
~Addison-Wesley, New York, 1992!.

2R. P. Feynman,Statistical Mechanics~W. A. Benjamin, Reading, MA,
1974!.
1093Loyal Durand



w

s

nd

. A.
ic

of
ns,’’

,
n-
3D. Ter Haar,Elements of Thermostatistics~Holt Rinehart Winston, New
York, 1966!.

4Kerson Huang,Statistical Mechanics~Wiley, New York, 1987!, 2nd ed.
5Ryogo Kubo,Statistical Mechanics~North Holland, New York, 1978!.
6L. D. Landau and E. M. Lifshitz,Statistical Physics~Pergamon, Oxford,
1994!, 3rd ed.

7Franz Mohling,Statistical Mechanics~Publishers Creative Services, Ne
York, 1982!.

8L. E. Reichl,A Modern Course in Statistical Physics~Wiley, New York,
1998!, 2nd ed.

9Richard C. Tolman,The Principles of Statistical Mechanics~Oxford Uni-
versity Press, Oxford, 1962!.

10J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics~McGraw-
Hill, New York, 1964!, pp. 186–190.

11M. Kac, ‘‘Can one hear the shape of a drum?,’’ Am. Math. Monthly73, ~4,
Part 2!, 1–23~1966!.

12L. I. Schiff, Quantum Mechanics~McGraw-Hill, New York, 1968!, 3rd
ed., pp. 268–279.
1094 Am. J. Phys., Vol. 72, No. 8, August 2004
13R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integral
~McGraw-Hill, New York, 1965!, Secs. 10.1–10.3.

14L. Brown, Quantum Field Theory~Cambridge U. P., Cambridge, 1992!,
Secs. 2.1–2.6.

15M. C. Gutzwiller, ‘‘Phase integral approximation in momentum space a
the bound states of an atom,’’ J. Math. Phys.8, 1979–2000~1967!.

16M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E
Cornell, ‘‘Observation of Bose-Einstein condensation in a dilute atom
vapor,’’ Science269, 198–201~1995!.

17C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, ‘‘Evidence
Bose-Einstein condensation in an atomic gas with attractive interactio
Phys. Rev. Lett.75, 1687–1690~1995!.

18K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten
D. S. Durfee, D. M. Kurn, and W. Ketterle, ‘‘Bose-Einstein conde
sation in a gas of sodium atoms,’’ Phys. Rev. Lett.75, 3969–3973
~1995!.
1094Loyal Durand


