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The relation between degeneracy of classical frequencies in integrable systems and additional
global constants of motion is investigated from a general point of view. It is shown that in
autonomous systems with N degrees of freedom the existence of A <N such additional
invariants imply A global linear relations with commensurate coefficients between the
frequencies, and vice versa. Furthermore, such a degeneracy gives rise to a specific structure of
the Hamiltonian considered as a function of action variables. The general statements are

illustrated by various examples.

I. INTRODUCTION

Two types of autonomous Hamiltonian systems may be
distinguished, the trajectories of which show qualitatively
different behavior. The phase space of integrable systems is
foliated into lower-dimensional submanifolds, and, effec-
tively, any trajectory is restricted to move on a torus for all
times. Nonintegrable systems, on the other hand, have a
complicated phase-space structure, and their time evolu-
tion is extremely difficult to determine for long times. The
condition for a system with N degrees of freedom to be
integrable requires the existence of precisely N appropriate
constants of motion.

Occasionally, one encounters situations where there ex-
ist more functionally independent invariants than required
by integrability. For example, the three-dimensional Ke-
pler problem is known to possess two conserved quantities
transforming as vectors, namely the angular momentum 1
and the Runge-Lenz vector K, and a scalar quantity, the
energy H of the system. Out of these seven invariants five
are functionally independent—consequently, there are two
more invariants than required for the system to be integra-
ble. Furthermore, one realizes that in some integrable sys-
tems the classical frequencies determining the time evolu-
tion (described in appropriately chosen generalized angle
variables) satisfy one or more linear relations with integer
coefficients. This is the case for the two-dimensional har-
monic oscillator with commensurate frequencies but it is
also true for the above example: since all orbits in the
Kepler problem are closed the solutions of the equations of
motion, effectively, depend on one single frequency only.
Consequently, there must exist general relations allowing
to eliminate two out of the set of three frequencies which
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usually are necessary to describe the time evolution of an
integrable system with three degrees of freedém.

It is the purpose of the present paper to discuss the
connection between the existence of additional invariants
and of degenerate classical frequencies in integrable sys-
tems from a general point of view. Moreover, the structure
of Hamiltonian functions expressed in action-angle vari-
ables will be related to the degree of degeneracy of classical
frequencies.

Some results related to this problem have been derived
in the context of early formulations of quantum mechanics.
For example, Born! and Schwarzschild,? when discussing
the quantization conditions introduced by Bohr and Som-
merfeld, carefully distinguish between integrable systems
with degenerate and nondegenerate classical frequencies,
respectively. In fact, this is necessary in order to formulate
a consistent quantization scheme based on associating a
particular set of discrete values to the classical actions.
Likewise, Goldstein’s book® contains various remarks rel-
evant to the present problem, as do many other textbooks
on classical mechanics.* Perelomov, dedlcatmg two vol-
umes to integrable systems and Lie algebras,” does not
discuss explicitly the problem under consideration; how-
ever, his collection of general theorems at least implicitly
has some bearing on the work presented here.

In the present paper, emphasis is laid on establishing a
coherent and general view of the topic. To this end, three
statements, a@—¥, are enunciated in the following section
which will be shown to be three manifestations of one
unique physical situation. Having proved the equivalence
of these statements, we illustrate them by various familiar

systems, and we discuss them in detail for the
N-dimensional harmonic oscillator.
®© 1993 American Association of Physics Teachers 272



II. THREE VIEWS ON A-FOLD DEGENERATE
SYSTEMS

Autonomous integrable Hamiltonian systems with NV de-
grees of freedom are studied most conveniently in canoni-
cal variables I=(I,I5,....Iy) and @=(@,@2....Px), €ach
@, defined modulo 2w, with {/,,1,}={@,@,}=0 and
{pply =6,y (n,n'=12,.,N), representing actions and
angles, respectively. The Hamiltonian is assumed to be a
smooth function of the actions: H=H(I), leading to the
following equations of motion

. oH
I={LH}=0, ¢={¢,H}=‘a—IEw(I)- (D

The actions I represent a basic set of invariants sufficient to
guarantee integrability of the system. The existence of
action-angle variables is a consequence of Liouville’s theo-
rem® which implies a foliation of phase space in
N-dimensional tori TV.

Let A be the number of additional, functionally indepen-
dent, globally defined and smooth constants of motion,
collectively denoted by J=(J),....J4). Since for systems
which show any motion at all, there exist at most 2N —1
global invariants, the number A may take a value between
1 and N—1. If A=N—1, one deals with a completely de-
generate system, otherwise the system at hand is called
A-fold degenerate. Due to their functional independence of
the invariants I, the additional constants of motion J, can-
not be in involution with all of the N basic invariants I.

The statements a, 3, and ¥ to be shown equivalent read
as follows:

(a) There exist N+ A single-valued and functionally
independent constants of motion, N of which are in invo-
lution.

(B) Globally there exist A linear relations with integer
coefficients between the N frequencies @ of the system:

N
Y o (1)=0, ¢;,€Z, (2)
n=1

and A=1,2,...,A.

(7) The Hamiltonian of the system can be written as a
function of N—A actions I'=(I} [} ,....Jy) only,
H=H(I'). In general, each of its arguments is given as a
linear combination of the original action variables I with
integer coefficients.

The proof of the equivalence of the statements a, 3, and
v is divided into two steps. First, we focus on the equiva-
lence B<>y, the nontrivial part of which, B=>v, has been
proved by Born. Second, we demonstrate a<>f3; in partic-
ular, two independent proofs of the nontrivial implication
a—=>f3 are presented.

A B&y

The Hamiltonian of a A-fold degenerate system, effec-
tively, depends on N — A actions I’ only. The implication
B:>17/ is an immediate consequence of a result obtained by
Born’ (Chap. 2, Sec. 15) who proved the following state-
ment:

“If between the w, a number of A conditions of com-

mensurability

N
zl ann=0 (3)
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[with integer coefficients 7,] exist we can apply a canon-
ical transformation [...] such that A of the frequencies
w,=0H/JdI, vanish and that between the remaining
N —A frequencies no relation of the type (3) holds [...};
we have '

’

o/, incommensurate,

a=A+1LA+2,..,N,

0;=0, A=12,.,A, (4)
and the Hamiltonian function has the form
H(I:\+I’I:\+2J"'»IA;V)-” (5)

Born’s result is based on the idea to introduce A new angle
variables ¢ depending linearly on the original angles

N
oh= 21 CinPn > (6)
n=

with the coefficients given by the conditions of commensu-
rability, Egs. (2). Obviously, these variables have the prop-
erty

d
E"’/’l(t):(), A=1.2,.,A, (N

as follows from Eq. (3). The actions (J} , 1,/} 5,...]y) are
not fixed unambiguously; according to Born,” they are
“[...] determined only up to homogeneous integer linear
transformations with determinant £1.” In other words,
there exist canonical transformations resulting in

I'-1"(I')=M-T’, (8)

where M is an (N —A) X (N —A)-matrix with integer el-
ements and det M= =1. In these variables, the Hamil-
tonian H still is a function of N— A arguments each of
which is a linear combination of the N— A actions I' with
integer coeflicients.

In general, the introduction of action-angle variables in a
A-fold degenerate system will not lead to a Hamiltonian
depending on only N — A actions. Usually, a/l actions I will
occur: therefore, it is helpful to know what the Hamil-
tonian of a A-fold degenerate system generically looks like.
The transformation (6) is generated by a function F being
a bilinear expression in the variables ¢ and I’ with integer
coefficients. Necessarily, the new actions I' obtained from
such a generating function depend /inearly on the original
actions I with rational coefficients. This implies that the
second part of statement y holds: any argument of the
Hamiltonian H is a linear combination of the actions I with
commensurate coefficients.

The existence of A conditions of commensurability is an
immediate consequence if the Hamiltonian depends on
N —A arguments only (y=>f). The following argument
starts from the second part of statement ¥ which includes
the first part as a special case. In a Hamiltonian H with N
actions I distributed over N — A arguments in the form of
linear combinations with integer coefficients, exactly N— A
out of all N partial derivatives w,=dH/dl,, n=1,2,...,N,
are linearly independent. Consequently, at least A linear
relations with integer coefficients do exist between the fre-
quencies @

N
2, c2,0,(1)=0, ¢;,€Z, (9)
<

where A=1,2,...,A, which was to be shown.
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B.aop

The existence of N+ A constants of motion is a conse-
quence of A conditions of commensurability (8= a).
Since

N d N
0= 2 Canwn(I) =E( Z c/ln‘pn)’ Cin €2, (10)
n=1 n=1

A=12,.,A, each nonconstant smooth 27-periodic func-
tion

(@) =Ji(p+2m), (11)

defines a single-valued and global additional constant of
motion

N
JA( > c,l,,cp,,), A=12,..,A, (12)
1

n=
being functionally independent of the other J;/(15£A4")
and of all actions I, which represent the required set of N
involutive invariants.

The demonstration that the existence of A additional
invariants gives rise to A conditions of commensurability
(a=>PB) is more involved.” Two proofs of this implication
are given. The first one refers explicitly to the phase-space
foliation of integrable systems; the second one, given in the
Appendix, starts from the conditions of time independence
and single valuedness of the invariants in phase space, re-
sulting in an explicit expression for the relation between
the frequencies.

Consider, for simplicity, at first an arbitrary integrable
system with two degrees of freedom only. If, apart from the
two actions I, and I, a third, functionally independent
constant of motion J exists, then the intersections of the
three sets of hypersurfaces /,=const, I,=const, J=const
define a set of truly ome-dimensional manifolds in phase
space which are invariant under the flow: a phase point
starting on any one of these intersections is confined to it
for all times.

Integrability guarantees the existence of the torus struc-
ture in phase space and the two frequencies w,(I) and
®,(I) are continuous functions in phase space. The follow-
ing arguments require either w,(I1)40 or @, (I)540; this is
true everywhere in phase space except on separatrices
which are of measure zero, however. The assumption that
the frequency ratio o;(I)/®,(I) =w,(I) is not a constant
rational number for all values of I leads to a contradiction.

(i) The ratio ,,(I) =}, is an irrational constant for all
L. The existence of the invariants I assures that the motion
in phase space takes place on two-dimensional tori. For
irrational »%,, however, motion on a torus is ergodic, i.e.,
there does not exist a partition of the torus into invariant
submanifolds of positive measure.'” Hence, the trajectory
would cover densely a two-dimensional manifold for arbi-
trary fixed values of I contradicting the previously men-
tioned fact that the motion is restricted to a one-
dimensional phase-space manifold.

(ii) The ratio w,(I) is a continuous nonconstant func-
tion of the actions I. In this case, the tori with irrational
frequency ratio are dense in the set of all tori and have
measure 1 whereas the rational tori—likewise distributed
densely—have measure 0. For every irrational torus the
argument given in (i) applies. Therefore, each trajectory
fills a two-dimensional manifold for arbitrary fixed values
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of the actions I except a set of measure 0. Again, no third
global smooth integral can exist in phase space.

Since the cases (i) and (ii) exhaust all possibilities, the
frequency ratio w,(I) in systems with two degrees of free-
dom, N=2, necessarily is rational all over phase space if
three global integrals exist.

For an arbitrary number N and A-fold (A=1,2,...N
—1) degenerate systems the same reasoning applies: N+ A
global smooth integrals restrict the motion to a manifold of
dimension N—A. Commensurability between frequencies
o is expressed by the existence of equations of the type

N

2 (D=0, ¢, €Z (13)
n=1
where A=1,2,...,A. Suppose one would have less than A
equations of this type, say A'(A’'=0,1,...,A—1). Then the
motion would fill densely a manifold of dimension
N—A">N—A. This would make it impossible to have
more than N+ A'(<N-+A) independent integrals—in
contradiction to the assumption. Therefore A conditions of
commensurability must exist between the frequencies
w(l).

For a different proof of this result the reader is referred
to the Appendix.

1. EXAMPLES

In this chapter the general results obtained for integrable
systems possessing additional constants of motion are il-
lustrated with various examples. On the one hand, some
well-known physical systems with a small number of de-
grees of freedom, N=2 or N=3, are listed, and their prop-
erties are seen to fall into the scheme presented above. On
the other hand, the harmonic oscillator is considered
which allows to exemplify the relevant features explicitly
for an arbitrary number of degrees of freedom N and ar-
bitrary degeneracy A.

The study of these systems reveals that statement « ac-
tually is most powerful: often it is possible to prove the
existence of a specific number of invariants some of which
are in involution. The transformation to action-angle vari-
ables (being necessary to verify statement ), on the other
hand, although always being possible in principle, can be
given analytically in exceptional cases only. Nevertheless,
one can use knowledge about the whole set of possible
motions in order to determine the actual number of in-
volved frequencies.

A particle moving in the attractive Coulomb field of two
fixed centers is an example of an integrable nondegenerate
system (N=3,A=0). The Hamilton-Jacobi equation of
this system is separable in elliptic coordinates; in addition
to the energy and the component of angular momentum
parallel to the line joining the two centers one finds a third
independent integral of motion.!! Correspondingly, the
time evolution of the system contains three independent
frequencies associated with the one-dimensional motions
obtained by the separation. The explicit transformation to
action-angle variables, however, is not known.

For a particle moving in a central field, apart from the
energy all three components of the angular momentum 1
are conserved, rendering the system singly degenerate (N
=3,A=1); three involutive invariants are given by H, I,
and 12. In fact, the motion is restricted to the plane per-
pendicular to the angular momentum |, and, generally, the
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orbits in this plane do not close. Therefore, the time evo-
lution contains two incommensurate frequencies, the third
frequency being equal to zero on account of the fixed ori-
entation of the plane of motion (cf. statement B8). In con-
trast, in the case of the Kepler problem and the three-
dimensional isotropic harmonic oscillator, all orbits are
closed, i.e., the two frequencies become commensurate,
and one smgle frequency effectively determines the time
evolution of the system.!? Hence, these two systems are
completely degenerate (N=3,A=2), and as a matter of
fact, both systems are known to possess the required two
additional, functionally independent constants of motion.
Exceptionally, for the Kepler problem and the oscillator
the action-angle representation is known analytically, con-
firming the statements 8 and y: in both cases, the Hamil-
tonian is a function of a Sum of three actions with equal
and constant coefficients.'®

The free asymmetric top is another singly degenerate
system with three degrees of freedom: again the (kinetic)
energy and the three components of the angular momen-
tum /,,/,,/, in the laboratory system represent four indepen-
dent conserved quantities (N=3,A=1). The Poinsot con-
struction'* shows that the motion indeed depends on two
independent frequencies. The free symmetric top has an
additional constant of motion, the component L5 of the
angular momentum' along the symmetry axis of the top,
and one might therefore expect that it is doubly degener-
ate. However, this is not the case: the motion still contains
two independent frequencies, the angular velocity about
the symmetry axis of the top and the precession frequency
In fact, the energy H can be written as a function of L2=1>
and L, so that only four out of the five constants of mo-
tion are independent. The spherical top, finally, is an ex-
ample of a completely degenerate system (N=3, A=2),
since between its seven constants of motion E,\LL, there
exist two functional relations, leaving five independent in-
tegrals. In fact, its motion is a uniform rotation about a
fixed axis.

For the heavy asymmetric top only two constants of
motion H,l, exist and, therefore, it is nonintegrable. In the
case of a symmetry axis Z, the component Lz of the an-
gular momentum is also conserved, turning the symmetric
heavy top into an integrable but nondegenerate system (N
=3,A=0). Its motion is characterized by three indepen-
dent frequencies associated with the rotation about its sym-
metry axis, the precession of the angular momentum about
the vertical, and the nutation of the symmetry axis about
the instantaneous direction of the angular momentum.

Spin systems provide a further class of examples. A pair
of exchange-coupled spins with uniaxial exchange and
single-site anisotropy has two constants of motion, the en-
ergy and the component of total spin S,,,=s, +s5, along the
symmetry axis, and it is therefore integrable, but nonde-
generate (N=2,A=0). It has been shown that a second
integral of motion also exists for a class of asymmetric
two-spin systems, if the constants of anisotropy satisfy a
certain relation.'® Correspondmgly, two independent fre-
quencies are visible in the motion of these systems. If the
coupling is fully isotropic, H=Js, *s,, all three components
of the total spin S, are conserved. Smce the energy can be
expressed as a function of S,,,H= %/S%, + const, there are
three independent constants of motion, making the system
completely degenerate (N=2,A=1). In fact, the motion
consists of a rigid uniform rotation of the array formed by
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the two spin vectors s,,s, about the constant total spin S,
with an angular velocity proportional to the vector product
Sy X S5.

For two types of spin clusters, properties of integrability
and de6generacy are known for an arbitrary number N of
spins. Let every spin be coupled to every other spm by
a uniform isotropic exchange interaction: any such “com-
plete cluster” possesses 2N —1 independent integrals of
motion and, consequently, it is completely degenerate (A
=N —1); the motion consists of a rigid uniform rotation of
the whole spin array about the constant total spin. The
second type of spin system is composed of two subsystems
A and B such that each spin of subsystem A interacts with
all spins of subsystem B with a uniform anisotropic ex-
change interaction and vice versa, whereas spins belonging
to the same subsystem are assumed not to interact. These
systems possess at least 2N —4 independent integrals of
motion (A>N —4); the motion, therefore, is governed by
at most four independent frequencies. -

Finally, a A-fold degenerate harmonic oscillator in
N-dimensions is considered; the particular feature of this
system lies in the fact that all three statements ¢ —¥ can be
exhibited in detail.'® Let the Hamiltonian be given by

A+l

1
Hpg)= 2 (P/1+w/1‘1,1) + 2
A= I=A+2

(p%+w%qf),
(14)

with frequencies {w;} which, for convenience, are assumed
to be integer numbers with no common divisor, in contrast
to the {w;} being irrational incommensurate numbers. In
action-angle variables the Hamiltonian reads

A+1 N
HD)= Y o1+ 2 ol (15)
A=1 I=A+2

() Statement a holds true for the A-fold degenerate
N-oscillator since, on the one hand, the action variables I
represent N global invariants in involution; on the other
hand, A additional independent constants of motion are,
for example, given by

Ji=sin(o; (1 @1—0a@av1)y A=12,.,A, (16)

and none of the J, is in involution with all the actions I.
(B) The second statement, B, follows from Eq. (15):
since the frequencies @ are given by
A=1.,A+1,
I=A+2,..,N,

aH @y, 1
w"_c?l,,— aj, ( 7)
there exist A linear nontrivial independent relations of the
type Eq. (2); choose, for example,

cAnEm,1+16n,1—w,18nA+1 GZ, A=1,2,...,A. (18)
(7) The first part of this statement can be obtained by
performing a canonical transformation to a different set of
action-angle variables (I',¢’) such that the (A+1)st ac-
tion reads

A+1 GF(I,rp’)
L= 2 oii=——7—. (19)
A=l PA+1

This is achieved by a generating function F(L¢g’) given by
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A+l A+1 N
F(I,¢')=—( > 2 pwln+ 2 <pi11),
A=1 A'=1 I=A+2
(20)
with
Hir+1=0), (21)

where the (A+1) X (A+1)-matrix g with integer entries
K2 € Z has determinant 1. The (A4 1) new actions I}, as
well as the new angle variables ¢; are given by linear com-
binations of the original variables, and the remaining new
variables coincide with the original ones.

I=I, @|=¢, I=A+2,A+3,..,N. (22)

The properties of the matrix g guarantee that the angles
@}, in fact, are 2m-periodic coordinates again. As a result,
the Hamiltonian becomes a function of N—A arguments
only

N
HO)=HU)=H (I} pdi) =Dt + 2 (o
(29

which was to be shown.

The second part of statement ¥ also is true for the os-
cillator at hand, due to the transformations generated by
the function F(L¢’) of Eq. (20).

In summary, a number of physically different systems
are seen to exhibit the general features of degenerate inte-
grable systems introduced in Sec. II. The A-fold degenerate
harmonic oscillator is particularly suited to demonstrate
the equivalence of three manifestations of classical degen-
eracy of frequencies in arbitrary integrable systems: first,
the existence of N+ A global smooth invariants (a), sec-
ond, the existence of A linear relations between the classi-
cal frequencies with integer coefficients only (B), and
third, the possibility to eliminate A actions of the Hamil-
tonian such that it becomes a function of N — A arguments

only (7).
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APPENDIX

In this appendix a second proof of the implication a=
is given.

Take the N action variables I and the corresponding
angle variables ¢ as canonical variables such that any ad-
ditional constant of motion becomes a function J(Lg) of
the I and ¢. The condition that J is invariant under the
motion of the system,

N

. 2 aJ _ . _3H
J= < CD,,(I) a¢n=w(l) .vq)‘,“‘o) wn( )—a_I_n,
' (A1)

has the form of a linear partial differential equation in ¢.
Its solutions are constant along the characteristics which
are straight lines in ¢ space parallel to the vector @ (I). In
fact, it will usually be the case that the given J is also
constant along other directions in ¢ space. In the remain-
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ing part of ¢ space of dimension R<N—1 containing no
direction along which J is constant, one can introduce R
coordinates

N
Xr= z Ay Prs (A2)

n=1

parallel to R linearly independent directions «, perpendic-
ular to @ (I),

N
Y (D=0 (r=1,...,R), (A3)
n=1
such that
J=J(Ly1sXR)- (A4)

Since J is assumed to be independent of the constants of
motion I, the set y is not empty (R>1). It will turn out
that additional constants of motion can be chosen such
that each of them actually depends on a single coordinate
x only.

Consider, for the moment, one of the coordinates y,
only. From the requirement that J(1,y,) is a single-valued
phase-space function, i.e., that it is invariant against
changes of the angles ¢, by arbitrary multiples of 2,

N
J(I,X,+2ﬂ' > k,,a,,,)=J(I,X,), Yk, eZ, (AS)
n=1

it follows that the c,, must be commensurate,

y=0Q,C,y Cm€Z, a,eR, (A6)
such that
N N
z knOm=a,c, €= 2 kicm€Z, (A7)
n=1 n=1
and J(Ly,) is periodic with period «,,
J(Ly,+2ma,)=J(Ly,). (A8)

For incommensurate «,,, the values of = ,k,a,, form a
dense set of points, and a continuous function J(Ly,)
would be a constant.

Inserting (A6) into (A3) yields a relation between the
frequencies

N

Z] c,(I)=0, ¢, €. (A9)
n—

This is a global relation, since it holds for all I, and the c,,
cannot depend on I because of the continuity of the func-
tions w,(I).

Thus it has been proved that the existence of a constant
of motion depending on R variables y, gives rise to R>1
global rational relations between the frequencies w,. If
R > 1, the implication B=>a shows that there exist R —1
further independent constants of motion.
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