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The Schrödinger equation for a point charge in the field of a stationary electric dipole admits bound
states only when the dipole moment exceeds a certain critical value. It is not hard to see why this
might be the case, but it is surprisingly difficult to calculate the critical dipole moment. The
analogous problem should be simpler in one and two dimensions, but a general theorem forbids
critical moments in one dimension, and explicit calculation shows that there is no critical moment
in two dimensions. © 2007 American Association of Physics Teachers.
�DOI: 10.1119/1.2710485�
I. INTRODUCTION

It is a remarkable fact, discovered by Fermi and Teller in
the 1940s and rediscovered in the 1960s,1 that a stationary
electric dipole supports bound states if but only if the dipole
moment exceeds a critical value:

pcrit = 0.6393
4��0�2

qm
, �1�

where m and q are the mass and charge of the orbiting par-
ticle. For the electron,2

pcrit = 5.420 � 10−30 Cm. �2�

Even more surprising, the critical dipole moment has the
same value for a physical dipole �see Fig. 1�

V�r� =
1

4��0
�Q

r+
−

Q

r−
� �3�

as it does for the point dipole

V�r,�� =
1

4��0

p cos �

r2 �4�

�where p=Qd�.
The purpose of this paper is to explore and explain the

occurrence of a critical moment in this system. In Sec. II we
recapitulate the standard arguments and offer some poten-
tially illuminating ways of thinking about the problem. It is
natural to wonder whether similar considerations apply to the
one- and two-dimensional analogs, which we consider in
Secs. III and IV, respectively.

II. CRITICAL MOMENT IN THREE DIMENSIONS

We start with the physical dipole: ±Q separated by a dis-
tance d. If d is large, q will form a hydrogenic system at the
+Q end,3 with −Q too distant to be relevant. In this limit
there are obviously bound states, with the lowest energy
given by the Bohr formula

E1 = −
mq2Q2

2�4��0�2�2 . �5�

As we reduce the separation distance �keeping the charges
constant�, the approaching −Q charge repels the electron, and
it is plausible that at some point it will ionize the “atom”
completely—closer than this separation, no bound state is
possible. We can estimate the separation at which this ion-

ization will occur. The Coulomb repulsion energy is approxi-
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mately qQ / �4��0d�. When this equals E1 �in magnitude�, the
total energy is zero and the electron is no longer bound:

1

4��0

qQ

d
=

mq2Q2

2�4��0�2�2 , �6�

which implies

p = Qd = 2�4��0�2

qm
� . �7�

This crude estimate is off by a factor of slightly more than 3
�see Eq. �1��, but it does account for the existence of a criti-
cal dipole moment.4

Now let us show that if there is a critical dipole moment,
it is independent of the separation d �all that matters is the
product p=Qd�, and hence has the same value for the point
dipole as for the physical dipole.5 Schrödinger’s equation for
a charge q in the dipole potential, Eq. �3�, is

−
�2

2m
�2� +

qQ

4��0
� 1

r+
−

1

r−
�� = E� . �8�

We are interested in bound states, which is to say solutions
with E�0. The critical moment occurs when the ground
state energy goes to zero. Assume that d is fixed, and all

lengths are measured in units of d: r̃�r /d, r̃±�r± /d, �̃2

=d2�2. Then Eq. �8� assumes the dimensionless form

�̃2� − �� 1

r̃+

−
1

r̃−
�� = 4	� , �9�

where

� �
2m

�2

qp

4��0
�10�

and

	 � −
mE

2�2d2. �11�

Suppose we have solved Eq. �9� and obtained the formula for
the ground state energy6 �in the dimensionless form 	� as a
function of the dipole moment �in the dimensionless form ��:
	g���. Now we decrease � �by reducing Q, because we are
holding d fixed� until 	g reaches zero, and the last bound
state is squeezed out: 	g��crit�=0. This condition tells us the

critical dipole moment:

524© 2007 American Association of Physics Teachers



pcrit = ��crit

2
�4��0�2

qm
. �12�

Note that �crit does not depend on d; it is the value of � for
which the largest 	 in Eq. �9� reaches zero. So pcrit, too, is
independent of d.

This being the case, we might as well use the simplest
model, the point dipole, to calculate pcrit. Schrödinger’s
equation7

−
�2

2m
�2� +

qp

4��0

cos �

r2 � = E� �13�

is separable in spherical coordinates. Let

��r,�,
� =
1

r
u�r�������
� , �14�

and recall that

�2 =
1

r2

�

�r
�r2 �

�r
� +

1

r2 sin �

�

��
�sin �

�

��
�

+
1

r2 sin2 �

�2

�
2 . �15�

Then Eq. �13� becomes

−
r

u

d

dr
�r2 d

dr
�u

r
�	 −

1

� sin �

d

d�
�sin �

d�

d�
�

−
1

� sin2 �

d2�

d
2 + � cos � = − 2r2, �16�

where

 � 
− 2mE/ � . �17�

Multiplying through by sin2 � isolates the 
 dependence:

d2�

d
2 = − m�
2� , �18�

where m� is the usual azimuthal separation constant. Evi-
dently

��
� = eim�
, �19�

and the periodicity in 
 means that m� must be an integer.

Fig. 1. Point charge q in the field of a stationary dipole.
What remains is
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r

u

d

dr
�r2 d

dr
�u

r
�	 − 2r2 = −

1

� sin �

d

d�
�sin �

d�

d�
�

+
m�

2

sin2 �
+ � cos � . �20�

The left side of Eq. �20� is a function of r alone and the right
side is a function of � alone, so each side must be a
constant—call it �:

−
d2u

dr2 +
�

r2u = − 2u; �21�

−
d2�

d�2 − cot �
d�

d�
+ �� cos � +

m�
2

sin2 �
�� = �� . �22�

Equation �21� is the one-dimensional Schrödinger equa-
tion for the notorious 1/r2 potential.8 The force is attractive
as long as ��0, but it does not support �normalizable�
bound states unless ��− 1

4 . One way to see this9 is to look
for solutions by the method of Frobenius: Let

u�r� = r��
n=0

�

anrn, �23�

with a0�0. Equation �21� becomes

�
n=0

�

��n + ���n + � − 1� − ��anrn+�−2 = 2�
n=0

�

anrn+�, �24�

from which it follows that

���� − 1� − ��a0 = 0, �25a�

���� + 1� − ��a1 = 0, �25b�

��n + � + 2��n + � + 1� − ��an+2 = 2an �n = 0,1,2, . . . � .

�25c�

Equation �25a� yields �±= �1±
1+4�� /2, and Eq. �25b�
gives a1=0.

There are two solutions, one for �+ and one for �−. Near
the origin they go like

u±�r� � a0r±� = a0r1/2e±
�+�1/4� ln r. �26�

As r→0, ln r→−�, so u+ diverges unless ��− 1
4 , in which

case the square root is imaginary:

u±�r� � a0r1/2e±ig ln r, �27�

where ig�
�+ � 1
4

�; both solutions go to zero at the origin.
The general solution is a linear combination of u+ and u−, but
only one combination is normalizable:10

u�r� = A
rKig�r� , �28�

where Kig is the modified Bessel function of order ig. Con-
clusion: For a normalizable solution the separation constant
must satisfy ��− 1

4 . Presumably11 the larger � becomes, the
tighter is the binding, but the critical value, above which no
bound states can exist, is �=− 1

4 .
Turning now to Eq. �22�, we are interested in the ground

12
state, so m�=0:
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−
d2�

d�2 − cot �
d�

d�
+ � cos �� = �� . �29�

We expand ���� in �normalized� Legendre polynomials13

���� = �
�=0

�

d�
2 � + 1

2
P��cos �� , �30�

which satisfy the differential equation

−
d2

d�2 P��cos �� − cot �
d

d�
P��cos ��

= � �� + 1�P��cos �� , �31�

and write Eq. �29� as

�
�=0

�

���� + 1� + � cos � − ��d�
2 � + 1

2
P��cos �� = 0.

�32�

But14

cos �P��cos �� =
1

2 � + 1
��� + 1�P�+1�cos ��

+ � P�−1�cos ��� , �33�

so

�
�=0

� ����� + 1� − ��d� + �� �


�2 � − 1��2 � + 1�
d�−1

+
� + 1


�2 � + 1��2 � + 3�
d�+1	�P��cos �� = 0. �34�

We substitute the critical value �=− 1
4 and use orthogonality

of the Legendre polynomials to show that

���� + 1� +
1

4
	d� + �� �


�2 � − 1��2 � + 1�
d�−1

+
� + 1


�2 � + 1��2 � + 3�
d�+1	 = 0, �35�

for �=0,1 ,2 , . . .. In matrix form,

�
1/4 �/
3 0 0 ¯

�/
3 9/4 2�/
15 0 ¯

0 2�/
15 25/4 3�/
35 ¯

0 0 3�/
35 49/4 ¯

� � � � �

��
d0

d1

d2

d3

�
�

= 0 . �36�

Evidently the determinant of this matrix is zero. By truncat-
ing at the 2�2, 3�3, 4�4, . . . level, we obtain a sequence
of approximations for �:

�2 =
3

4

3 = 1.299 04, �37a�

15 5

�3 =

4



43
= 1.278 74, �37b�
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�4 =
1

4

5

3
�1483 − 2
�2��23��11 701�� = 1.278 63,

�37c�

etc. The sequence converges very rapidly—from �7 on the
first 16 digits are stable at

� = 1.278 629 754 399 962 5, �38�

and the critical dipole moment, Eq. �12�, is

pcrit = �0.639 314 877 199 981 3�
4��0�2

qm
, �39�

confirming Eq. �1�.
That’s for the point dipole, of course, but we know from

the general theorem that the critical moment is independent
of the separation of the charges, so it applies as well to the
physical dipole. Still, it would be nice to check this indepen-
dently. Equation �8� separates in prolate spheroidal
coordinates,15

� �
r+ + r−

d
, � �

r+ − r−

d
, 
 , �40�

where 
 is the usual azimuthal angle. Note that ��1, � 
�1, and r±= ��±��d /2. The potential energy is

qQ

4��0
� 1

r+
−

1

r−
� = −

qp

4��0

4

d2� �

�2 − �2� , �41�

and Eq. �8� takes the form

�2� +
4�

d2 � �

�2 − �2� =
4	

d2 � . �42�

The Laplacian in prolate spheroidal coordinates is15

4

d2��2 − �2�� �

��
���2 − 1�

�

��
	 +

�

��
��1 − �2�

�

��
	

+
�2 − �2

��2 − 1��1 − �2�
�2

�
2� . �43�

For a separable solution

���,�,
� = X���M�����
� , �44�

and

1

X

d

d�
���2 − 1�

dX

d�
	 +

1

M

d

d�
��1 − �2�

dM

d�
	

+
�2 − �2

��2 − 1��1 − �2�
1

�

d2�

d
2 + �� = 	��2 − �2� . �45�

The 
 dependence is the same as before:

d2�

d
2 = − m�
2� , �46�

so ��
�=eim�
 for integer m�. Putting this into Eq. �45� and
noting that

�2 − �2

��2 − 1��1 − �2�
=

1

�2 − 1
+

1

1 − �2 , �47�

we obtain the �ordinary� differential equations for X��� and

M���:
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d

d�
���2 − 1�

dX

d�
	 = � m�

2

�2 − 1
+ 	�2 + ��X , �48�

d

d�
��1 − �2�

dM

d�
	 = � m�

2

1 − �2 − 	�2 − �� − ��M , �49�

where � is the separation constant.
We are interested in the ground state �so m�=0� at the

critical point 	=0 �where E crosses from negative to posi-
tive, and the bound state disappears�:

d

d�
���2 − 1�

dX

d�
	 = �X , �50�

−
d

d�
��1 − �2�

dM

d�
	 − ��M = �M . �51�

Equation �50� has the general solution

X��� = AP�1/2��−1+
1+4����� + BQ�1/2��−1+
1+4����� , �52�

where P and Q are Legendre functions. Q���� diverges at �
=1 �that is, on the line joining −Q and +Q�, and P���� di-
verges as �→� unless −1���0.16 It turns out17 that � must
be − 1

2 , and hence

� = − 1
4 . �53�

The change of variables

� � − cos v �54�

transforms Eq. �51� into a form we have encountered before
�compare Eq. �29��:

−
d2M

dv2 − cot v
dM

dv
+ � cos vM = �M . �55�

We have already shown that for �=− 1
4 this delivers �

=1.2786 and the critical dipole moment Eq. �39�.
Alternatively, one can solve Eq. �42� by the variational

method, using a trial wave function of the form

���,�� = �
n=0

�

Cn
n��,�� , �56�

with 
n�� ,����−p�n, where p and �Cn� are adjustable
18 19
parameters. The matrix elements of the Hamiltonian are
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Hmn =� 
mH
n d� �57a�

=
2��2d

�4p2 − 1�

��
p2�m + n − 1� + mn�2p + 1�

��m + n�2 − 1�
, �m + n� even,

−
�2p + 1��

2�m + n + 2�
, �m + n� odd.

�57b�

The � integrals converge for p�
1
2 . We are interested in the

crossover point where the energy goes to zero; here the wave
function becomes very delocalized, which is to say that p is
as small as possible: p→ 1

2 . Because H�=0 �for the ground
state�, the determinant of the Hamiltonian matrix vanishes.
Dropping the constants in front,

�
1 4�/3 1/3 4�/5 ¯

4�/3 3 4�/5 9/5 ¯

1/3 4�/5 7/3 4�/7 ¯

4�/5 9/5 4�/7 11/5 ¯

� � � � �

� = 0. �58�

The solution for � �which, remember, is twice the coefficient
in Eq. �1�� converges very rapidly with the number of terms:
At the 2�2 level we recover 1.229 04 �the same as Eq.
�37a��; 3�3 yields 1.278 74, and 30�30 �no problem for
Mathematica� gives 1.278 629 754 399 962 5 �unchanged be-
yond 7�7�, identical to what we got using the point dipole
�Eq. �38��. Once again, we obtain the critical dipole moment
in Eq. �39�.20

III. ONE DIMENSION

Calculating the critical dipole moment in three dimensions
turned out to be surprisingly difficult, and one wonders
whether the analogous problem might be simpler in one di-
mension, where the Coulomb potential takes the form21

V�x� =
1

4��0

Q

x
. �59�

The physical dipole is

V�x� =
1

4��0
� Q

x − d/2
−

Q

x + d/2� , �60�

and the point dipole would be

V�x� = ±
1

4��0

p

x2 , �61�

with the plus sign for x�0 and minus sign for x�0.
We begin, as before, with the large d limit, expecting to

find a one-dimensional “hydrogen atom” at one end and a
distant −Q at the other. Unfortunately, the ground state of
one-dimensional hydrogen �charge q in the Coulomb poten-
tial Eq. �59�� has infinite binding energy.22 One way to see
this is to regularize the potential �removing the singularity

at x=0�,

527Kevin Connolly and David J. Griffiths



V�x� =
1

4��0
�1/� , x � � ,

1/x , x � � ,
�62�

solve numerically for the ground state energy,23 and plot it as
a function of the cutoff �. Figure 2 indicates that the magni-
tude of the energy increases without limit as �→0. No mat-
ter how close we bring the −Q end, it cannot ionize the atom,
because �1/4��0�Q /d=� would require d=0. This is hardly
a proof, but it does suggest that there may not be a critical
dipole moment in one dimension.

We can avoid the pathologies of the one-dimensional Cou-
lomb potential by examining other models,24 such as the
delta-function dipole �Fig. 3�a��:

U�x� = ����x + d/2� − ��x − d/2�� , �63�

and the square-well dipole �Fig. 3�b��:

U�x� = � V0, �d − a� � 2x � �d + a� ,

− V0, − �d + a� � 2x � − �d − a� ,

0, otherwise.

�64�

Their ground states can be obtained by solving the
Schrödinger equation, but the results are disappointing �if we
were hoping to find a critical separation distance�: These
potentials admit at least one bound state for all d, regardless
of the values of �, V0, and a�d. Is there perhaps a general
theorem lurking here? There is. If a one-dimensional poten-
tial U�x�, not identically zero, vanishes outside some finite
region, and if

�
−�

�

U�x� dx � 0, �65�

then U�x� supports at least one bound state.25 Conclusion:
There is no critical dipole moment in one dimension.26

IV. TWO DIMENSIONS

What about the two-dimensional analog? Is there a critical
moment in this case, and if so, what is its value? The point-

Fig. 2. Ground state energy for the regularized potential Eq. �62�. The hori-
zontal axis is �, in units of a�2��0�2 /mqQ, and the vertical axis is
a, where �
−2mE /�. The graph suggests that E goes to −� like ln �, as
�→0.
charge potential is
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V�r,�� =
1

4��0

Q

r
. �66�

As always, we begin with the large d limit—a two-
dimensional hydrogen atom at one end and a distant −Q at
the other. The ground state energy for two-dimensional hy-
drogen is four times its value in three dimensions,27 and
hence our crude estimate for the critical dipole moment is
one fourth as great �see Eq. �7��:

pcrit �
1

2
�4��0�2

qm
� . �67�

As before, the critical dipole moment �if there is one� is
independent of d, so we look first at the point dipole limit:

V�r,�� =
1

4��0

p cos �

r2 . �68�

Schrödinger’s equation,

−
�2

2m
�2� +

qp

4��0

cos �

r2 � = E� , �69�

is separable in polar coordinates, where the Laplacian is

�2 =
1

r

�

�r
�r

�

�r
� +

1

r2

�2

��2 . �70�

We seek solutions of the form

��r,�� =
u�r�

r

���� , �71�

for which Eq. �69� reduces to

� r2

u

d2u

dr2 − 2r2	 = − � 1

�

d2�

d�2 +
1

4
− � cos �	 . �72�

The left side is a function of r alone, and the right side is a
function of � alone, so each must be a constant—call it �:

−
d2u

dr2 +
�

r2u = − 2u , �73�

d2�

d�2 + �� +
1

4
− � cos ��� = 0. �74�

Equation �73� is identical to Eq. �21�; we know that the criti-
cal value of � is − 1

4 . We substitute this value into Eq. �74�
and obtain

d2�

d�2 − � cos �� = 0. �75�

We want a solution28 that is periodic in � �with period 2��
and even �for the ground state�; ���� can therefore be ex-

Fig. 3. �a� The delta-function dipole �Eq. �63��. �b� The square-well dipole
�Eq. �64��.
pressed as a Fourier cosine series:
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���� = �
n=0

�

bn cos �n�� . �76�

Putting this into Eq. �75�, using the identity cos x cos y= � 1
2

�
��cos �x+y�+cos �x−y��, and exploiting the orthogonality
of the cosine functions, we find

�

2
b1 = 0, �77a�

b1 +
�

2
�2b0 + b2� = 0, �77b�

n2bn +
�

2
�bn−1 + bn+1� = 0 �n = 2,3,4, . . . � , �77c�

or, in matrix form,

�
0 �/2 0 0 ¯

� 1 �/2 0 ¯

0 �/2 4 �/2 ¯

0 0 �/2 9 ¯

� � � � �

��
b0

b1

b2

b3

�
� = 0 . �78�

For a nontrivial solution the determinant of this matrix must
vanish. Evaluating by minors, first along the top row, and
then down the first column, we obtain

−
�2

2 �
4 �/2 0 0 ¯

�/2 9 �/2 0 ¯

0 �/2 16 �/2 ¯

0 0 �/2 25 ¯

¯ ¯ ¯ ¯ �

� = 0. �79�

Either �=0 or else the remaining determinant is zero. Would
�=0 be acceptable? Absolutely: In this case Eq. �75� has the
periodic solution �=const, and

��r,�� = AK0�r� . �80�

Unfortunately, this means that the critical dipole moment is
zero—which is to say that there is no critical dipole moment.
The two-dimensional dipole �like the one-dimensional� al-
ways has a bound state.

Just to be sure, let’s examine what happens to the ground
state of the physical dipole, as the separation decreases �with
Q held fixed�. In this case Schrödinger’s equation separates
most simply in elliptic coordinates �u ,v�; these are closely
related to the prolate spheroidal coordinates in Eq. �40�,
with29

� = cosh u, � = − cos v . �81�

The potential energy �Eq. �41�� is

qQ

4��0
� 1

r+
−

1

r−
� =

qp

4��0

4

d2

cos v
cosh2 u − cos2 v

, �82�

and the Laplacian30 is

�2 =
4

d2�cosh2 u − cos2 v�� �2

�u2 +
�2

�v2� , �83�
so Schrödinger’s equation takes the form
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�2�

�u2 +
�2�

�v2 − � cos v� = 	�cosh2 u − cos2 v�� . �84�

Letting

��u,v� = U�u�V�v� , �85�

we obtain the �ordinary� differential equations for U and V:

d2U

du2 − �	 cosh2 u + ��U = 0, �86a�

d2V

dv2 + �− � cos v + 	 cos2 v + ��V = 0, �86b�

where � is the separation constant. We are interested in the
critical point 	=0 �where E crosses from negative to posi-
tive�:

d2U

du2 = �U , �87a�

−
d2V

dv2 + � cos vV = �V . �87b�

Equation �87a� has the general solution

U�u� = Ae
�u + Be−
�u. �88�

For the ground state we want � real, and as small as
possible;31 the limiting case is �=0 for which Eq. �87b� re-
duces to

d2V

dv2 − � cos v V = 0. �89�

Thus we recover Eq. �75�, which we already know yields a
critical moment of zero.

Alternatively, we can use the variational method, with a
trial wave function of the Pascual form Eq. �56�. The Laplac-
ian is32

4

d2��2 − �2��
�2 − 1
�

��
�
�2 − 1

�

��
�

+ 
1 − �2 �

��
�
1 − �2 �

��
�	 , �90�

and the area element is

d� =
d2

4

��2 − �2�

��2 − 1��1 − �2�

d�d� . �91�
The matrix elements of the Hamiltonian are
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Hmn = −
�2

2m

�
�

2

��p�
��p + �1/2��

�m + n�!
2m+n � �

1

���m + n�/2� ! �2� p3

2p + 1
−

mn

m + n − 1
	 , �m + n� even.

��/2��m + n + 1�
���m + n + 1�/2� ! �2 , �m + n� odd. � �92�
In this case the limiting value of p is zero. Putting that in
�and dropping the constants out front�, we are left with the
condition

�
0 �/2 0 3�/8 ¯

�/2 − 1/2 3�/8 − 3/8 ¯

0 3�/8 − 1/2 5�/16 ¯

3�/8 − 3/8 5�/16 − 9/16 ¯

¯ ¯ ¯ ¯ �

� = 0,

�93�

to which an obvious solution is �=0. Again, there is no
dipole moment so small that bound states do not exist.

V. CONCLUSION

When we began this study we expected to find critical
dipole moments in one and two dimensions, matching the
well-established result in three dimensions. We were sur-
prised to find that they do not exist: The electric dipole po-
tential supports at least one bound state no matter how small
the moment. All the more remarkable, then, is the three-
dimensional case.33
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