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A historical introduction to the issues raised by the Casimir effect is provided, putting special
emphasis on the experiments which attempt to test this and related phenomena. The classical and
modern quantum interpretations are explained, and an account of the existing calculation
methods is given. The discussion is illustrated with an example of the zeta-function regularization

procedure.

I. THE CLASSICAL INTERPRETATION OF THE
CASIMIR EFFECT

A. Introduction

The Casimir effect takes its name after the Dutch promi-
nent physicist H. B. G. Casimir, who in 1948 published a
paper in the Proceedings of the Royal Academy of Sciences
of the Netherlands where a rather remarkable property,
namely, the attraction of two neutral metallic plates, was
predicted theoretically.' In all the research papers and re-
views about the Casimir effect that have been published in
the last years,>® this paper by Casimir is taken as the undu-
bious beginning of a whole branch of research, which aims
nowadays at answering very profound questions about the
vacuum structure of quantum field theory (QFT). How-
ever, it is very difficulty to get a clear idea from these-—on
the other hand, excellent review papers—of what the con-
tribution of Casimir was precisely or of what was the specif-
ic physical context in which his paper appeared. Some au-
thors go even further and attribute to Casimir very deep
ideas about QFT that by no means could he have had at his
time. The interest of the subject, which is reflected by the
increasing number of papers which are dealing with it, de-
serves a proper clarification of several points.

To start with, it is fair to say that the 1948 paper by
Casimir attracted comparatively small attention during the
following two or three decades. For instance, another work
by Casimir and Polder,'° which was published in the Phys-
ical Review also in 1948, got by far much more citations
from experimental and theoretical colleagues. This second
paper is nowadays considered a mere addition or an initial
stimulus to the first, fundamental paper about the Casimir
effect. Maybe part of this puzzle can be explained by the
importance and availability of the Physical Review (in
comparison with the aforementioned Dutch journal).
However, even in contributions where the two papers were
mentioned, the one by Casimir alone deserved no special
comment; i.e., in no way was it singled out with respect to
the other one co-authored by Polder.

B. Connection with the van der Waals forces and the
London theory

A second point to be remarked is the following. Nowa-
days, when dealing with the Casimir effect itself, a particu-
lar emphasis is usuvally put on its own spectacularity, that
is, on the fact that two noncharged plates do attract them-
selves in the vacuum. One needs to understand that this is
actually much more mysterious zoday than it was in 1948,
At that time, 75 years after the celebrated dissertation of J.
D. van der Waals'! (published for the first time in 1881)—
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where his famous weak attractive forces between neutral
molecules were introduced—and already 18 years after the
formulation by F. London of his celebrated theory'’—
which gave a precise (for that time) explanation of the
nature and strength of the van der Waals forces as due to
the interaction of the fluctuating electric dipole moments
of the neutral molecules—there was nothing specially mys-
terious about two neutral bodies attracting each other. van
der Waals forces play a very important role in biology and
medical sciences. They are in general particularly signifi-
cant in surface phenomena, such as adhesion, colloidal sta-
bility, and foam formation. One could dare to say that they
are the most fundamental physical forces controlling living
beings and life processes. Three different classes of van der
Waals forces can in principle be distinguished: orientation,
induction, and dispersion forces. '? The ones involved in the
attraction of the plates correspond in this classification to
the third group.

C. The specific contribution of Casimir and Polder:
Retarded van der Waals forces

The works by Casimir and Casimir and Polder, ad-
dressed a rather (of course, important but) more technical
point: the fact that the polarization of the neighboring mol-
ecules (or atoms) induced by a given molecule (atom) is
delayed as a consequence of the finiteness of the velocity of
light. So these forces could be termed long-range retarded
dispersion van der Waals forces. This was clearly noted,
experimentally, by the fact that when the molecules were
separated far enough (always in the range of microns, so
that the effect could make any sense), the power law corre-
sponding to the attractive force between two given mole-
cules changed to the inverse eighth power,

F=Cy~* (1)

(B being a constant and  the distance between the two
molecules), as compared with the inverse seventh power
obtained in London’s theory:

F=C/F, (2)

typical of the van der Waals forces for very close molecules
(which did not feel so much the retardation effect due to
the finite velocity of interaction). In particular, the expres-
sion obtained by Casimir and Polder has become famous
for the potential energy U corresponding to two atoms sep-
arated by a distance r and whose static polarizabilities are
a, and a,, respectively:

U= — (23%ic/4m) (a,a./?") . 3)

Note the appearance of #. This energy U is the result of
making a semiclassical approximation to a theory intended
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for the description of quantum effects. The word classical is
to be understood this way all along the text. It is now (and
was then) a matter of an elementary exercise on surface
integration to obtain the force per unit surface (that is, the
pressure) which attracts two neutral, parallel, metallic,
perfectly conducting plates of infinite extension in the
vacuum, under the hypothesis that they are formed by a
rarefied distribution of neutral, polarizable atoms. How-
ever, Casimir used a novel technique: that of calculating the
effect due to the zero-point energy of the electromagnetic
field. Simple dimensional reasons show immediately that
the just-mentioned power laws give rise, respectively, to an
inverse third power, if the plates are very close (distance
say less or equal than 0.01 gm, i.e., 100 A, the penetration
depth of electromagnetic waves in the metal),

P=A/6nd’, 4

and to an inverse fourth power, if they are more separated
(say somewhat above 0.02 um),

P=B/d*. (3)

This last case was the one explicitly calculated by Casimir
in his seminal paper,' with the expression

P=0.013/d* dyn/cm?, (6)

where the distance in this expression has to be given in
microns, the basic unit length for this kind of calculation,
as already mentioned. The calculations can be easily ex-
tended to different geometrical configurations. For in-
stance, for a hemisphere of radius R held at distanced from
an infinite plane, the attractive force when they are very
close was given by London’s theory:

F=AR /6d*. (7

On the other hand, when they are a bit more separated, the
retarded interaction changed this result to

F=27BR/3d’. (8)

The result obtained by Casimir and Polder for the potential
energy corresponding to a particle of electric polarizability
a, inside a cavity of a perfectly conducting material and
separated a distance r from the flat wall, was

U= — (3%c/8m) (a/r*) . ‘ 9)

D. The Lifshitz theory

E. M. Lifshitz, in a not less important paper'* than those
previously referred to (submitted to the Russian Zh. Eksp.
Teor. Fiz. in 1954 and whose English translation was pub-
lished in 1956), developed a different theory in order to
deal with the two major difficulties of London’s theory,
namely, the already mentioned one, that it did not take into
account the finite velocity of propagation of the electro-
magnetic interaction (this had been already taken care of
by Casimir and Polder), and a second one, namely, the fact
that the van der Waals force is not additive. This prevents
us from treating the problem of extensive bodies in a proper
way as composed of elementary constituents (atoms or
molecules), and to derive the force between macroscopic
bodies by integration of the forces which exist between the
elementary constituents—unless one makes the hypothesis
(advanced before) of considering a very dilute distribution
of constituents in the extensive bodies, but this is a very
unrealistic assumption.

Lifshitz’s theory started from the opposite direction,
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treating matter as a continuum with a well-defined fre-
quency-dependent dielectric susceptibility. It was a com-
pletely closed theory: It could treat any kind of material
bodies, it explained in a precise and continuous way the
transition from one power law to the other (due to the
retardation effect) when the distance is increased, and it
contained the formulas of London for the elementary con-
stituents of matter and of Casimir and Polder for the per-
fectly conducting, neutral metallic plates, as limiting and
particular cases, respectively, as was rigorously proven by
Dzyaloshinskii, Lifshitz, and Pitaevski in 1961.'° More
precisely, the picture of the interacting bodies in Lifshitz’s
theory was that of two media filling half-spaces with plane-
parallel boundaries separated from one another by a cer-
tain distance d. Just as for the case of the random force
introduced in the theory of Brownian motion, a “random”
field was introduced into the Maxwell equations of motion.
In the case of large (that is, not so small) separations, Lif-
shitz’s formula for the force per unit area betwen two paral-
lel plates separated by a distance d reduced to the follow-
ing. For plates of an infinitely conducting metal,

P =ticr’/240d* ; (10)

for two identical dielectrics of dielectric constant ¢,

_ _fier (60——1

2
- , 1
240d° \e, + 1) Pleo) (h

where @ (€,) is a function defined by the theory and which
has the following behavior for €,— 0

@(€) =1 — (1.11/V€,)In(€,/7.6) ; (12)

for a metal (infinitely conducting, € = o ) and a dielectric
of constant ¢,

_ fiem €,— 1
240d° €, + 1

¢(60); (13)

also, for two individual atoms belonging to materials of
dielectric constants €,, and €,,, respectively, Lifshitz ob-
tained the attractive force between them as a limiting case
of the formula for continuous media, assuming that both
media were sufficiently rarefied:

F = (23%ic/640m°d*) (€,0 — 1) (€ — 1), (14)

from which the preceding formula of Casimir and Polder
for the potential energy [Eq. (3)] follows immediately.

A most important point of this theory was the fact that
the general equations derived by Lifshitz to calculate the
dispersion force require only information about the dielec-
tric properties of the bodies (in particular, the dielectric
susceptibility of the bodies as a function of the frequency),
and this information can, in principle, be obtained from
independent spectroscopic measurements. Thus Lifshitz’s
theory could be applied by Parsegian and Ninham (in
1970) to a detailed study of the dispersion forces between
biological membranes.'® A very original contribution of
the theory was also to consider the effect of temperature on
the force of interaction. However, this part of Lifshitz’s
theory disagreed with subsequent (independent) calcula-
tions by Sauer,'” Mehra,'® and Brown and Maclay,’ who
agreed among themselves and said that Lifshitz’s results
concerning this point were in error.
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IL. EXPERIMENTAL VERIFICATION

A. The first direct experiments: Abrikosova and
Deriagin, Kitchener and Prosser, and Sparnaay et al.

The experimental verification of the transition from one
power dependence to the other when increasing the ap-
proach of the two bodies came through a work of Tabor
and Winterton,'® published in Nature in 1968. The first
measurements of van der Waals forces had been always
indirect, mainly based on determining the necessary force
in order to break the adhesion between two surfaces. In the
early 1950s, the first direct measurements for the forces
between surfaces as a function of separation, carried out by
I. I. Abrikosova and B. V. Deriagin, were published.®
They used different configurations, such as a hemisphere
and a flat surface of polished quartz, two flat plates of
quartz, and one made of quartz, and the other of metal. The
separation between them was measured by optical interfer-
ence and the attractive force with the help of an elaborate
feedback mechanism. They reached a smallest distance of
approach of about 0.1 zm, being the overall range from 0.1
t0 0.4 um. A similar study was reported by J. A. Kitchener
and A. P. Prosser in 1957, who used parallel flat surfaces of
borosilicate glass.”' They only reached about 0.7 um. The
results of further experiments by M. J. Sparnaay,>” Spar-
naay and Jochems,”® and Black et al.** were published
between 1958 and 1960. They used, in particular, alumi-
num, glass, and quartz plates, and the smallest distance of
approach was always well above 0.1 um. In all these experi-
ments, it was observed that the forces agreed in magnitude
with the formula corresponding to the retarded van der
Waals forces, which for the distances of approach involved
are ten times smaller than the ones corresponding to nonre-
tarded forces. All of them worked with distances of maxi-
mal approach not less than the 0.1 um, as mentioned above.

B. The experiment of Tabor and Winterton: Transition
from normal to retarded van der Waals forces

D. Tabor and R. H. S. Winterton'® worked with very
smooth surfaces—which they achieved by using the clea-
vage face of muscovite mica—bent them in partially cylin-
drical form, and arranged them perpendicularly. Multiple-
beam interferometry allowed these authors to determine
the separation between the sheets of mica to an accuracy of

+ 4 A. From previous experiments, they had realized that
in order to investigate the transition from normal to retard-
ed van der Waals forces it was necessary to attain separa-
tions much less than the 0.1 um (see Fig. 1).

They managed to work in the range between 50 and 300
A and clearly observed the transition from one power de-
pendence with distance to the other: The normal van der
Waals forces were seen to predominate for separations less
than 100 A and the retarded forces for separations greater
than 200 A. As seen in Fig. 1, for separations greater than
150 A the experimental points approached very well the
solid line corresponding to the predictions of the Lifshitz
theory.

C. The experiment of Sabiski and Anderson

A further experimental verification of the Lifshitz theo-
ry came in 1973 with the paper by E. S. Sabiski and C. H.
Anderson.”® They presented accurate measurements of the
properties of helium films absorbed on cleaved surfaces of
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Fig. 1. Logarithmic plot of critical jump distance /4 against the parameter
stiffness of beam/radius of cylinder (¢/R). The results show a transition
from nonretarded to retarded van der Waals forces at a separation of the
order of 150 A. For a separation above 200 A, the results agree well with
those calculated from Lifshitz’s theory for retarded van der Waals forces
using a theoretical value of B = 0.87X 10~ '°. For separations below 100
A, the results agree with those calculated for nonretarded van der Waals
forces using a value of the Hamaker constant 4 = 10~ '2 erg. (Reprinted
by permission from D. Tabor and R. H. S. Winterton, Nature 219, 1120
(Copyright (c) 1968 Macmillan Magazines Ltd.).

alkaline—earth fluoride crystals at 1.38 K. The thickness of
the films were measured using an acoustic interferometry
technique, and their value ranged between 10 and 250 A

The experimental results were in excellent agreement with
the corresponding calculations based on the Lifshitz theory
of the van der Waals forces (see Fig. 2).

This is an example of a paper which makes no reference
to the work of Casimir, although it mentions the one by
Casimir and Polder on the retarded van der Waals forces.
The reason for this seems clear, if we consider that Casi-
mir’s paper deals with the attraction of metals in the vacu-
um, while the idea and specific device used by Sabiski and
Anderson makes only sense with dielectrics. After noting
the extreme difficulty in performing more accurate experi-
ments on the traditional line which had been followed until
then, they started from an old observation by Schiff?
(made in 1941) that the relatively thick liquid-helium
films observed in the walls of containers are formed by the
van der Waals force. Although there was some controversy
concerning the importance of additional forces which
could come into play, the remarkable agreement obtained
between the experimental results and Lifshitz theory—for
different materials and as a function of the thickness of the
helium film—provided a strong confirmation of the valid-
ity of the latter. As admitted by Sabisky and Anderson, the
results cannot be extrapolated to smaller distances, com-
parable with the surface roughness, only a few atoms thick.
In this case stronger van der Waals forces have been report-
ed corresponding to the adsorption—isoterm measurements
of unsaturated films in cases where the surface roughness
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Fig. 2. van der Waals potential of a helium atom on the surface of the
helium film which is absorbed on a SrF, cleaved surface as a function of
the film thickness at 1.38 K. The data represented by closed and open
points are for unsaturated and saturated films, respectively. The solid line
represents the theory of Lifshitz [taken from E. S. Sabiski and C. H.
Anderson, Phys. Rev. A 7, 790, 799 (1973)].

was certainly significant. It is fair to mention also that these
techniques are extremely difficult to control properly and
that the reported values of the very many experiments
which have been carried out (in this, on the other hand,
basic field in solid-state and condensed-matter research)
give values for the film thickness which vary considerably.

II1. THE CASIMIR EFFECT IN QUANTUM FIELD
THEORY

A. The local formualtion of the Casimir effect

The paper by L. S. Brown and G. J. Maclay,® published
21 years after the work of Casimir, was specially significant
from the theoretical point of view, a kind of milestone on
the road leading to the modern QFT interpretation of the
Casimir effect. For the first time, it contains the local for-
mulation of the Casimir effect, in terms of the vacuum en-
ergy density and vacuum pressure. These authors derived
the following explicit expression for the regularized ener-
gy-momentum (Or stress-energy) tensor:

O = — (72/180d*) (L g** + 22") (15)

which was computed with the aid of an image-source con-
struction of the corresponding Green’s function. Here, 2
denotes a spacelike four-vector orthogonal to the parallel
plates and d (as before) its separation.

Also, for the first time, and although not explicitly stated
there, the calculations in Ref. 3 involved the zeta-function
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procedure, in particular, Riemann and Epstein zeta func-
tions. This method has evolved, starting from the seminal
works of J. S. Dowker and R. Critchley?’ (in 1976) and of
S. Hawking®® (in 1977)—and incorporating a rather long
list of contributions from very different authors*®—into
the most elegant, simple, and mathematically rigorous way
of defining regularized vacuum energy densities in situa-
tions that nowadays very much generalize the original case
considered by Casimir. This method is termed the zeta-
Sfunction regularization procedure and pervades different
aspects of QFT.

B. The mystery of the Casimir effect

Before introducing the concrete expressions which lead
to the calculation of the Casimir effect from the point of
view of the modern QFT, let us say a few words about an
intriguing question that was posed before, namely, why is
the Casimir effect less understood now than it was 40 years
ago? Why did it become a subject of more and more interest
as decades went by? Though the (tentative) answer to
these questions will become more clear after the discussion
below and once the actual calculations are performed, we
can already point out in advance to the basic problem: Un-
like the van der Waals forces, which are always attractive,
the ones appearing in the Casimir effect can be either at-
tractive or repulsive. In the most simple case, the modern
calculations about the Casimir effect doubtlessly indicate
that if instead of two plates we considered the configura-
tion formed by the two halves of a hollow cube of a neutral
perfectly conducting metallic material, if we would bring
the two halves together in order to form a closed cube, they
would experience a repulsive pressure. The same would
happen when bringing together the two halves of a metallic
sphere. The sign of the Casimir force (and that of the vacu-
um energy density) is positive or negative depending cru-
cially on the nature of the field (electromagnetic, i.e., the
only one considered until now, scalar, etc.) and, for a given
field, on the dimension of the space-time (always four, un-
til now, but can be arbitrarily generalized), and with the
dimension also fixed, on the particular geometry of the
boundary. Here, we are always talking about a flat space-
time, but of course, curved manifolds can also come into
play.

One speaks nowadays of different (generalized) Casimir
effects, as due to (1) the existence of a background field in
the vacuum; (2) the geometry of the boundary; (3) the
dimension of the space-time; and (4) the possible curva-
ture of the space-time. Summing up, just by closing up in a
trivial way the configuration considered by Casimir, we
obtain a repulsive pressure, which can in no way be ex-
plained as a kind of van der Waals-like force. On the other
hand, for the multiple generalizations of the Casimir effect
(to different fields, boundaries, dimensions, and space-
times), the dependence of the force sign on them is any-
thing but trivial. So is the mystery of the Casimir force born.

C. The concept of the vacuum energy

It has been this generalization of the concept of the Casi-
mir effect to incorporate all kinds of contributions to the
vacuum energy density in the situations above described
that has rendered this concept so popular in QFT. For an
excellent review, much more detailed than the present su-
mary, the reader is addressed to the paper by Plunien
et al.,* which contains a very detailed exposition of all the
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present developments in this field and 156 basic references.
In particular, the Casimir effect can give rise to contribu-
tions to the surface tension of a curved conductor, can have
cosmological consequences due to deviations from the
Minkowskian geometry of space-time, and can lead to cor-
rections to the self-energy for a scalar field confined to a
cavity or even to calculations in the bag model as a confin-
ing mechanism for quarks and gluons in QCD. It also gives
the response of the vacuum to the presence of external
fields. In this context, Ambjérn and Wolfram’ have dis-
cussed the vacuum energy of a charged scalar field in the
presence of an external electrical field. Finally, deviations
from ideal conditions have also been the object of investiga-
tion, namely, nonzero temperature, noninfinitely conduct-
ing metals, plates of nonzero depth, etc.

Let us now describe the conceptual revolution brought
about by Casimir’s experiment. As already remarked, at
the beginning there was no difficulty in explaining the Casi-
mir effect—and classical generalizations of it—by means of
the Lifshitz’s theory of the van der Waals forces. However,
modern QFT offers an alternative, very general, much
more fundamental explanation from first priciples of the
Casimir force: It is due to a change of the vacuum energy,
i.e., to a deviation of the zero-point energy caused by the
presence of external constraints. In other words, Casimir’s
work stimulated investigations about the zero-point energy
problem in QFT, which resulted in what is now commonly
called ““Casimir’s concept of the vacuum energy”: The
physical vacuum energy of a quantized field must necessar-
ily be calculated with respect to its interaction with exter-
nal constraints and is thus defined as the difference
between the zero-point energy corresponding to the vacu-
um configuration with constraints and the one correspond-
ing to the free-vacuum configuration, respectively. This
formal definition must be supplemented, in general, with a
regularization prescription in order to obtain a finite final
expression. In this way a precise field quantization scheme
starting from first principles is constructed (at least theo-
retically; in practice, things are not so easy).

A first application of this concept of vacuum energy is an
alternative calculation of the Casimir effect, which gives
exactly the same result as the one obtained through its in-
terpretation as due to retarded van der Waals forces. Actu-
ally, it was Casimir himself who showed for the first time*®
that the zero-point energy of the electromagnetic field
could successfully explain van der Waals attraction. But
the concept of vacuum (or Casimir) energy goes much
further than his simple example and leads to results which
in no way can be put down to van der Waals forces, such as
the cases of repulsive pressure already mentioned. In the
modern Casimir theory, these forces arise naturally and
cannot be understood in the framework of conventional
field theory, in which the zero-point energy is simply ne-
glected. Two general methods for evaluation of the Casimir
energy can be distinguished: (i) summation of the series of
energy eigenvalues corresponding to the zero-point field
modes and (ii) determination of the vacuum stress-energy
tensor in terms of local Green’s functions, obtained by con-
sidering the constrained propagation of virtual field quan-
ta. Both methods should lead to the same result, but this is
problematic because of the infinites involved and the differ-
ent regularization schemes that one may choose to use.
Aside from this, specific (technical) difficulties appear in
both cases. In the first, one is led (in principle) to calculate
the whole energy spectrum for the free and for the con-
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strained field modes, and this can only be achieved easily
for simple geometries. In the second case, one has to deter-
mine the exact Green’s functions describing propagation in
the presence of external boundaries. This is done by the
usual image-source construction, which is again easy only
for simple geometries, or perturbatively by multiple scat-
tering expansions in the case of general constraints.

D. The explicit definition of the Casimir energy as a
mode sum

From what has been said, it is now clear that a funda-
mental question connected with the Casimir energy is the
determination of the “true” field Hamiltonian. In a model
without boundary conditions, the Hamiltonian eigenvalue
associated with the ground state or vacuum (the zero-point
energy) is always discarded because, in spite of being infi-
nite, it can be reabsorbed in a suitable redefinition of the
energy origin. The most popular way of putting such an
adjustment into practice is normal ordering. Now, a most
important implication of the concept of vacuum energy
stemming from the work of Casimir is the fact that the
vacuum energy in QFT cannot be defined by means of nor-
mal ordering, because this procedure cannot possibly take
into account the presence of arbitrary boundaries. The ca-
nonical formalism of QFT tells us that, for a scalar field of
mass m, the Hamiltonian operator takes the form

ﬁ]z%Za)k(aZak +agal)

k
)
=S ol m +—
z "( )
=2a)k<a;ﬂak +-l—),
T 2

where w? = k? + m? are the eigenvalues of the Klein-Gor-
don operator, a}, and a, satisfy the canonical commutation
relations for bosonic fields

(16)

[aw.al ] =6u» [awar]=[alel.1=0, 17)
and n, = a}a, is the number operator, whose eigenvalues
are non-negative integers.

Since the vacuum state |0) is defined by

a,|0) =0, (18)
when computing the vacuum expectation value
E,=(0|H|0), (19)
one gets a half of the sum of all the eigenfrequencies:
1
Ey=— Z Wy, (20)
2%

which is in general a divergent quantity.

When instead of a bosonic field one takes a Dirac fer-
mion, the levels above and below the Fermi energy have to
be considered separately. Apart from the different roles of
particles and antiparticles, the result is quite the same:
Only some signs are reversed, because of the replacement of
commutators with anticommutators. After requiring
charge-conjugation invariance, the zero-point energy of
the symmetrized noninteracting Dirac vacuum is

Eoz_%(z Ek+2Ek)’ (21)

k>F k<F
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where the E,’s are the eigenenergies, up to a sign change
for values below the Fermi level F.

E. About the relation between the “old” and the “new”
Casimir effects

While the dependence of the Casimir effect on the plate
separation can be easily inferred on dimensional grounds,
the numerical factor can only be derived by a more or less
involved calculation. The relevance of this point is that it
shows that such a result cannot reflect a general situation.
What is more, the sign of the vacuum energy, which deter-
mines the attractive or repulsive character of the zero-point
pressure, depends, in a rather intricate way, on the particu-
lar geometry of the configuration.

An early classical model for the electron, based on a neg-
ative charge distribution, was long ago proposed by Casi-
mir himself.*! For such an object to be stable, additional
Poincareé stresses were needed. Boyer’s work?® on the Casi-
mir effect for a perfectly conducting spherical shell was
aimed at the justification of those stresses as coming from
the Casimir energy. However, after explicitly computing
the vacuum energy, Boyer found that its sign was the oppo-
site to the one expected; i.e., the configuration was repul-
sive, thus putting an end to the hope of stabilizing the clas-
sical electron model by the Casimir energy. Nevertheless,
for solid balls with a given dielectricity and permeability,
the energy turns out to be negative again, but its contribu-
tion is too small to account for the observed charge quanti-
zation.

Going back to perfect conductors, the cylindrical config-
uration, which is an intermediate case between the plates
and spherical surface, gives an attractive pressure, and not
a null one, as the alert reader might have expected.

The study of the Casimir effect for the e.m. field in re-
gions bounded with thin arbitrarily shaped conducting
shells has led to interpret the change in the vacuum energy
as a contribution to the surface tension.*?> The vacuum en-
ergy contribution to the surface tension can be defined as
the difference between the zero-point energy for a certain
surface deformation and that for flat boundaries. In gravi-
tational theories, one can use the Casimir energy to investi-
gate cosmological consequences of changes in vacuum en-
ergy due to deviations from Minkowski geometry.

For objects with dielectric constant and magnetic per-
meability, the contribution to the vacuum energy does in
general depend on the frequency cutoff, which specifies the
degree of transparency of the material to the e.m. waves. By
making suitable choices of these cutoffs, reasonable values
for surface tensions have been found for liquid helium and
for many metals.

Casimir’s papers prodded many physicists into making
further investigations about the zero-point energy problem
in field theory. The numerous questions raised on the issue
of the physical reality of the zero-point energy can be ade-
quately answered only by showing observable effects that
fully display the influence of the vacuum. The reason why
the e.m. field is so often taken as the first example is our
wide knowledge of its interaction. Thus the Casimir energy
has provided alternative calculations of van der Waals
forces. Nevertheless, unlike those interactions, the Casimir
effect can bring about not just attractive forces, but repul-
sive ones as well, as was dramatically observed for the con-
ducting spherical shell.

This new aspect pointed out that there were at least two
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implications of the vacuum energy: a different interpreta-
tion of known phenomena and the exhibition for the first
time of effects not just classically incomprehensible, but
not even understandable in field theories which disregard
the zero-point energy.

In theory, in order to make the mode sum in the preced-
ing subsection applicable, one should first introduce a
space cutoff or quantization box 2 with the same shape as
the real boundaries 4, but much larger, so that the real
situations may be described by the limit when the size of 2
tends to infinity. The free-field zero-point energy inside the
volume bounded by = will be

%Dm=%;mBM-

Let % be the surface on which the field is constrained, e.g.,
by imposing Dirichlet or Neumann boundary conditions,
and let w, [ 2,4 ] denote the eigenfrequencies found when,
inside the region limited by ¥, the boundary # with its
corresponding conditions is present. The difference in zero-
point energy between this and the previous configuration is
given by

Ao, (28] = S 0, [29] - T s [24].
: k k

(23)

This difference is meaningless because, as it stands, both
terms are infinite. However, if one prescribes the introduc-
tion of a regulating mechanism—such as a frequency cut-
off—the Casimir energy will emerge as the regularized lim-
it of this difference after the space cutoff has been removed
by sending X to infinity. If the regulator is taken to be a
frequency cutoff function, the limit will have meant the
removal of two cutoffs.

(22)

F. An example of calculation by means of the zeta-
function regularization procedure

Let us obtain the Casimir effect for the original perfectly
conducting parallel-plate configuration. The electromag-
netic field in three-dimensional space can be described as if
it was made of two scalar massless ficlds, one satisfying
Dirichlet boundary conditions and another subject to Neu-
mann ones. They correspond to the transverse electric and
transverse magnetic modes, and the conditions come from
requiring the standard perfectly conducting behavior for
the electric and magnetic fields, namely, n'B =0 and
nXE =0 on the surface of the conductor. For each of
them, the eigenmodes have to satisfy the free Klein-Gor-
don equation

Op(x,t) =0. (24)

The Dirichlet boundary conditions are enforced by de-
manding

@P(x,t) =0, on the boundaries ; (25)

i.e., the field has to vanish on the plates. If we assume that
they are orthogonal to the x, axis and held at a distance L
from each other, then, after renaming (x,,X,X;) into
(x,xr), the solutions may be expressed as

. Kooxy  — 0D, (L)t
@(X,Xp,t) ~sin(mnx/L)e ™e” “* ,

w2, (L) = [(7n/LY’ + k%)% n=123,.. (26)
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As for the eigenvalues obeying Neumann boundary conditions, one has to bear in mind the constraint

3,9 N(x,t) =0, on the boundaries,
n being the normal vector to the surface, i.e., 3, @™

KpXp

— il (L)t
e kn s

@(x,xXp,t) ~cos(mnx/L)e
o (L) = [(mn/LY* + X5 ]2 n=0,123,...
Hence, the sum of all the eigenvalues will be

1
()+—-
2( n—lf(Z) Z

(28 E & |7 ) +k2r]”

1 (d%k
E

T 2 1/2
= K
L (27)2( r) “~

go(L) =

The zeta-function regularization method starts by replac-
ing the power } in the integrand with — s/2, where s is a
complex variable, Thus,

1 dkr
(2m)?

1 d kT [ 2]—s/z
— k .
+ L nglf(ZW)z ( ) +

= (L) + P (sL) . (30)

Eo(s;L) =

( %ﬂ)—s/Z

From now on, we will focus on the second integral. After
assuming Re s to be large enough for the integral to con-
verge, we obtain

7' = T[(s—2)/2]
413~ I'(s/2)

EP(sL) = S mhe-on,

n=1
(31)
This result may be analytically continued to other values of
s by noting that, if initially Re sis sufficiently large, the sum
on the right-hand side is the power series defining the Rie-
mann zeta function

(@) =3 n% Rez>l.

n=1

(32)

We will sum the series, get a zeta function, and continue
back in its argument by using the analytic extension of £
itself to arguments such that Re z < 1. Then,

(L) = hm & (s;L)

s— —

= — ﬂ”/z/SL T(=HEC-3). (33)

The value of {(z) at z= — 3 cannot be found by the series
(32), but it may be obtained by analytic continuation using
a variety of techniques. One that happens to be particularly
easy to apply is the legitimate exploitation of the Riemann
zeta-function reflection formula in terms of Euler’s gamma
function, which reads

T(z/2)8(z) =7~ "°T[(1 —2)/21£(1 —2) . (34)
This is a way of performing analytic continuation in the
sense that it allows us to shift from one region of the com-
plex plane to another and in such a manner that we go from
the domain where (32) is valid to a region where it is not.
As a result, we obtain finite and fully computable values,
ie.,
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~3d.pN

d’k
(2m)?

(217)2 [( ) +k2] R

(27)

. The field eigenvalues satisfying this restriction are

(28)

a)kn (L))

(29)

EP(L) = — (1/87°L*)L(4)

= —m/T20L*. (35)

Next, we have to evaluate again the density (energy per
unit volume) & , for the configuration where the perfectly
conducting plates are at a distance § instead of L, and take
the limit for S— « of the difference (23) afterward. This
limit is the realization of the unconstrained vacuum which
is to be subtracted. Since &§" (5;L) was independent of L,
we will get the same first term when L be replaced with S,
and their contribution will cancel each other. Formally,
this will be so even before replacing § with — s/2. The
cancellation of the part independent of the separation is
therefore independent of the type of device used as second
regulator. As for & §?(s;L), one immediately realizes that,
because of its form, ~ 1/.5* will vanish for S— . So one is
left with

E(L)= —7/720L*, (36)

which is the density of Casimir energy, i.e., the Casimir
energy per unit volume, for this conﬁguratlon Although
the dependence on 1/L * was to be expected on dimensional
grounds, the coefficient and the sign are, as a rule, difficult
to obtain. The pressure & (force per unit surface) arising
from this energy density will be obtained as follows. Let
E(L) be the energy contained in the volume in.question
and F(L) the Casimir force, which results from
F(L) = (—3d/3L)E(L). Since E(L) = plate surface
XL X & (L), the pressure & (L)=F(L)/(plate surface)
readsnow Z (L) = ( — 3d/dL)[L& (L)) and amounts to

P (L) = —7/240L*, 37

i.e., the negative sign of this pressure marks out the force
coming from the Casimir energy as attractive. This is the
result that was originally derived in Casimir’s paper by ap-
plication of a Euler—-MacLaurin sum rule, a technique
whose underlying mathematical basis is linked to the zeta-
function method itself through the Bernoulli numbers.

G. Conclusions and prospects for further experiments

The Casimir energy results from the modification of the
modes of quantized fields in connection with the introduc-
tion of boundaries. It may also be said that the modes can
be modified by the presence of polarizable particles as well.
These particles alter the eigenfrequencies of the e.m. field,
leading to the appearance of van der Waals forces, which,
for positive polarizabilities, are always attractive. The van
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der Waals forces admit two other interpretations: two-pho-
ton exchange and zero-point fluctuation as explained in
Sec. III C. The photon exchange would be described by
Feynman diagrams containing a closed photon loop, stand-
ing for the vacuum fluctuations in the e.m. field, perturbed
by two insertions representing two particles. The integra-
tion would be over all the possible momenta of the virtual
intermediate photons.

In view of the van der Waals forces between pairs of
particles, a naive scheme would picture the Casimir forces
between surfaces to be mere superpositions of interactions
among its constituents, as conducting surfaces may be tak-
en to consist of collections of polarizable particles. Follow-
ing that line of thought, the Casimir forces between con-
ducting surfaces would always be attractive, but we have
seen that they are often repulsive. This ingenuous scheme is
unsuccessful because it fails to consider two important
points. One of them is the modification of the zero-point
spectrum. The presence of the boundaries modifies the
field modes, alters the photon propagator, and consequent-
ly, the spectrum itself. On the other hand, for connected
surfaces it is not possible to separate the energy of the
boundary itself from the true Casimir energy of the field.

This apparent failure of the superposition of van der
Waals forces should be experimentally tested. If the experi-
ment by Sparnaay, which involved parallel plates, was by
no means easy to carry out, it is hardly surprising that
probing more complicated configurations involves prohib-
itive difficulties. Perhaps the most interesting thing to look
for would be the observation of the sign change when going
from a disconnected to a connected boundary, e.g., by mea-
suring forces before and after joining two hemispherical
conducting shells. However, these surfaces would be diffi-
cult to make with metallic materials, and their regularity—
at the scale required by the forces to be manifest—would be
extremely hard to control. As in other experiments, one
would have to make as much as possible in order to prevent
accidental differences of potential between the two parts
and the presence of external obstacles—dust, vibrations,
etc. Although Sparnaay’s measurements were so compli-
cated for such a simple system as a pair of plates, the tech-
nology of stress calibration must be today much more ad-
vanced than in 1958. Nevertheless, it seems that all these
situations have not been the object of critical experimental
attention yet.

Another possibility suggested in Ref. 6 would be the de-
tection of the repulsive nature of Casimir forces in spheri-
cal cavities by analyzing the behavior of liquids capable of
forming small bubbles, such as liquid “He.
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For pedagogical purposes, and also to provide a simple schema wherein ideas and methods may
quickly be tried out, a toy version of the interacting boson model {IBM) is developed in two

dimensions.

I. INTRODUCTION

The shell model point of view, that the nucleons in the
atomic nucleus move independently of each other to a first
approximation, and their mutual interactions build up the
detailed nuclear level schemes, has been dramatically suc-
cessful throughout the periodic table. Nuclei, however,
also exhibit phenomena that require for their explanation
an apparently antithetical position, namely, the invocation
of collective modes involving the nucleus as a whole imply-
ing the coherent or tightly correlated motion of the nu-
cleons. Thus the photonuclear giant electric-dipole reso-
nance (that by itself almost exhausts the dipole sum rule) is
visualized as the collective oscillations of the protons of the
nucleus with respect to the neutrons. Again, the occur-
rence of rotational bands in the spectra of many nuclei,
particularly among the lanthanides and actinides, are best
understood in terms of the quantized rotations of a de-
formed nucleus spinning as a whole. A similar case is that
of observed spectra describable as being vibrational in na-
ture. The collectivity of these states manifests itself not
only through the nature of the spectrum but also by the
telltale enhancement of their (electric quadrupole) transi-
tions within the bands. The relationship between the inde-
pendent particle description and the collective picture is a
subject of continuing interest.

About 16 years ago, Arima and Iachello’ mmated anew

approach, providing thereby a tractable description of nu-
clei throughout the periodic table, but particularly in the
regions of strongly developed collective motion. In its sim-
plest form, the model consists essentially in pairing off nu-
cleons (similar to the Cooper pairs in the theory of super-
conductivity) into effective bosons, limiting the boson
spins to zero and two, in the first instance, and then permit-
ting boson—boson 1nteract10ns This is the interacting bo-
son model (IBM).2Itis dramatically successful in describ-
ing complex nuclei with relatively few parameters. A key
concept in this approach is that of a dynamical symmetry, a
notion that has found application in almost all branches of

719 Am. J. Phys. 59 (8), August 1991

physics. The Hamiltonian H, having a group structure G
[which is here U(6) corresponding to the six states: a sca-
lar (J = 0) boson called s, and the five-component quadru-
pole (J = 2) boson called d], can be written in terms of the
Casimir invariants of a complete chain of groups, corre-
sponding to successive subgroups starting from G, provid-
ing labels for the classification of the states and permitting
analytic (algebraic) solutions to the eigenvalue problem.
The objective of the present study is to present a toy version
of the IBM in which the group structure of the Hamilto-
nian is U(3) and the group chain involves SU(2), O(3),
and O(2) and thus requires familiarity only with angular
momentum algebra. It may thus be of pedagogic value and
may also provide a simple schema wherein ideas and meth-
ods could quickly be worked out and checked.

II. THE MODEL

Consider a two-dimensional nucleus wherein the nu-
cleons are imagined to be paired off into bosons. Let us
retain only bosons with angular momentum m =0, + 2 to
which correspond the annihilation (creation) operators
ay(af) and a, (@', ), satisfying the commutation rela-

tions
[a:,a]] =8, (1a)
[a,a;] =0=[ald]]. (1b)
Introduce the set of nine bilinears
A;=dla;, (2a)

which by virtue of the basic commutation relations [of Eq.
(1) ] satisfy the Lie algebra:

[AjsAi] =8 Ay — 84A, (2b)

whereby seeing that ZA,; =ala,+a' a, +a" a_is
fixed at NV (the total number of bosons), it is clear that the
underlying group structure of the model is SU(3). The

most general Hamiltonian for a system of NV such bosons is

i
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