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I show how the pressure in Fermi and Bose systems, identified in standard discussions of quantum
statistical mechanics by the use of thermodynamic analogies, can be derived directly in terms of the
flux of momentum across a surface by using the quantum mechanical stress tensor. In this approach,
which is analogous to classical kinetic theory, the pressure is naturally defined locally. The approach
leads to a simple interpretation of the pressure in terms of the momentum flow encoded in the wave
functions. The stress-tensor and thermodynamic approaches are related by an interesting application
of boundary perturbation theory for quantum systems. | investigate the properties of
quasi-continuous systems, the relations for Fermi and Bose pressures, shape-dependent effects and
anisotropies, and the treatment of particles in external fields, and note several interesting problems
for graduate courses in statistical mechanics2@©4 American Association of Physics Teachers.
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[. INTRODUCTION kinetic theory; specifically, the relation of pressure to mo-
mentum flow and the quantum stress tensor. These ideas are
The concept of pressure in quantum systems is usuallyell defined in quantum systems, give a “quantum kinetic
introduced in equilibrium statistical mechanics using thermo+theory” approach to pressure, and lead to a direct interpreta-
dynamic analogies. For example, the Helmholtz free energyion of the pressure in Fermi and Bose systems in terms of
F is identified with the logarithm of the canonical partition the momentum flow encoded in the wave functions. | will
function Z, and the thermodynamic potenti@l, with the  show that the pressure is naturally defined locally, a point
logarithm of the grand partition functiog by the relations '(Ejhat is O%ViOUS inlthﬁ stres(;js—tensor approacﬂ bu';]that is hid-
en in the usual thermodynamic approach. The two ap-
F=—kgTInZ, Q=-kgTIn2Z. (1) proaches are connected by an interesting application of
Here,Z is the usual sum over the energies in the system boundary perturbation theory for quantum systems.
The basic ideas and relations are developed in Sec. II, and
Z=Tre PH=" e FE, 2 their use for systems of noninteracting fermions and bosons
= ' is given in Sec. lIl. | then consider several examples, includ-
_ . . ing the properties of quasi-continuous systems, relations for
with B=1/kgT. A separate partition functiody can be de- Fermj and Bose pressures, shape-dependent effects and

fined for each particle numbé¥. = is then defined as anisotropies in Sec. IVA, and examples for particles in ex-
ternal fields in Sec. IV B. The results lead to several interest-
Z=E eNArz,, €©)] ing problems for graduate courses in statistical mechanics.

N

where u is the chemical potential.
The pressure is customarily determined by one of the starl. PRESSURE IN STATISTICAL SYSTEMS
dard thermodymanic relations

P=—0F/oV=(kgT/Z)(9ZI3V), (48  A. Pressure and the stress tensor
or The pressuré(x,t) of a system at a point on a surface
PV=—Q, (4p)  Sattimet can be defined as the rate of momentum flow per

) . . unit area across a surface elemd8t=ndS, that is, in terms
with F evaluated at fixed temperatufeand particle number  f the force per unit area or stress acting across the surface.

N, and() at fixedT and .. In the second case, the averagep gepends implicitly on the orientation of the surface
particle number and chemical potential are relatedNoy hroughf, but I will not indicate this dependence explicitly

- _‘99/‘9:“-, . i ) , for notational simplicity, and because the appaientepen-
The relations in Eqs(4) can be confirmed in classical gence is absent for extensive, quasi-continuous systems. |

particle statistical mechanics by an appeal to the results Qfj| apply this definition in the quantum context, and will
kinetic theory, and can be further motivated by an appeal t@pgw that

the concept of generalized forces when the energy of a sys- -
tem depends explicitly on external parameters such as its P(x,t)=—(f-T-f), (5)
volume. However, standard discussions do not show directly < )
how the pressure relations arise in a kinetic-theory-like conwWhere T is the quantum mechanical stress tensor, and the
text in quantum statistical mechanics. For a sampling of stan@verage is over the statistical distribution of the quantum
dard treatments, see Refs. 1-9. states occupied at temperature

The objective of this paper is to derive the pressure in For definiteness, consider a quantum systemN afentical
Fermi and Bose systems using ideas analogous to those particles with the Lagrangian density
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i7i n2 2 "
L= (Y dup=a* ) = 5= 2 (Vi) - (V1)) Na(xt)=2 J Vot x=x)d% - d¥y. (9)
I=1 I=1
VY, 6) After some rearrangements, the time derivativgptan be

wherey= i(xq,... Xy,t) is the many-particle wave function written as

of the system and \&,... Xy) is the potential. The corre- N

sponding Schrdinger equation is dp,(x,t) % . .

dt _I_lgl f (atdlavﬂ//a_vlltbaat'rlja)&?

n2 &

iap=—-— >, VEy+Vi. 7

W 2m2‘1 EaRd ™ X (x—x)d3x - - - d3xy
The momentum density at the poirtfor a system in a 5 N
state|e) with wave functiony,, is + 521 J V(o= i ) 8°

4 N

Pa(X )= 57 2, J WV o=V P, 8° X (x=x) A d . (10

=1

X (x—x)d3%q- - -d3xy (8) It is convenient to switch to a component labelingpf

and consider;p, ;. | use the Schidinger equation7) to
a result obtained by integrating the sum of single-particlegjiminate the time derivatives in E¢10), split the double
momentum operatorsi(2i) (¢, V¢, — V45 ,) over the  sums that appear into terms with identical and different par-
coordinates of the particles that are not observed. The intaicle labels, and organize the results as much as possible into
grations are over the volumé in which the system is con- a set of divergences. After a straightforward calculation, |

fined. Similarly, the local number density is find that
|
dp,,i(xt) 5 3 3 o
— - —2 Ve (V) e (x =) %%y -0y = 2 2 V(Wi Vb Ve Vi)
2 N

h
X 83(x=x) A%y d3xy+ >m D | (Gt Vi) B (x—x) A%y - dPxy
=1

2 N

am 2 Vi (Vi + VG ) 83(x—x) A3, --dxy + surface terms. (11

|
The surface terms result from the integration of divergences J J
V.. -(-) in variablesx,, other than the selected variabte Tﬁizmﬁi Y+ ) iy— L
=X, using Gauss’ theorem. These terms vanish for the usual K
boundary condition for the energy eigenstates; thatis, . .
=0 for any of the coordinates on the boundary of the con- T Vit Vikdbat VikoVida
fining volumeV.

The first term on the right-hand side of Ed.1) is the
force densityF, (x,t) atx. gThe remaining termqé are in the —OiVida Vida— 5k AR
form of a divergence, and the result can be written as

2 N

VU | (= x) A%y Ay (14
dpPa,i (1) =F,, (%) + VT (x,) (12) Upon integrating Eq(12_) over a volume/' CV, one finds
dt ' that the total momenturi in V' changes both because of the

bulk action of the forces, and from the flow of momentum
across the boundary surfaé=gV’,
or, in dyadic notation,

dP dpa,i
dt fv' it (x,t)d3x
P -
gt XD =Fa(X0)+V-TAX,1), (13 =f Fa,i(x,t)d3x+f dSTE(x,1), (15)
Vv’ s’

or, in dyadic notation,

whereT,; is the quantum stress tensor evaluated in the state

dP, .
|, | W(t):fera(X’t)d3X+L,dS'T (x,1). (16)
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With the conventional definition of the quantum mechanicaldefinition of the pressure is intrinsically local and is ex-
stress tensor in Eq14), dS- T is the rate of momentum flow Pressed through the action of the momentum operators
across the surface elemed8=ndS intothe volumeV’ —iAV, as would be expected on the basis of classical kinetic

with A the outward normal to the surface. The pressureigt theory. It is not immediately clear how this definition of the
i } ; / pressure is connected with the usual thermodynamic defini-
igs|ven by the momentum-flow per unit areat of V. That tion in Eq. (4). | will first show that the two definitions are

equivalent when one considers local variations of the volume
P (xt)=—n-T¥x,t)-A, (xeS). (17)  inthe relationP=kgTdInZ/iV.

For equilibrium quantum statistical mechanics, the rel-
evant statesa) are stationary state@hat is, energy eigen-
stateg, with = (X1, ... Xy e 'Ea" In this case, the ex- B. Pressure from the partition function

plicit time dependence drops out in Eq31)—(17), and ¢, . I .
can be taken in these and the following expressions as th The thermodynamic definitio) of the pressure in terms

spatial wave functiony, (x,....xy). The pressure, stress 6t the canonical partition function gives the relation
tensor, and force density are then independent; dhat is 1
y pendert, -5 et 21)

JE
P(x,1) =P, (x), Te(xt)—=Tx), and F,(xt)—F(x). 24 o

Furthermoredp, /dt=0, so that—V-T=F, and the diver—_ A comparison of Eq.(21) with Eqg. (20) suggests that
gence of the local stress is balanced by the force density. JE_/5v should be expressible in terms of the normal deriva-
will focus on this case for the remainder of the paper and USGye of 4, on the boundary surface for local variationsvin
the definition This relation is easy to show using boundary perturbation
o Tary A ' theory. | consider a small change in the volume of the system
Pa(X) A-T)-A, - (xeS') (18 implemented by displacing the boundary surface outward
for the pressure at in the statela), whereT*(x) given by ~ OVer a small surface patghS through a normal displace-
Eq. (14) with ¢, the spatial wave function. ment ox=hox(x) that varies smoothly oveAS and van-
I will first consider the case in whicli’ =V is the volume ~ ishes elsewhere. The enerigj; of the system in the distorted
in which the system is confined, and will consider a morevolume will differ from the energ¥, of the original system,

general case in Sec. Ill. For on the boundary surfaceé  with E,=E,+ 6E,. The perturbed spatial wave functigrj,
=4V, ¢, and the derivatives ofy parallel to the surface and the original wave functiony, satisfy the time-
vanish. Thus, from Eq14), independent Schdinger equatior(7), as follows:
n2 N n? &
- AV, )R- ELg.=———2 Vi +Vyl, 22
Pu(= 52 | (A-Vid)(A- V1) 8° o= gmy VvV, (22a
X (X— %) 3%, 3%y, (19 72 N
S Eatha=— 5= 3, VEU+Vi. (22b)
I=1

and the pressurB(x) in the statga) depends only on the
normal der'ivatives ofy,, atx. '.I'o'obtain theﬁaﬁ\éerage pressure | myltiply the adjoint of Eq{(22a on the right by, and Eq.
P(x), | weightP, by the statistical factoe "“«/Z and sum  (22p) on the left byy* , subtract the resultant expressions,

over all energy eigenstates, with the result and find
1 42 N i A B 52 N
P=Z 502 2 f (A-Vg5) (A Vi, e PEad® OB o= g 2, Vi (VI = U Vi),
X (x— %) A3 - d3xy . (20) (23

. : . L where | have assumed that the potential V is unchanged. An
Here, Z is the canonical partition function in E@2). The integration over the original volume gives

sums are over all the completely symmetric states for Bose

systems, and over all the completely antisymmetric states fo ' 4 3v .43
Fermi systems. °E. V‘/'a Yol Ay
The sums over eigenstates include sums over the extra N
guantum numbers necessary to label the states completely. h?
i =—5= 2 | dS(0- | (Viglr
For observables such as the total number density or pressure, 2m= s v 1o Yo
which do not depend on the internal structure, #feecan be B

reduced to spatial wave functions, and the right-hand side of — I *V ih,) 83(X— X)) 3%y - d3Xy (24)

Eq. (20) multiplied by the appropriate degeneracy faajor

Wﬂ| E‘oll)ow thig convgntion throupghout thg paper.y 9 where the surface integration is defined in terms the variable
Equation(20), or the more general form in E¢L8), gives X i ) .

my basic “quantum kinetic theory” result. The differences 1he wave functionj, vanishes on the original surfa&

between fermions and bosons enter only through the symmé® that the’Ilrst term in parentheses in E€ﬂ4) vanishes.

try properties of the wave functions and the resulting differ-Similarly, ," =0 on the distorted surfacg’, so that the

ences in the sums over states. Before investigating these egecond term vanishes, except on the pai€where the two

pressions in simple cases, | emphasize that the kinetisurfaces differ, and the surface integration reduces to the
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patchAS. For small normal displacemenéx=nox(x), ¢,  WhereF is the Lorentz force density

can be approximated to first order &rg using the first non- N

zero term |,n its TAaonr ,serles expansion rgla_tlves.’(? 1/ F oot = J eyt E, 8%(x—x) A3, - %%y
~—0x-Vy,~— (- Vi) ox, where the variation og,, for =1

small displacements parallel toS does not contribute to the N

first order. Finally, takingy., equal to, in leading order + iz [(iﬁvl_ EAI
and using the normalization condition for the wave function, 2mef= c

| find a first-order expression faofE,, ,

l/lzx Bl l/la

, e
— 5B X |ﬁV|—EA|>¢/a}63
h2
OBq.=~ 2mi&) Lsdsava(ﬁ‘Vllﬁz)(ﬁ'VWZ)&o’ X (x=x)d3xq - d3y, (29
X (x— ) d3%q- - d3xy - (25) andTy; is the gauge-invariant stress tensor

N
The integrand in the volume integral can again be taken agy, = — LE j [(ihv— EA) wZ( —ihV— EA)
constant to leading order faron AS. The remaining surface ' 2m(=y C C ik
integral gives the volume chang®/= [ ,<dSéx, so that e e
x¢a+(ihv——A> l/lz(—iﬁv——A>
¢ ik ¢

JE 4(X) 72 N N N\ A *
oV :_ﬁZ’l fv(n'VWa)(n'Vl‘//a)gg

SN T
X (x—x) A3y - d3xy . (26) ! , !

1 e

+§5k,i(¢2(_iﬁv_‘A) Va
The substitution of this expression in E@1) reproduces Eq. ¢/
(20), and the kinetic and thermodynamic definitions of the e |2
local pressureP(x) agree. For homogeneous isotropic sys- +(iﬁv_ —A) o %)
tems, the factor f{- V%) (A- V%) in the integral in Eq. ¢/
(25) has the same value at all points 8nthe surface inte- )
gral can be extended to the entire surface, and the calculatioe force density has the expected forfv-eE+ (e/c)v

reproduces the usualx-independent expressionP XB. o ]

=kgTaInZ/V. The pressure is given by E(L7), or, for the case of static
fields A and ® and stationary statds), by Eq.(18). If the
latter is evaluated on the confining surface where the spatial

C. Generalizations wave functiony, vanishes, theA-dependent terms in Eq.
(30) vanish, and the time-independent press&gXx) is
again given by the expression in E49) and depends only

1. Electromagnetic interactions on the normal derivatives of and *. The more general

. ) ) ] expression in Eq(18) can be used for a surface element in
The results described in Sec. Il can be generalized in varithe interior of the confining volume.

ous ways. For example, in the presence of electromagnetic A calculation similar to that in Sec. 1B also reproduces
interactions, the Lagrangian in E(f) becomes Eq. (19) for static fields and stationary systems. The
A-dependent terms again drop out on the confining surface,

S3(x—x) A3+ --d3xy . (30)

in 1 N e and the expression fafE, obtained in boundary perturba-
L= ?(l/,* Ah— ™ ) — 2_2 (iﬁvl - —A|) o tion theory reduces to E¢25).
mi=1 Cc
if ° * O
| TIAVIZ A R, @n 5, Wave-type equations

Quantized systems of bosons such as photons, mesons, or
whereA, and®, are the respective vector and scalar potenphonons in a solid satisfy wave-type equations; for example,
tials evaluated at the positian of particlel, and the par- the standard wave equation
ticles are treated as identical, with chaegeThe pressure of L
the system is related to the rate of change of the kinetic 2 2 m-=c”
momentum mv =p—eA/c summed over the particles. A 2% 21 Viet =z ¢=0, (31)
rather lengthy calculation for a stajie) gives

2-2

with or without the extra mass term or potential

d e - m2(xy,... Xy). The normalization ofp is given in terms of
d—( p— —A) (X, 1) =F(X,t)+V-TYx,t), (28) the covariant current densit{,and reduces for positive en-
t C /s ergy eigenstates to
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i
f E(¢* dhp—dp* ¢)d3xy- - d3xy

2E * 3 3

An appropriate Lagrangian density for such systems is

2

1 N m<c
£=hc(?at¢* a‘¢_|§1 Vi¢* -V p—¢*

2

ralab
(33
The corresponding momentum dengifx,t) is
% N
PO D=5 2 j (Vig* o+ i4* V1) 8°
X (X—X) A3 - -d3xy - (34

Calculations ofdp/dt similar to those above give the same
formal result for the pressure as in Ed.8), but with the
stress tensor now given by

N
Ti= _ﬁCZﬁ f (V1,i¢*V 1+ V d*V, i

— 8 L) 3(x—x)d3xy- - d3xy . (35

Equation(35) can be written in an energy eigenstate with
wave functiong=¢,(x,...xy)e 'E'" as

N
Ti= _ﬁcgl f [ViidnVikdat Vi Viida

—8iVI0E Vb — 38i(dEVEDat+ VEDEDo)]

X 83 (x—x) A3y - -d3xy - (36)

The corresponding pressure feron a boundary surfacg
=JV where =0 is given by

N
P.0=reS, [ (9,850 9,9,)5

X (x—x) A3y - d3xy,

(37

and depends only on the normal derivatives ¢pofon the
boundary. For a general surfa&CV, the full form of Ty;
must be used. The pressure in the canonical ensemble is

P(x)= %2 Po(x)e 7. (38)

2Eo0E,
ChLE b= —th Vi (V16 ¢

— 6" Vida). (40)

Manipulations equivalent to those following E&3) and the
use of the normalization conditiof32) give the result

N
__ﬁcglf(ﬁ-v.¢z>(ﬁ-v|¢a>a\3

X (x— %)) d3xy - (41)

for local variations of the boundary surface. Finally, the use
of the thermodynamic relation E¢21) reproduces the ex-
pression for the local pressure in E§8). | emphasize, how-
ever, that the equatioR (x)=—1-T,- A for the local pres-
sure in a statéa) holds more generally than E37) and
does not require that be on the boundary surface.

'd3XN y

[II. PRESSURE IN NONINTERACTING BOSE AND
FERMI SYSTEMS

A. Bose systems

As a first example, | consider the important case of non-
interacting bosons in an external field. The Hamiltonian for
N noninteracting particles is a sum of identical single-
particle Hamiltoniandd;: H =2|N:1H 1(X;). The wave func-
tions ¢, for the single-particle statgk) satisfy the Schro
dinger equationdH (X)) =E, i (X). | will suppose that
the energy eigenvalues have been ordered soBhatE,
<E3<---. The total energies are simply sums of single-
particle energie€,, and can be labeled by the number of
particles in each single-particle eigenstdte as

nlE1+n2E2+"' y (42)

E =
P PO

wheren;+n,+---=N. The full wave function folN bosons
with n; in state|k;), n, in state|k,), -+ is then a fully
symmetric sum of product wave functions,

"1 factors n2 factors

\/—E [lﬂl Py lﬂz"]

X(P(xy,....xy)), (43

where the sum is over all permutatioRsof N objects, and
wave function factors witm, =0 are to be replaced by 1.
The coordinates of the successive wave functions wijth
#0 are given in each term in the sum by the corresponding
coordinates in the permutatioR of xq,...,Xy. The set of
ne's gives a unique labeling of the state. Their values are

(xl’- s X,

wnl,nz,...

It is easy to show that the same result follows from therestricted by the condition,=N.

usual thermodynamic relation in E1). Thus, from Eq.
(31)1

2 mZCZ
22 b=~ Vibat 7 ba- (39

An equation of the same form with a perturbed enefgy
holds for the perturbed wave functiafy, that results from a

The number density of particles at a poinis given for a
definite state by Eq(9). The total density reduces after the
integrations to

.. (0= 25 e () ), (44)
and a final integration over gives the total number of par-
ticles N becausez,n,=N. Similarly, from Eq. (19), the

local displacement of the boundary. By combining the twopressure on the boundary surface associated with the given

equations, | find, as the analog of E&3), that
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2

P,y o (0= 5 2 iR VU (X)) (- V (X))
(45)
More generally, for a surfac®’ =0V', V' CV,
Pon,.. (0==2 ni-TEn, xes, (46)
k

where the tenso‘t‘ikj is given in Eq.(14).
It is difficult to work with the canonical distribution for
bosons because of the restrictigznpn,=N. | will therefore

change to the grand distribution as is usually done. | multiply

Eq. (44) by the Boltzmann factoe™ #En,.n,.... for the speci-
fied energy and by a facte®*N, which will be used to

A similar calculation gives the result for the pressure,at
again of a form that could be anticipated from the single-
particle forms of Eqs(14), (18), and(19):

P(x)=—§k: ﬁ.-l‘:’k.ﬁ(eB(Ek*M)_l)*l (51
2
= om2 (N Vi () (A= V(%))
% (eﬁ(Ek’l‘)— ]_)’1. (52

The first form holds fox on a surfac&’ inside the confining

enforce the correct average number of particles, sum over thgslume, and the second form faron the confining surface

n, andN, and find that

1
=32 2

k np.ng, ...

X (X) e (x) €PN

% 5n1+n2+...,Nnk

:%E (2 nkl/f’i(x)z//k(x)eﬁwkmk)

Nk

X H (z eB(Ek'M)nk')

k' #k \ Mk
1 e~ BE—w)
= 32 i (X) ¢(X) (1—e FE-my2

1
<1 | 5==rEa ) (47)
AR

where convergence of the sum requires tBgt ©>0. Z is
the grand partition function

1
z=11 | f==reem. (48
so that Eq.(47) reduces to
n(x>=§ W () () (ePE M — 1)~ 1, (49)

Equation (49) is just the result that would be expected.

Each product of wave functiong} ¢, appears with a weight
that is just the average occupation number of the $kateas

S=9dV. For T—0, Eq. (52 gives P(x)—(N#2/2m)(f

-V g (X)) (A V ifg(X)) . Note that the pressure does not van-

ish exactly for a system confined in a finite volume even at
T=0, aresult connected to the kinetic picture and the uncer-
tainty relation.

The pressure in systems of noninteracting bosons also sat-
isfying the wave equatiof31) is given formally by the ex-
pression in Eq(51), with T now given by the single-particle
form of Eq.(37). The analog of Eq(52) is therefore

P<x>=ﬁc§ (A-V ¢ (x)(A-V (X))

X (ePEBm—1)71, (53

B. Fermi systems

The composite state & noninteracting fermions is speci-
fied completely by the number of particlag in each single-
particle statdk) wheren,=0 or 1. The energy of the state
[ny,n,,...) is just En, n,...= =Bk, as in Eq.(42. The
corresponding wave function is given by the completely an-
tisymmetric sum

1 AL
wnl,nz,--.(xla---’xN): W; (_)P[ wle' }

X (P (X)), (54)

calculated for the usual Bose distribution for noninteractingwhere (~)P is the signature of the permutatidhof N ob-

particles'—®

If there are spin or other internal degeneracies, the intern

factors in the wave functiong’s in Eq. (49) can be sup-

pressed and the wave functions reduced to their spatial co

ponents, provided that the right-hand side of E9) is mul-
tiplied by the appropriate degeneracy fagjosnd the sum is
taken to run only over nondegenerate energies.

The integral ofn(x) gives the average number of particles

N in the entire distribution,
N=, (eBEm_1)~1, (50)
K

Equation(50) gives an implicit relation foru in agreement
with the thermodynamic expressidh=kgT(dIn Z/du).

1087 Am. J. Phys., Vol. 72, No. 8, August 2004

jects and=,n,=N. The factors of wave functiong, with
«=0 are to be replaced by 1. The coordinates of successive

pyave functions witi, =1 are given in each term in the sum

by the corresponding coordinates in the permutaforof
X1,...Xn- Then's are restricted by the condition that their
sum beN.

The number density and pressure of the particles in the
specified state are given at a poiby Egs.(9) and (19),
respectively, and reduce after the integrations are performed
to the expressions in Eq§4) and (45), or more generally
Eq. (46), just as for bosons. The difference between the two
cases is entirely in the allowed values of this. The sum
for fermions can be performed simply in the grand statistical
distribution, with, for example,
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1
=32 2 X3 N

K NNy, =0,1 "N ni+n,+..., N

X e (X)) N
1
=22 HO0g()ePEH)

X H (1+e ABw—n))
k' #k

= PP (ePEM 1)L, (55)
k
where | have used the relation

Z= 1;[ (1+e AE M), (56)

These ideas can be illustrated for a uniform syster®in
dimensions in a box with sidds;, i=1,2,..,D. The wave
functions and energies are

° \F X ° h2
_ ‘o iXi _ 2 "
Uiny(X) |];[1 Lism L Em Elnl gmL"
(59

where{n}=(n4,...,np) with n;=1,2,... only. Equatiort59)
gives

D
1 2’7TniXi
P (X) Py (X) = V_DH (1—2 cos—- ) (60)

=1

whereVp=1II;L; is the volume of theD-dimensional paral-
lelepiped in which the system is confined, and the state label
k in earlier equations is now given explicitly by the multi-
indexny,n,,...,np.

The expression in Eq55) is again what would be ex- The typical index for states excited at temperatilirés

2/D 112\ 1/2 H H
pected because the final factor is the average occupatidte<™ (8MksTV="/h%) "= If ng, is large, many states will be

number of the staték) in the grand ensemble. Similarly excited as required for the conversion of sums to integrals,
using Eq.(45) " and the oscillating terms in E¢0) will average to zero over

small regions of the box. Then, for observations over such
regions, ¢* y~1Np, a result independent of the shape of
Vp . This result is the same as that obtained using the stan-
dard approximation of running waves with periodic bound-
ary conditions,zp%(1/\/V)exp62j7mjxj IL;). An independent
argument shows that the sums of the oscillating terms vanish
rapidly at fixedx as the numbers of significant terms in the
summations grow. Because the level spacings tend to zero
for Vp—, either argument shows that only the leading
<y ) ) , term in Eq.(60) is important for large systems.

where T* is the single-particle version of Eql4). If the If | drop the oscillating terms in Eq(60), the expression

system has internal spin-type degeneracies,#8ein EQq.  for the local number density for uniform Fermi and Bose
(57) can be reduced to the spatial factors in the full wavegystems becomes

functions, and the sum restricted to the nondegenerate spatia
eigenstates after multiplying the right-hand side of Egl)
by the degeneracy factay.

ﬁZ
P(0 =52 (A- Yy () (- V()

X (ePBm+1)7 1, (57)
or, more generally,

P(x)z—}k: A-TK A(eBECA 4 1)1 (58

(€A™ +1)" 1) (61)

where the upper and lower signs refer to Fermi and Bose
systems, respectively. The sums can be converted approxi-
mately to integrals by repeated use of the Euler—Maclaurin
summation formula

IV. EXAMPLES
A. Quasi-continuous systems

1. General considerations 1

720 (O

The systems to which statistical descriptions are applied
most frequently are large, extensive systems in which the
potentials are uniform or periodic. A well-known theorem den (62)
shows that the number of eigenvallgssmaller than a fixed
valueE increases proportionally with the volume of the sys- ) , e
tem for V—. [See Kad! for a famous discussion of this Maclaurin formula vanish at; =0, for the function in Eq.
result and its history in the context of the spectrum of a(61)‘ The first two terms in Eq(62) are therefore all that

drum] The eigenvalues therefore pack together for large  SUTVIVe up to exponentially small corrections that can be
surface effects on the spectrum become negligible, and it it vest|gateq using PO'SS.O” summation. | retain only the lead-
plausible that the sums over states in the preceding sections? corrections, which yields

can be converted to integrals when there are many states with 1 (= Bz (h2BmL)n— ) .
energies less thakgT. The main question concerns the be- ”(X)~7D JO dnidny - -dnp(e”= PR
havior of the wave functions in the limit of largé. We
expect that the productg™ (x)#(x) and V™ (x)- Vi (x)

will each reduce for larg® to the sum of a term describing
their smooth average behavior, and extra rapidly oscillating
terms that average approximately to zero. The result should At this point, a change to the momentum variabjgs
again be insensitive to surface effects for sufficiently large=(h/2L;)n; gives the familiar expression for the leading
V. term, plus corrections that vanish %§ " for Vp—o:

] " 1 1
r1§=:1 f(n)zfo f(n)dn—if(O)—1—21”(0)4r

The odd-order derivative&?**1) that appear in the Euler—

. (63

X(l—%z S(n)+-+

1088 Am. J. Phys., Vol. 72, No. 8, August 2004 Loyal Durand 1088



d®p 2 f2m— -1 d®p — B(p2/2m—
n(x)=fh—D(eﬁ(pD mom)x 1) P(x)=ikBTfh—D|n(1¢e Alpp/am=p))
h dD—l dD
-3 o [ SoF (e gy — ke [ =), 67
T 2L h h
+0(1/L?), (64) wheren(p) is the Fermi or Bose statistical factor in E6).

If 1 use the inequalities—In(1—x)>x and In(1+x)<x, and
the fact that the integral dfi(p) gives the number density
n(x), I find that

where pp_ is the momentum vector in thB—1 dimen-
sional subspace orthogonal to theirection. The momentum
integrations extend over the infinite intervat ¢,«), a Bril-
louin zone, or otherwise as appropriate. The corrections are  Pgosd X) <N(X)KgT<Prem(X). (68)

of order#/p;L; for p;, the typical value of theth compo-  The gifference clearly arises in the momentum flow or stress
nent of the momentum in the leading term; that is, of ordemctyre from the necessity that the occupied single-particle
il \mkgTL; for nondegenerate systems. states all be different for Fermi—Dirac statistics. This re-
Note that the final result for the leading term is isotropic in quirement forces the appearance of higher momentum states
momentum space even though the original spectrum in Eghan are needed in the Bose—Einstein case, and a higher pres-
(59 involves different excitations for motions in the differ- syre for fixedN andT.
ent directions. With enough energy levels occupied in the As an example of Bose pressure, | will calculate the pres-
thermal distribution, the shape-dependent features of thgyre of an equilibrium system of noninteracting neutral me-
spectrum become unimportant, as noted by Kafhis isot-  sons with massn. The system will be taken as extensive or
ropy in leading order appears to be general for quasiyagi-continuous in dimensio®. The pressure on the

continuous systems; see, for example, Sec. IVB 1. boundary surface is given in a stdte by Eq. (37). It also
can be calculated on an interior surface using the stress ten-
2. Fermi and Bose pressures sor in Eq.(36) and the definition in E¢(18), giving the same
average result for large volum®s, . | will use Eq.(37) and

_A calculation of the pressure using the above method anghe single-particle wave functions in a box normalized ac-
either of Eqs.(51) or (52) for nonrelativistic Bose systems, cording to Eq.(32):

or Egs.(57) or (58) for Fermi systems, leads to analogous

results for the pressure on a surface with norfal fic 2 piXi
¢p ..... p (X): — . —_SII"I—,
d°p (A-p)® 2 e Po 2E(p) iz VLo A
p(x):fh_D - (ePPp2m=m) + 1)~ 14... (65) N

Pi=gr M (M=12..). (69
By averaging with the Bose statistical factor, | obtain the
pressureP; in thei direction as

2
= (B, (66 L d°p (pic)?

PiX)=yg— | w0
with corrections that again vanish ¥ P for Vp—o. The Vo h 2E(D
Bose and Fermi statistical factors in the integrals are isotrowhereE(p) = yp~c“+m-c®. In the limit m—0, Eq.(70) re-
pic in momentum space. Thus, the leading term in the exduces to the expression for the pressure for black-body ra-
pression for the pressure is independent of the directidén of diation or for phonons in a solid up to the necessary inclu-
and the results can be expressed in terms of the averagg)n of the statistical factors for spins or polarizations and
energies as indicated. the use of the correct ranges of integration in the case of

| emphasize that this result for the local pressure followgphonons. Thus, for black-body radiation in three dimensions,
directly from the definition of the pressure in terms of theincluding the spin degeneracy factor 2, and using the isot-
stress on a surface. The factorsiep in Eq. (65) arise from  ropy in momentum space and the fact thet0 because
the momentum operators iV in —f-T-f, and corre- photon number is not conserved, | find
spond directly to the momenta that appear in the elementary 1 d®p pc
classical derivation of the pressure in a gas. That is, the pres- P(X)= Wf “he efre_1
sure is associated with “particles bouncing off the wall.” , -

0 E

D
= éJ %E(p)(eﬁ('z(p)’”)t 1)+

(ePEP=1) —1)~1 (70)

The thermodynamic definition gives the same pressure for h %

the quasi-homogeneous system under consideration, and the 3,203V J dweﬂhw_l ~ 3V’ (72)
. X 0

two definitions are connected by boundary perturbation
theory, as shown in Sec. Il B. The derivation given there carwhich is the usual result. However, | again emphasize that
be generalized to an arbitrary surface inside the voldme the calculation is direct, and is clearly connected to the flow
but is only useful provided that, as here, enough is knowrof momentum across the surface through the discussion in
about the wave functions to allow explicit evaluation of their Sec. 11 C 1. No thermodynamic relations were used.
derivatives. An example for Fermi systems that makes a good home-

It is easy to derive the nonclassical properties of the Fermivork problem and shows the relation of pressure to momen-
and Bose pressures. An integration by parts in spherical cdum flow is the calculation of the Fermi pressureTat 0
ordinates brings Eq66) to the form starting from the stress tensor. The usual argument for com-
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pletely degenerate Fermi systems shows that all energy lev- 2 mx, ( d° 1p pj2
els up to a Fermi energli determined byN must be occu- Pj.1(X)= L—lsinzL—lf T
pied. Then, from Eq(58), P(x)=—30(Eg—E)A-Tk.A, , ,
where 6 is the step function, and(x)=1(0) for x>0 (x X (@ APp—y/om=u’) + 1)~ 1
<0). The remaining calculation is simple for continuous 2(E N 2 «
systems, and leads directly to the thermodynamic result with- :ﬁ L™
out the use of any thermodynamic relations. D-1 Vp_1 Ly Ly
2 P
) ) =PD,1_Sir|2_1, (76)
3. Anisotropic pressures Ly Ly

The corrections from the conversion of sums to integraldVhere(E)p 1 is the average single-particle excitation en-
in Eq. (64) and the corrections from finite-sized effects in the €rgy for a continuous system [b—1 dimensions an®p
spectrum' are shape dependent. This shape dependendg the corresponding pressure. The presseyés indepen-
leads to anisotropic stresses or pressures for finite systenwent of the coordinates,,... xp, but is modulated with re-
Consider, for example, the limit in which one of the dimen-spect tox; by the factor |y;(x;)|?=(2/L,)sir?(mx,/L;)
sions of the rectangular box, s&y, becomes small while which specifies how th& particles are distributed with re-
the other dimensions remain large. If the lowest energy fokpect tox,. When the distribution irx; is not observedx,
motion in the 1 direction is large on the scale kT,  can be integrated out arf®} reduces tdP_; . The effective
h2/8m Lf> kgT, the sum oven; converges rapidly, and con- dimensionality of the system is therefore reduced by one for
version of that sum to an integral with only small residualkgT<E,, the limit in which the no thermal excitations in the
corrections is not possible. If | keep only the leading term in1 direction are possible.

n; and treat the large dimensions in the continuum limit, the The effects of anisotropies are small in practice, with

number density becomes E;/k=0.2 K for a helium atom confined in a gap with
2 mx, [ d®~1p , , =1 nm. Anisotropies in the pressure wquld .only be obsery—
n(x)HL—sinZL—f D=1 (e AlPp-1/2m=p)+ 1)1 able at lower temperatures. The situation is more compli-
1 1 cated for electrons because of the effects of Fermi—Dirac
(72 statistics.

where i’ = u—E; with E;=h?/8m L'f the ground state en-
ergy for motion in direction 1. Higher terms in the sumrmn

are nominally suppressed b owers of [exm? . . .
Y PP Y P . [extn; It is simple to treat the problem of otherwise noninteract-
—1)E;/kgT]<1, ny>1, but the situation becomes more . . . . . )
ing particles in a one-dimensional external potentgk)

complicated and some excitation must occur for Fermi sys- = B .- i
tems in which the Fermi energy fod particles inD—1 using the standard Wentzel-Kramers—Brillo(iwKB) ap

: ; . X ; ) proximation discussed in most texts on quantum mechanics
dimensions exceeds; . | will not consider this refinement.

. . ; (see, for example, Ref. 12The single-particle energids,
The I_eadmg factor in quz) is the ab_solute square of_the are determined in this approximation by the semiclassical
normalized wave functhnp_l(xl) and integrates to unity. quantization condition that
The momentum integral is independent of the remaining co-
ordinatesx,,...,Xp, SO that an integration af(x) over the (k+ E
2

full volume V gives the total particle numbét as

B. Pressure and number density in an external field
1. WKB approximation

h=2fx2p(E,x)dx, (77)

for E=E,, k=0,1,2,.., Here, p(E,x)=y2m[E—-V(X)] is
the local momentumh is Planck’s constant, and,, x, are
turning points in the classical motion wheguéE,x)=0. The
approximation can be shown to be good when there are
2 X many local wavelengthlk/p between the turning points, but
n(x)= Vo Lo L, (74 tends to be good even for low-lying states in the spectrum.
Because the typical excitation energy in statistical systems is
The pressure on the wall of the boxoat=0 can be cal-  E~k,T, the WKB approximation will be valid provided that
culated using the expressions in E¢s3) and(58), with the h~1fp(ksT,x)dx>1. If | treatk and E as continuous, the
result density of stateslk/dE implied by Eq.(77) is
h> N N

=  —JE, —. (75) dk 1jX2 2m
1=5 3 1 Sz =
4mL; Vp_g Vp dE h )y, \/ E=V(x) dx. (78

All particles must be in the; =1 state inx; for kgT<E,
with the effects of Fermi or Bose statistics absorbed in th
integral factor in Eq(72) and the corresponding factor in the
expression foP;. The same result foP, holds on the sur-
facex;=L,. Note thatP, is independent of the coordinates
X5,....Xp that specify the locations on the surfacesxat

. . 1 (x
=0, L, on which the pressure is observed. E(X)= —J V2m[E— V(x)]dx, (80)
In contrast, the pressure on any of the remaining walls is i)y

AP s amuy g1
N=Vp_; RO T (e”PPp-1 +1)" (73

The number density can therefore be written as

The WKB wave functions can be written between the
&urning points a¥

2m 1/4 aT
h(X) =Ny —) 005( Ek(X)— Z)dX, (79

E—V(x)
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and decrease exponentially outside that region. If I ignore théne scale at whiclE—V(x) changes significantly. The gen-
small contributions from the exponential regions and replaceral result in Eq(83) could probably also be derived in three
the square of the cosine by its average value of 1/2 for mangimensions using a WKB-like phase-integral approximation
oscillations over regions in whickE—V changes signifi- such as that investigated by Gutzwillérbut | have not at-
cantly, | find that the normalization constant is related to theempted it.

density of states by Finally, the total number of particles in the system is given
2 dE by the spatial integral ofi(x) over the confining volume,
NE== —. (81) 3 3
h dk d°xd°p 20 _
. . . . . = f (ePP2m=p V)l + 1)~1 (84)
Thus, following the previous discussion of quasi- h3

continuous systems, the local number density in the SySterSiving a result that can be used to determjne

IS The pressure or stress in the external potential can be
) 2m T treated similarly. | will work in the interior of the total vol-
n(X)Ng Ni mcos’- &) — 4 ume and use the general expression for the pressure given in
Eq. (18), and the single-particle form of the stress tensor in
X (ePE—m 1)1 Eq.(14), specialized to one dimension. The key step involves
the recognition that the derivatives in Ed4) can be taken
_ EJ dE /2T (eFE- £ 1)1 to act only on the cosine factor ify, Eq.(79). This assump-
h E—V(x) tion gives
= dp 2 dji 1 2m v
_ P ABIp%2m— u+V(X)] -1 e N _
f_w oo (ATl ), (82 ax = M E—V(X) V2ZMIE—V(X)]

where in the last two lines | have first replaced the square of )
the cosine ingy iy by its average value 1/2 and converted Xsin
the sum ovek to an integral oveE using Eq.(81), and then
converted fromE to p as the integration variable with
defined by the relatiop?/2m=E—V(x). The replacement
cos—1/2 may be taken as a local averaging when there ar
many oscillations in the region observed. Alternatively, | . .
note that the zeros of successive eigenfunctions interweavE ~ V- Furthermore, the correction term oscillates out of
so that the zeros in the individual termsrifx) are washed phase with the main term, and interference effects can be
out in the sum when many states are excited. neglected in ayeragmgk e A similar result hol_ds for the
The result in Eq(82) is just that obtained through thermo- Seécond derivatives, with the neglected terms just those for
dynamic argumentsby dividing the system into small vol- Which the WKB wave function fails to satisfy the exact
umes over whichv(x) can be taken as constant, and thenSchralinger equation. The result of the calculation is
considering the equilibrium of the subsystems. The result is
to replace the chemical potentialin the corresponding ex- P(x)~ >, NEV2mE—V(x)](eFEm+1)~1
pression for free particles by —V(x). However, it is clear .

T
E(X)— Z) dx. (85)

The term omitted is of relative ordek (dV/dx)/8w(E
—V), and can be neglected in the region in which the WKB
gpproximation is valid? namely, when the change in the
potential over a wavelength=h/p is small, on the scale of

from the WKB-based derivation that there are two key points 2 e .

in the quantum treatment. First, the average nuntbef %ﬁj dEV2m[E—V(x)](efE~1 +1)

excited states must be large enough and vary smoothly

enough for energies on the sqalek@fT that the sum over (" @p_z(eﬁ[pz/zm—M+V(x)]+l)—1 (86)
states can be replaced by an integral. Second, the square of . h m - :

the wave function must oscillate sufficiently rapidly over re- o ) )
gions in whichE—V(x) changes significantly so that the The expression in Eq86) can be generalized to more di-
replacement c8s-1/2 is valid in the sum in Eq(82). The ~ Mensions using thermodynamic arguments or functional in-
second requirement is closely linked to the conditiongtegral methods, and should be properly stated in terms of the

needed for the validity of the WKB approximation, and for Stréss across a surface with normalas

the replacement of the sum by an integral. It is worth noting - d®p (A-p)? ,

in this connection that the wave function is defined over the —f-T-A= f — (ePlP2m=ptVOl + 1) =1,
entire volume in which the system is confined, and not just h m

the subvolumes as in Ref. 6. (87)

The expression in Eq82) can be extended immediately The final factor in parentheses in E&7) is isotropic inp, so
to three dimensions for systems with additive potentisls, that the stress at a given poinis the same in all directions
=3.V,(x;). It can be extended to general potentil) in  even for V(x) anisotropic. Thus{(i-p)%)=(p®/D), and

the form P(x)= (2/D) K(x), whereK(x) is the average kinetic en-
d3p , ergy density ak with the average taken over the local sta-
n(x)= j —5 (PP 2m=p VIl + 1)1 (83) tistical distribution.
h | next consider two examples that illustrate the effects of

using thermodynamic arguments as in Ref. 6, or directly usexternal fields in interesting physical situations. Both lead to
ing functional integral methods such as those in Refs. 13 andseful homework problems for graduate courses in statistical
14. It is again required that the oscillationsdrbe rapid on  physics.
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2. Example: Particles in a linear potential The inequality is clearly violated for a fixe at suffi-
. . . . , ciently low temperatures or large values@flt is then nec-

For particles in a linear potential(z) =zVo/zo with zero  egqary 1o single out the ground state because this state is
potential for the motion in the transverse directions, the MOyiven zero weight in the transition from a sum over states to
tion in z can be described in the WKB approximation as inap integral overE or p, and include its occupation number
Sec. IVB1. vyhlle Fhe motion in th(_e transverse.coordlnate » explicitly. N is then given by
can be described in terms of running waves with momenta

P, =(px,Py). The single-particle energies are

pi VO( 9h220 )1/3( 1) 2/3
32mVo 4 The integrals can be evaluated by changing to spherical co-

(n=1,2,..), (89 ordinates, and then to the varialbke p2/2m after performing

the angular integration. The final integral gives a product of

Whgre the second term is the WKB energy of the \_/ertlcala generalized factorial or gamma function with the Riemann
motion. Many states of the vertical moton will be excited at, 4 function

the thermal energkgT for (kgT/V,)*(8mV,yz3/9m?h2) Y2
>1, a condition that is always satisfied under realistic con- S G

ditions for gases in a gravitational field wiMy=mgz or fo dtmzl“(z)g(z). (94)
electrons in a constant electric fiely, Vo=eEyzg. The

sums ovelk can be replaced by integrals over a momentum The inequality in Eq(92) can just be satisfied for a given
p, defined to reduce the second term in E&P) to the stan- N at a temperaturd =T, determined by setting the right-

3A o
N=No+ 5 f d’p, f dp,pZ(eP"™meT—1) "1, (93)
0 0

En(pL):m Z

dard form hand term equal tdN, and fails at lower temperatures. The
p_§ ~ p_% B E 23 - calculation gives
2m  2m\ 4] \ 3773’2A(2 WT522(5/2) ©5
= —— m ,
wherep2/m= V,/z, (9h?z,/32mV,) . The corrections for 4pgh? ¢

Fermi or Bose statistics are unimportant for gases in a gravi- dina f itational potential t
tational field under normal conditions. | follow the develop- €0T"€Sponding for a gravitational potential to

ment in Sec. IV B 1 with the Fermi or Bose factors replaced mg h2 \32N125
by the simple Boltzmann factoe #(«~#) and obtain the kgT.= —(_) — (96)
classical barometric equations {(5/2)\2mm] A
P(z)=P(0)e M97keT  n(z)=n(0)e M9ZksT At lower temperatures,
P(0)=n(0)kgT. (90) No=N[1—(T/T)%?]. (97)

For a system with ared, the number density(0) atz=0 is

given in terms of the total number of particlbsby The power ofT/T, in Eq.(97) is different from that for an

ideal system with no field present. The critical temperature
B 3 B " 3y —madkaT_ kgT T. also is higher for fixedN than the critical temperatur‘ég

N_J d*xn(x)=n(0) fo dxe ° —n(O)Am—g. in the absence of the gravitational fieldT /T2

91  =[4(3/2)1¢(5/2)]**~1.56, a difference attributable to the

Hence,n(0)=(N/A)(mg/ksT) and P(0)=NmgA, as ex- greater density of the gas near the ground. Finally, the

4 %round-state wave function is compactzinvith a character-
pected. Note that, as remarked previously, the pressure Ktic extentz,,, ~E. /mg—(81h2/512mg) “3~5.4 um for he-
isotropic at any pointT, ,=T, ,=T,,, even though the po- max™~ E1/Mg g A

tential is not, and isotropy was not used in the derivation"um’ and the condensate "falls to the floor.”
This result hblds eneraFI)Iy for quasi-continuous Svstems " It is interesting that the presence of a gravitational poten-
g y q y Hial leads to the appearance of Bose—Einstein condensation

sufficiently high excitation. in a two-dimensional system with/(z)=zV,/z, and free
A more interesting result with respect to the gravitational”™ = ™™ ySt —or0re0 < .
otion in a box of lengtiL in the transverse direction, with

field is the existence of a Bose—Einstein condensate in al
ideal system at sufficiently low temperatures, an example 1 /2030 N\ V2
that makes a good homework problem. The particle number =[1—(T/To)?], keT.= ( Po _)

. . . . 0 c ’ B'c
for the Bose system is given in E0), which becomes

3A “ 2/om— - In contrast, there is no condensation for free motion in two
~ 2 2 /2m _ 1 )
N~thr2 d°p, JO dp, p3(eftP2mrl—1) dimensions.
an The calculations of the local number density and pressure
* 2, 2 _ in an external field are simple for dilute systems for which
<ths_2f d’p, fo dppz(eP M —1)~* 92) " the Fermi and Bose statistical factors reduce in leading order
to the usual Boltzmann factor. The calculations cannot be
for the energy spectrum in E¢88), with sums converted to done exactly when quantum corrections are important, with
integrals andp, defined through Eq(89). The inequality —many particles within a volume of of linear dimension equal
follows from the convergence requirement tiag— >0  to the thermal wavelength, but are similar numerically to the
and the approximation in Eq92) that E,~0. calculation ofN(x) in the following example.

(98)

m\ 7w L
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3. Example: Bosons in a harmonic trap 1 d°N 1 T)\3 22
An example of interest in connection with Bose-EinsteinN d3(r/r ) L 1= To €’
condensation is that of atoms confined in a harmonic trap o oo
with V(x) =232_,1/2mw?x? . The total number of particles in Lot ho T f dtyt
the system is given by E¢84), specifically, V2m2¢(3) \KeTe Te
d3xd® 2,2 _
N:f = p(eﬁzi[pflzmﬂmwf/z)xiz]—/3#_1)—1_ (99) X (gt M2AhwlkgTe)(TeM(rrg) _ 1) —1, (105

The original number distribution af. has a characteristic

The integral can be simplified by changing to the dlmen5|on§Nid,[h ~ JksTo/m(w?). A very sharp ground-state peak ap-

less variablesx; =w; ym/2kgTx;, pj =p;/V2mkgT, and pears in the number distribution @ss lowered belowT .. A

tr;en going to/zthe six-dimensional coordinates (x',p'),  comparison of the calculation with the number distribution
s=Z(p;“+x; "), and working in the spherical representa- ghserved in the original experiments on Bose—Einstein con-
tion. The result is densation in Refs. 16—18 shows qualitative agreement, and

1 [(kgT\3 1 % $5ds gives a real feeling for how the theory describes to the ob-

=— —) J fdQG. (100  served emergence of a condensate.

T\ h The pressure in the trapped system can be calculated using
similar methods, and balances the force from the confining
oscillator potentials. However, because of the long mean free
path for particle intractions, it is not relevant for the expan-
sion of the condensate when the confining interactions are
suddenly removed.

wiwow3 Jo eSZ,ﬁM_l
Here,d(g is the element of solid angle in six dimensions,
and [dQg=7°.

The remaining integral is maximized far= 0, and can be
evaluated exactly in this limit by changing the integration
variable froms to t=s? and using Eq(94). The resulting
equation determines the critical temperattigefor the onset
of Bose—Einstein condensation for fixed particle nuniier V. COMMENTS

N |13 The main objective of this paper has been to give direct
@) (101  derivations of the pressures in Fermi and Bose systems using
the relation of pressure to momentum flow and the quantum

For a spherical trap with oscillation frequency  stress tensor. This quantum kinetic theory approach is simple
=150 Hz andN=4x 10, fairly typical conditions for origi- ~ conceptually, and shows that the pressure is naturally defined
nal experiments with Rb atom§;*® Eq. (101) gives T,  locally, a point of interest for particles in external fields. It
=6.77 nKXNY3=232 nK. Note that %w/kg=7.20 nK leads also to a direct understandl_ng of the difference in Fermi

<T., so that a large number of oscillator states are excite(fflmd Bose pressures at fixed particle number anq temperature

In terms of the different momentum states excited, a point

atTg, and the use of the integral approximation to the SUNbften argued qualitatively. A bonus of the analysis was the
over states is legitimate.

. . . appearance of the simple examples of the use of boundar
Th.e number of parU%Ies in excited state:; DETe, p pgﬁurbation theory to (Establish ?he connection of the usualy
=0 is Neycited= N(T/T¢)", and the number in the ground thermodynamic arguments for particles and fields to the re-
state is therefore sults obtained directly in a stress-tensor approach.
No=N[1—(T/To)%], (T<T.), (102) | also discussed the properties of extensive, quasi-

_ _ ) ) continuous systems, showed the role of excitations high on
with No=0 for T>T.. These calculations illuminate the the scale okgT in obtaining isotropic pressures in intrinsi-
conditions under which a real Bose—Einstein condensate caty|ly anisotropic systems, and illustrated the appearance of
be formed in a gas, and make good homework problems. anjsotropies and the effective reduction of the dimension of a

The number density in a spherical trap follows from Eq.system at low enough temperatures. Finally, | gave an ex-

kgT.= ﬁ( W1Wow3

(99), plicit WKB derivation of the usual expressions for the num-
1 ber density and pressure of particles in an external field, and
n(r)=NO(T)|¢O(r)|2+Hg presented several examples that illustrate the use of the

stress-tensor method in real physical problems. | have found

5 - these examples to make good homework problems in a
xj d3p(eflP/amtmeTTef2) _1)=1 (103 graduate course on statistical mechanics.
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