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The solution of the Dirac equation for a high square barrier
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The transmission of a Dirac particle through a high (¥, > E + m) square electrostatic potential
barrier is investigated further. As is well known, the transmission coefficient is nonzero even as ¥
goes to infinity. As well as reproducing the usual wave mechanics approach, a detailed fermion—
antifermion multiple scattering calculation and an S-matrix calculation are examined to provide
additional insight into the problem. The origin of the curious behavior is found to be the result of

pair creation and annihilation events.

L. INTRODUCTION

The Klein paradox' is one of the most interesting one-
particle relativistic wave mechanics problems; its resolu-
tion is both informative and beautiful. With the benefit of
hindsight we can see that it foreshadowed the process of
pair production which is more usually associated with sec-
ond quantized relativistic field theories. In some sense, it
provides a plausible link between the usual one-particle re-
sults and the now familiar field theory results. It is natural,
then, that consideration of the Klein paradox is a valuable
exercise for beginning students of relativistic quantum the-
ory.

In this paper we present another one-particle relativistic
wave mechanics problem that introduces not only the pro-
cess of pair creation but also of pair annihilation. The trans-
mission and reflection coefficients for a fermion incident
upon an electrostatic square barrier of height V,,, where
Vo> E + m, are calculated by a variety of different meth-
ods.

The calculations are done in parallel to previously estab-
lished results concerning the Klein paradox. As will be
shown, the key to understanding the problem is the careful
introduction of pair creation and annihilation events.

II. RELATIVISTIC FERMIONS IN STRONG
POTENTIALS

We begin by considering the one-dimensional Dirac
equation for a fermion in an electrostatic field,

(E — V)¥(x) + icx, aiwx) _ Bm¥(x)=0. (1)
59

¥ (x) is a two-spinor wave function and «,, 3 are two
2% 2 anticommuting Hermitian unitary matrices (in one
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space and one time dimension the Dirac algebra can be
realized on 2 X2 matrices). A convenient representation
for these matrices, in terms of the Pauli matrices, is

B=o,. (2)

Confining our attention to systems containing regions of
constant potential ¥, and regions of zero potential, we find
the following sets of linearly independent normalized solu-
tions for each region. For regions in which V,(x) =0, we
have

Y* =N, G) e**, (3)

a, =0,,

w’“:Nk(_l/{)e*””‘, @
where
k*=E?—m? (5)
A=k/(E+ m), (6)
2 =[1/(1+AD]/2m), (7
and for regions in which V(x) =V,
v (1) s .
W= N, (_IA) e~ Kx (9)
where
K?=(E—-Vy?*—m, (10)
A=K/(E—V,+m), (11)
N2 =[1/(1 + A)1(1/2m). (12)

In both cases, the above eigenstates are normalized on the
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assumption that they extend over the whole line, that is,
integration from minus to plus infinity in x of ¥}, ¥, gives
6(k’ — k). Strictly speaking, the normalization is unim-
portant because we shall only be interested in the ratios of
currents. Nevertheless, we have included the normaliza-
tion to conform with the usual representation of the eigen-
states.

In what follows, we shall be concerned exclusively with
values of ¥ such that ¥, > E + m. In this case, both k and
K are real and the above states are plane-wave solutions.
The superscript R (L) indicates that the eigenvalue of mo-
mentum is + Kor + &k ( — K or — k), as appropriate.

The general solution in a region of zero potential is

¥, = a, ¥ + b, 9%, (13)
where the subscript n indexes the region and
la,|* + |b,|* = 1 to ensure normalization. Similarly, for a
region of constant potential ¥, we find that

W, =4, V" 4+ B, W,

where once again m is a
|4, " + |B, = 1.

The solution to a given problem will be given by match-
ing the general solutions with the appropriate boundary
conditions and by demanding overall continuity of the
wave function. The algebra can be simplified by introduc-
ing matching matrices® that relate a,,b, to 4, |.B, .,
the coefficients in adjacent regions.

Consider the boundary at point x, between a region of
potential ¥ and a region of zero potential, the coefficients
a,,b, arerelatedto4,, ,, B, , by

(14)

region index and

an An+1
(b )ZM(x()) B B )’ (15)
n n+1
12w )
(B"il —M(xO) b" 3 (16)
where
M(x,)

NK ((1+A//l)ei(K“k)x"

B (1 _A//'L)e~i(K+k)x()
T 2N, \(1— A/A) K 0%

(14 A/A)e= (K- Rxy)

(17)

In this manner the wave function is guaranteed to be con-
tinuous at all points.

We are now ready to look at the systems of interest, the step
potential and the square barrier.

III. THE STEP POTENTIAL, KLEIN PARADOX

Consider the potential
V(ix) =0, x<0, regionl,
=V, x>0, regionll, (18)

where ¥, > E + m. The solution in region I will be of the
form (13) and the solution in the region II will be of the
form (14). Thus a fermion of energy E is described by a
wave function of the form

¢=al¢f +bl¢lL, x<0
=4, ¥ + B, V1, (19)

Klein' investigated the reflection and transmission by
the step potential of a plane wave incident from the left
with energy E. The boundary condition is B;, = O corre-

x>0.
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sponding to no particles incident from the right. For a wave
function of the form (19), the current can be calculated
using

Jjxy=v*(x)a,¥(x), (20)
yielding
71 (x) = (k/E)(|ay |2 - |b1|2)
=j—j, x<0, 21
Ju(x) = [K/(E—Vy)]1(|4y I — |Byy %)
=jit =/, x>0. (22)

By substituting x, = O into (17) and then using (16) itis
possible to calculate ratios of currents so as to determine
reflection and transmission coefficients. It follows that

R=jL/R = (1 —A/N)*/(1+A/A), (23)
T=jR/iR=4(A/N) /(1 + A /A2 (24)

A paradox is immediately apparent, traveling wave solu-
tions exist in a region in which the potential is greater than
the energy of the particle. Nonrelativistic quantum me-
chanics predicts an exponentially decaying solution in such
a case.” As the potential is increased toward infinity the
nonrelativistic solution vanishes in the high-potential re-
gion but the relativistic solution does not. In fact, the reflec-
tion and transmission coefficients approach the constant
values,

lim R= (14+A)/(1 =21)? (25)
V,— «
lim T= —44 /(1 —A)> (26)

Vo~ o

Furthermore, since A is positive R>1 and T'<0 which
makes no sense from a classical viewpoint.

This anomalous result is consistent with the relationship
between the magnitudes of the currents flowing into and
out of the barrier

FARIVARAV N e2)
This can easily be shown by using (23) and (24). Thus the
reflected current is equal in magnitude to the sum of the
incident and transmitted current magnitudes. As we shall

see, pair production at the barrier is responsible for this
anomalous result.

IV. THE SQUARE BARRIER
Consider the potential
Vix) =0, x<0,
= VO,
=0,

region 1

O<x<a, regionll

a<x, regionIIIL (28)

The solution will be of the form

¢=al¢{z+blwll" x <0,
=A“‘I’ﬁ +BH\I/IL1’

= aym iy + b Yiin 29)

Once again, we consider the reflection and transmission
of a fermion of energy E incident from the left. The bound-
ary condition is b;;; = O, that is, no particles are incident
from the right. Using the appropriate matching matrices at
x, =0 and x, = a, the reflection and transmission coeffi-

O<x<a,

a<x.
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cients can be calculated” just as in Sec. III. We find

r_ti !
& 141 (A/A—A/A) *sin*(Ka)

R jE 1 (A/A —A/A) *sin*(Ka)

TR 141 (A/A—A/A) *sin*(Ka)

Unlike the reflection and transmission coefficients for
the step potential (30) and (31) are both positive and in
the range [0,1]. By inspection T+ R = 1, as would be ex-
pected by particle conservation considerations. Although
the square barrier fails to exhibit all the anomalous behav-

ior that occurred with the step potential, it is nonetheless
paradoxical. In the limit V,— o, we find

1

(30)

31

lim T= s (32)
Vi o0 1+1(A—1/4) ?sin*(Ka)

1 (A —1/2) *sin*(K
lim R =—2 ) sm(ka) (33)
Vs o0 1+1(4—1/4) %sin*(Ka)

Thus, even as the potential goes to infinity, the probability
of particle transmission remains nonzero as for the step
potential; this contradicts the intuition based on the non-
relativistic Schrodinger equation result. As we shall see, a
single model will provide a consistent explanation of both
the step potential and the square potential systems, and
assists us in developing an intuitive picture of the physics of
the relativistic barrier problem.

V.MULTIPLE SCATTERING APPROACH

The aim of this section will be to develop a model that
explains qualitatively and predicts quantitatively the re-
sults of the previous sections. Ultimately, the model will be
found to be simple and straightforward although it will
combine aspects of first and second quantization of the
Dirac field. The key to understanding the behavior of both
the step potential and the square barrier is the interpreta-
tion of the traveling wave solutions in the regions of high
potential.

We begin by examining Greiner’s discussion of the Klein
paradox.* Consider the positive and negative energy solu-
tions of Dirac’s equation, a continuum of free-particle
states exists for E>m and E< — m as shown in Fig. 1(a).

(2)

INNNANNS
NN

\\\_

Fig. 1. (a) A schematic representation of the positive and negative energy
continuum energy levels for a free fermion. (b) The same, but for a fer-
mion in the presence of a strong field.
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When an external electrostatic step potential is applied the
situation is as shown in Fig. 1(b), particles of energy
E <V, + m impinge upon the already occupied Dirac sea
of negative energy states. Greiner explains the Klein para-
dox qualitatively by proposing that the incident fermion
“knocks out” an electron from the Dirac sea and a hole in
the sea then propagates away to the right. The hole is, of
course, an antifermion and corresponds to a traveling wave
solution of the Dirac equation with ¥V, > E + m.

Further, let us examine the expression for the current in
a region of potential V,(V,>E + m),

jx)=K/(E—=V)(|4|*—|B»). (34)

The first (second) term corresponds to the current asso-
ciated with plane waves having momentum eigenvalue
K{( — K). Since (E — V,) <0 the current in each case is in
the opposite direction to the momentum. As before, the
proposal is that these are antifermion states, the opposite
sign of the current coming from the opposite charge which
the antifermion carries. We henceforth adopt the following
interpretation, ¥R (W¥’) is the wave function of an antifer-
mion moving to the right (left).

Hansen and Ravndal® use a similar interpretation in
their discussion of the Klein paradox. In what follows we

‘build upon Hansen and Ravndals’ resolution of the Klein

paradox by producing a model for the transmission and
reflection of fermions by a square barrier.

Having settled upon an interpretation of the wave func-
tions in regions of high potential, we now consider the pos-
sible events that can occur between a region of high poten-
tial and a region of zero potential, that is, processes that can
occur at the interface between a region of fermions and a
region of antifermions. Four possible events can proceed:
they are pair production, pair annihilation, fermion reflec-
tion, and antifermion reflection. They are depicted in Fig.
2.

The reflection and transmission by the step and square
potentials can be understood in terms of events involving
combinations of the four basic processes (Fig. 2).

In the case of the step potential, only two possible pro-
cesses are compatible with the boundary conditions, fer-
mion reflection and pair production. These are shown dia-
grammatically in Fig. 3.

Before proceeding any further, we note that Fig. 3 pre-
dicts correctly the relationship between the magnitudes of
the currents involved (27). The reflected current is equal
in magnitude to the magnitudes of the incident and trans-
mitted currents together.

@® ®)

V=0 V=V V=0 V=V,
(c) \/ ()
V=0 V=Vo v=0 V=V

Fig. 2. The diagrammatic representation of (a) fermion reflection; (b)
antifermion reflection; (c) pair production; and (d) pair annihilation.
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AN

X

v=0 V=Vo

Fig. 3. The diagrammatic representation of the fundamental processes
that occur in the step potential problem.

Consider now the Feynman interpretation of antifer-
mions.® An antifermion traveling forward in time is inter-
preted as a fermion traveling backward in time. This view-
point leads us to consider a fermion (an antifermion)
incident on the interface with a region of high (zero) po-
tential. The diagrams for such events are shown in Fig. 4.

Thus a fermion traveling forward in time is either scat-
tered backward in time (pair annihilation) or reflected
elastically by the interface. Similarly, a fermion traveling
backward in time is either scattered forward in time (pair
production) or reflected elastically.

The wave functions for the four systems (Fig. 4) are
easily calculated using the techniques of Sec. I. The wave
function in the region of a step potential is a linear combi-
nation of Fig. 4(a) and 4(¢) such that the boundary condi-
tion By; = 0 is satisfied.

Let ¥, be the wave function of the diagram shown in
Fig. 4(a) for a = a,b,c,d. Then

¢a=aa¢k+ba¢L9 x<x()’

=B, Y%, x>x, (35)
Y, =4, V% x<x,,

=g, P* + b, x>xq (36)
Yo =by" x<x

= A VR4 BV, x>x, (37)
Yy =A4,Y% + B, V5, x<x,

=a, Y% x>x (38)

Having exhausted the possible barrier—particle interac-
tions, we can now employ the multiple scattering expan-
sion”® to determine the overall scattering properties of the
square barrier. The analogous Schrdédinger equation prob-
lem has already been dealt with in this fashion by Ander-
son.” The Dirac equation problem is somewhat more pic-
turesque because of the introduction of pair annihilation
and creation events.

We now define amplitude reflection and transmission
coeflicients as follows. The amplitude reflection coefficient
is the ratio of the reflected fermion (antifermion) ampli-
tude to the incident fermion (antifermion) amplitude.
Similarly, the amplitude transmission coefficient is the ra-
tio of the outgoing fermion (antifermion) amplitude to the
incident antifermion (fermion) amplitude. Following this
definition the amplitude reflection and transmission coeffi-
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(@ (b)

V=V V=0 V=Vo V=0

Fig. 4. The diagrams representing a fermion traveling forward [(a) and
(c)] and backward [ (b) and (d) ] in time which impinges upon an inter-
face.

cients for the processes shown in Fig. 4 are
R, =b,/a, = M,,(x;)/M,,(xp),
fermion reflection, (39)
T, =B,/a, = 1/M;(x,),
pair annihilation/transmission, (40)
R, =a,/b, =M, (x5)/M,,(xy),
fermion reflection, (41)
T,=4,/b, = 1/M (x),
pair annihilation/transmission, (42)
R, =B./A, = My, (xy) ~'/M,(xy) ",
antifermion reflection, (43)
T.=b./A4, = 1/M(x,) ",
pair production/transmission, (44)
R,=A4,/B, =M, (x,) " "/M,,(xy) ",
antifermion reflection, (45)
T,=a,/B; =1/M(x) ",
pair production/transmission. (46)

R,,T, are, in general, complex numbers unlike the true
probability reflection and transmission coefficients that are
real. The total amplitude is the sum of all the amplitudes
corresponding to possible fermion paths through the sys-
tem. Each individual path contributes an amplitude calcu-
lated by considering the reflection and transmission in-
curred at each interface.

For example, a fermion incident from the right with am-
plitude A, which is refracted backward in time by an inter-
face at x = x,, will have an amplitude T, (x;)4,. Likewise,
a fermion incident from the right, which is reflected elasti-
cally, will have amplitude R, (x,)4,. In this manner, we
can calculate the contribution to the amplitude for a partic-
ular event by any given fermion path.

Specifically, the reflection or transmission of a fermion
by a square barrier can be depicted diagrammatically by an
infinite number of possible paths. Each of these paths can
be thought of as the scattering of a single fermion by a
sequence of the fundamental processes of Fig. 2. The dia-
grams that represent the paths for thése various amplitudes
are shown in Fig. 5.

The amplitude for a fermion path resulting in transmis-
sion through the barrier after n reflections 4 " can be
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Fig. 5. (a) Diagrams representing reflection; (b) transmission; (c) the
diagrammatic sum of (a) and (b), which can be thought of as the diagram
representing the wave function of the system.

found using (39) through (46),
Ay =T,(0)T,(a)R"(0)R " (a)A,, (47)

where A4, is the initial amplitude and # is half the number of
reflections that occur. Similarly, the amplitude for a path
corresponding to the reflection of a fermion after » reflec-
tions at the step at x = a is

A =R, (0),n=0,
=T,(0)T,(0)R"~'R"(a),n>1. (48)

The total amplitudes for reflection and transmission are
found by summing the amplitudes corresponding to each
path consistent with the appropriate endpoint. Thus

dr= 3 Ar(n)

n=0

=A4,T,(0)T,(a) Y [RAOR,(a)]"
n=0

=A,T,(0)T,(a)[1— R (O)R,(a)] ', (49)
Ax =3 Ag(n) =A4R,(0) + 4,T,(0)T.(0)
n=0 .
X > R NOIR(a)
n=1
= AR, (0)T, (0T, (0)R,(a)
X [1—R.(0O)R,(a)] " (50)
Substitution from (39) through (46) yields
Ar _ (i/2) (A/A — A /A)sin(Ka) (51)
A, cos(Ka) — (i/2)(A/A + A /A)sin(Ka) ’
A_T 1 (52)

A, cos(Ka) + (i/2)(A/A + A /A)sin(Ka)

The absolute value of Egs. {51), (52) yields the reflec-
tion (transmission) coefficient for. the square barrier.
Comparison with any standard optics text” reveals that the
above calculation is simply the Fabry—Perot interferometer
problem. Both the method of solution and the final results
are the same. This demonstrates the close physical basis
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shared by some methods in optics and the multiple scatter-
ing expansion.

Thus the fermion-antifermion model in conjunction
with the multiple scattering expansion is able to reproduce
the quantitative results derived earlier. The advantage of
this approach is that it introduces explicitly pair creation
and annihilation so that a physical picture of the phenome-
na can be developed that explains the apparently anoma-
lous results.

It is worthwhile at this point to say something about the
physical basis underlining the pair-production and annihil-
ation events. The electrostatic square barrier gives rise to
an electric field that is infinite at the two discontinuous
potential interfaces and zero elsewhere. Heuristically this
strong electric field can be expected to give rise to pair
production. Any virtual fermion-antifermion pairs at the
interfaces will be ripped apart by the electric field before
recombination can occur. The localization of the pair-pro-
duction events at the potential interfaces is consistent with
this picture. Similar considerations arise in the develop-
ment of a charge vacuum about a highly charged body.*

The production of fermion—antifermion pairs at the in-
terfaces does not give rise to asymptotically detectable anti-
fermions. The antifermions only provide a bridge across
the barrier through which the probability amplitude flows.
Once a pair is produced, the antifermions move into the
barrier while the fermions move away, since the antifer-
mions (fermions) are constrained to exist only inside (out-
side) the high potential region. Any antifermions created
at, or reflected from, one edge of the barrier are repelled
from it and are subsequently reflected or annihilated at the
other edge; they do not escape the region of the barrier.

VI. THE S-MATRIX APPROACH

Hansen and Ravndal® utilized the in—out formalism to
reveal explicitly the pair production associated with the

" Klein paradox. They defined asymptotically fermionic and

antifermionic, incoming and outgoing solutions to the
Dirac equation in the presence of a step potential. These
sets of solutions were then used as modes with which a
general field operator could be expanded in terms of using
the appropriate creation and annihilation operators.

The overlap between the orthonormalized incoming and
the outgoing solutions provided the transformation coeffi-
cients between the two sets of creation and annihilation
operators. By taking appropriate matrix elements it was
possible to calculate the pair-production rate associated
with the step potential. As we shall see, this approach also
reproduces the transmission and reflection coefficients for
the square barrier.

We begin by constructing solutions that correspond as-
ymptotically to either incoming or outgoing fermions. Us-
ing (4) through (12) and (29) we can construct incoming
solutions

¢fi") = Nl(in)('pf + all¢fl + by '/’ﬁ + aml/’fn + b ¢1L113)?
(53)

G0 =NGP(edf + AP+ endn +/atn + Y1), (54)
and outgoing solutions

¢;0Ui) = N:()UI)(# + clllﬁfl + dlllﬁlLI + cll['pﬁl + dlll l/’lLIl )’

(55)

i =N (& '/’f + Yt + gn n+ Aatn + i )-
(56)
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It is understood that ¥F® extends only over x<0,¥f®’
extends only over x>a, and ¥5® extends only over the
interval 0<x<a. The coefficients a, b, c, ..., h are deter-
mined by matching the solutions at the interfaces. The nor-
malization factors N {™, N {», NV and N " ensure
that the solutions are normalized to delta functions in &
space.

An arbitrary field operator can be expanded in either
incoming or outgoing modes

Y= (@GP + aih v ) (57)
k

¥ =Y (UL + aSR e, (58)
k

As usual, the expansion coefficients a{}... are annihila-
tion operators for a fermion corresponding to the solution
Y. Note that the expansions do not include antifermion
modes. This is because for the potential defined, the posi-
tive energy solutions are all asymptotically fermionic, as
discussed in Sec. VI.

It is a straightforward matter to calculate the transfor-
mations between the incoming and outgoing operators. We
find that

a/(\»?lm) =8 afcill]) + Slzal(ci,rl‘l)l’ (39)

asin = SZlaI(:;III) + S2201(<EII,I)I' (60)
The explicit values of the S-matrix elements are given by

WG kDY (K)) = Sy 8(k — k'), (61)

(R (KPP (K)) = S5, 8k — k), (62)

W (KDY (K)) = S, 8k — k), (63)

W (KDY (k) =8, 8k — k'), (64)
where
Su =Nl (3 4) (o ) s

i (A AN ..
_T(I_X) sm(Ka)cos(Ka)] , (65)
Sy =86 2%, (66)
S, =N227r [cos(Ka) +L(A+i) sin(Ka)] , (67)
2\ A
A =_S12’ (68)
and
2 LA AN .
N =21T[1+T(7—X) 31n2(Ka)]. (69)

We have employed the notation S,,; for the transforma-
tion coefficients because they correspond to the S-matrix
elements between the in-solutions and the out-solutions.

The algebra involved in the normalization of the wave
functions and the calculation of the transformation coeffi-
cients is very long and complicated. The symbolic manipu-
lation program REDUCE'® was used to produce the above
results.

The wave function of system with a fermion of momen-
tum k ( — k) incident from the left (right) can be ex-
pressed in second quantized form as a;;™|0,in)
(a4 0,in) ), where |0,in) is the vacuum in the incoming
basis. The number operators for the outgoing states moving
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to the left and right with momentum — k (k) are

t t t
n;(?lu ) — a]:—[(ou )a;(f)lu ) (70)
and
(out) _ , + (out) ,(out)
Moy =4em e s (70
respectively.

The expected number of reflected (transmitted) fer-
mions resulting from a fermion incident from the left will

be equal to the expectation value of the operator
(out)

R (n) corresponding to the state @, “"|0,in). It is
easy to show using (59) and (60) that
(n{) =15, 1?40,in|0,in), (72)
(n&P) = |1, 17(0,in| O,in). : (73)

The normalized expectation values |S,,|? and |S|,|* can
be calculated using (65) and (67). Since the state in ques-
tion is a one particle state, we immediately regain the pre-
viously calculated reflection and transmission coefficients.

When Hansen and Ravndal® used the in-out formalism
to calculate the transformation coefficients between the in
and out operators for the step potential, they were able to
calculate the rate at which pair production proceeded at
the interface. This is not possible in the present case be-
cause all the states, incoming and outgoing, are fermionic
as |x| goes to infinity. As a result, the transformations map
creation (annihilation) operators into creation (annihila-
tion) operators exclusively. Without mixing between the
creation and annihilation operators (and the resultant
inequivalence of the incoming and outgoing vacuua) no
asymptotically detectable pair creation can be expected.

This is not in contradiction with the earlier discussion of
pair creation and annihilation in the vicinity of the barrier.
The S matrix relates distant past with distant future states
(which correspond to large negative or positive x values);
it cannot be expected to contain information concerning
pair creation and annihilation events near the origin unless
these give rise directly to asymptotically detectable fer-
mion—antifermion pairs.

Physically it is easy to understand how pair creation can
occur while no antifermions travel out to infinity. For ev-
ery pair creation event that occurs, a pair annihilation
event ensures that consumes the antifermion, as illustrated
in Fig. 5.

VII. CONCLUSION

Three quite different approaches were employed to cal-
culate the reflection and transmission coefficients for a fer-
mion incident upon a square barrier. The various ap-
proaches are instructive exercises in the methods they each
employ. In addition to this, they provide an understanding
of the phenomena from a variety of viewpoints.

The first approach used the usual wave mechanics tech-
nology to derive the results. This approach is firmly
grounded in a wealth of similar problems which nonrelativ-
istic quantum mechanics deals with successfully. Unfortu-
nately this analysis does not give any hint as to why the
barrier continues to transmit particles even as the height of
the barrier goes to infinity.

The multiple scattering expansion in conjunction with
the fermion—antifermion model successfully explains qual-
itatively and predicts quantitatively the reflection and
transmission coefficients. The calculation is the most ex-
planatory of the three approaches, the graphical represen-
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tation of the process being particularly revealing.

Finally, the S-matrix approach introduces the language
of second quantization to describe the reflection and trans-
mission coefficients in terms of the expectation value of the
appropriate number operators.

The concepts of antifermion states, pair production, and
pair annihilation are important physical ideas in any rela-
tivistic quantum mechanics course. We believe that a de-
tailed discussion of these concepts in the simple physical
situation of scattering from a square barrier will help the
student obtain some physical intuition for these ideas.
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An inexpensive gas effusion apparatus for the introductory laboratory
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An inexpensive, easy to build gas effusion apparatus for measuring molecular velocities is
described. The instrument features a liquid nitrogen cooled adsorption pump to replace more
costly diffusion and rotary vacuum pumps. Low cost, low maintenance, and simplicity of
operation render the experiment suitable for introductory physics students. A straightforward
measurement consistently yields average velocities within 10% of the calculated values.

I. INTRODUCTION

Several years ago, the Colgate Physics Department initi-
ated a major revision of its introductory curriculum by of-
fering a one-semester course in modern physics before the
traditional two-semester sequence in classical mechanics
and electromagnetism,! This revision was made in re-
sponse to shrinking class enrollments as well as to our per-
ception that incoming students were inadequately pre-
pared for the usual calculus-based introductory course. We
reasoned that modern physics could be presented without
the burden of calculus which accompanies Newton’s laws,
and that it more accurately conveys the flavor of contem-
porary physics. We hoped to offer our students a glimpse of
the excitement and challenge of present-day activity, and
thus motivate the regimen of study they would encounter
in the remainder of their undergraduate physics curricu-
lum.

The new modern physics course required us to design
and implement an accompanying set of laboratory exer-
cises appropriate to our first-semester freshman audience.
The theme of the course was atoms: What is the physical
evidence for the atomic theory of matter? Consistent with
this theme and with the spirit of the course, we attempted
to develop a set of experiments which, whenever possible,
went beyond the mere demonstration of lecture materials
to inctude an element of discovery or surprise, akin to real
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research. (This ingredient—the essence of our own fasci-
nation with physics—seems sadly lacking in most tradi-
tional physics lab exercises.) We wanted our labs to illus-
trate how simple macroscopic instrumentation, guided by
a straightfoward-sequence of reasoning, can be used to
“see” beyond what is directly visible, i.e., to probe the mi-
croscopic world of atoms and molecules. We also had more
practical concerns: Contrary to the apparatus used in many
modern physics experiments, ours had to be sufficiently
inexpensive to allow for multiple setups (one for every two
students). Furthermore, we desired a dramatic lead-off ac-
tivity that would pique student interest, underscore the
course goals, and lend compelling support to the atomic
hypothesis. The experiment described below has fulfilled
these expectations admirably.

IL. EXPERIMENT DESIGN

The gas effusion technique for measuring molecular ve-
locities is certainly not a new one.®> What we have done is
to design an inexpensive, reliable, easy to use apparatus
suitable for the introductory laboratory. The unique fea-
ture of our design is the replacement of costly diffusion and
rotary pumps by a simple liquid nitrogen cooled adsorption
pump. The latter provides very high pumping speeds in the
1- to 100-mT pressure range, as required for the measure-
ment. Figures 1 and 2 illustrate the apparatus.

© 1991 American Association of Physics Teachers 346



