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We consider the interference of two overlapping ideal Bose-Einstein condensates. The usual
description of this phenomenon involves the introduction of a condensate wave function with a
definite phase. We investigate the origin of this phase and the theoretical basis of treating
interference. It is possible to construct a phase state for which the particle number is uncertain, but
the phase is known. How such a state would be prepared before an experiment is not obvious. We
show that a phase can also arise from experiments using condensates with known particle numbers.
The analysis of measurements in such states also gives us a prescription for preparing phase states.
The connection of this procedure to questions of spontaneously broken gauge symmetry and to
hidden variables is discussed. © 2006 American Association of Physics Teachers.
�DOI: 10.1119/1.2210489�
I. INTRODUCTION

One of the most impressive experiments using trapped
Bose gases is the interference experiment of Ketterle and
co-workers.1 Two condensates are separately prepared and
allowed to overlap. An interference pattern arises showing
the remarkable quantum coherence of the condensates. There
have been other interesting condensate interference experi-
ments as well.2–5 If we assume that the separated clouds
initially have a definite phase relation, then the experiments
are well described by straightforward theory.6 However,
questions immediately arise. Do the separately prepared con-
densates have a phase relation?7 The preparation of the
sample certainly did not involve the establishment of a state
with known phase. More likely the particle number in each
condensate would have, or could have, been initially known
ahead of time. Nevertheless, an interference pattern with a
well established phase emerges when the two condensates
are allowed to overlap. So how does this phase arise? The
question was answered in several papers that showed how a
phase appears even when the two clouds are prepared in
Fock states, that is, states with well-defined known particle
numbers.8–15 In this paper we revisit the question and give a
derivation of this result. This result is satisfying, because it
justifies the usual simple assumption of interfering coherent
systems having a well-defined, but unknown initial phase
relationship.

To discuss the properties of condensates and superfluids
we usually introduce an order parameter or condensate wave

function ��̂�r��. The resulting wave function has a magnitude
equal to the square root of the condensate density and a

phase. The state in which ��̂�r�� is nonzero cannot have a
fixed particle number. With one of these wave functions for
each condensate, it is straightforward to discuss interference
of the two, because each one has its own phase, and an
interference pattern arises with a relative phase equal to the
difference between the individual phases. In essence we have
described each condensate by a single particle wave function
so that interference is no more than the overlap and interfer-
ence of two classical waves.

However, how does this single particle wave function

arise? Its existence involves spontaneously broken gauge
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symmetry,16–19 the necessity of which has been brought into
question in recent years.18–21 Suppose we consider a conden-
sate described by a wave function ei�k·r+��. We might de-
scribe the direction specified by the angle � by a “spin” in a
two-dimensional plane. How do we prepare such a state?
What is it that selects the direction of this pseudospin from
all the degenerate possible directions? There is an analogy
with ferromagnetism, where there is a symmetry in the pos-
sible degenerate directions of the magnetization. A small ex-
ternal field in a particular direction in space will select the
direction of the magnetization. In a similar way the phase
angle is selected. In the ferromagnetism case we can assume
that in practice there is always a small field to select a pre-
ferred direction so that the symmetry is broken. However, the
local field that is used theoretically to choose a phase direc-
tion for a Bose condensate does not exist in nature.

The treatment of phase �actually relative phase� in Sec. IV,
and the spontaneous appearance of a relative phase under the
effect of the measurement of particle position in Fock states
avoids violating particle conservation and does not require
use of any symmetry-breaking field and so helps in this re-
gard. A closely related idea is that the phase emerging from
successive measurements of particle position starting with a
Fock state is similar to the emergence of a hidden or addi-
tional variable in quantum mechanics.14,23,24 Was the phase
there before the experiment started, or did the experiment
itself cause it to take on its final value? Hidden variables can
be invoked to specify noncommuting variables. In quantum
mechanics, particle number and relative phase can be con-
sidered to be conjugate variables; the knowledge of one ex-
cludes that of the other. As we measure particle position our
knowledge of the particle number becomes less certain while
the uncertainty of the relative phase decreases.

In the following we first discuss the kind of state that has
a known phase. With this state the interference pattern
emerges with just the prepared phase. Among these states are
the coherent states of Glauber.25 These can either have par-
ticle number completely unknown or have the total number
of particles in the two condensates known �in which case
they are called phase states�, although the number in each
condensate is still unknown. We then derive the interference

pattern starting with Fock states and see the emergence of a
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relative phase even though no phase was present at the be-
ginning of the experiment �or was at least hidden�. We even
find a way to prepare a state that has a known relative phase.
The controversial theoretical constructs are seen to be unnec-
essary.

II. SIMPLE VIEW OF AN INTERFERENCE
PATTERN

A gas �or liquid� undergoing Bose-Einstein condensation
�BEC� is often described by a classical field known as an
order parameter or condensate wave function. Such a quan-

tity can arise in several ways. Suppose that �̂�r� represents a
second-quantized operator that destroys a boson at position
r. The one-particle density matrix is defined as ��r ,r��
= ��̂†�r��̂�r��. Penrose and Onsager26 showed that a criterion
for a Bose condensate or off-diagonal long-range order is
that the density matrix has the form

��r,r�� = �*�r���r�� + f�r,r�� , �1�

where f�r ,r�� vanishes when �r−r� � →�. The function ��r�
is the condensate wave function. It is often assumed that the
system is in a state such that the destruction operator has a
nonzero average:

��̂�r�� = ��r� = �n0�r�ei��r�, �2�

where n0 is the condensate density and � its phase. Such a
state is said to have spontaneously broken gauge symmetry
because a particular phase �out of many possible degenerate
phase states� has been chosen.16–21

To describe the interference pattern in the experiment of
Ref. 1 we must consider the overlap of Bose clouds released
from harmonic oscillator traps.6 This overlap leads to some
interesting features such as fringes whose separation changes
with time. In our analysis here we will consider only plane
waves and ignore any changes in time. Suppose we have an
order parameter that involves two condensate wave func-
tions, with condensate densities na and nb in momentum
states ka and kb. This dual order parameter has the form

��r� = �naeikarei�a + �nbeikbrei�b. �3�

The density of the combined system is then

n�r� = ��naeikarei�a + �nbeikbrei�b�2

= n�1 + x cos�k · r + ��� , �4�

where n=na+nb, k=ka−kb, �=�b−�a, and x=2�nanb /n.
We have an interference pattern with relative phase k ·r+�.
The phase shift � is measurable, although the individual
phases �a and �b are not.

This analysis is simple, but it requires the preparation of
the system in a state with known individual phases. How can
we do that? What is the nature of such a state? The expecta-
tion value of Eq. �2� cannot be in a state of definite particle
number or the expectation value would vanish. We next in-
vestigate this question more deeply.

III. PHASE STATES

As noted by Johnston21 the coherent states introduced by
Glauber25 for photons are appropriate for superfluids.22,27

They are also called “classical states” and are the minimum
22
uncertainty states of the harmonic oscillator. Here we will
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not use them in full generality, but rather use a subset of
them known as phase states. �A full treatment of coherent
states in a treatment of a condensate wave function is given
in Appendix A.� Phase states describe two condensates �in
states ka and kb� with variable particle numbers, Na and Nb
�both macroscopic�, but fixed total number N=Na+Nb. No
other momentum states are occupied. If particle creation op-
erators a† and b† �obeying Bose commutation relations� for
the two states act on the vacuum to put particles into these
two states, then we define the �properly normalized� state as

��a�b;N� =
1

�gN 	
Na=0

N � N!

Na ! �N − Na�!

��a
Na�b

N−Na�Na,N − Na� �5a�

=
1

�gN	
Na

�N!

Na ! �N − Na�!
��aa†�Na��bb†�N−Na�0�

�5b�

=� 1

gNN!
��aa† + �bb†�N�0� , �5c�

where the quantities �i are complex. We separate them into
magnitudes �i and phases �i according to

�i = �ie
i�i. �6�

Also g=�a
2+�b

2.

We can easily calculate the average number of particles N̄a
in this state. We use Eq. �5a� to give

a��a�b;N� =
1

�gN	
Na

� N!

Na ! �N − Na�!

��a
Na�b

N−Na�Na�Na − 1,N − Na� �7a�

=�a

�N
�gN	

Na�

� �N − 1�!
Na� ! �N − 1 − Na��!

��a
Na��b

N−1−Na��Na�,N − Na� �7b�

=�a�N

g
��a�b;N − 1� , �7c�

where Na�=Na−1. Thus

N̄a = ��a�b;N�a†a��a�b;N� = �a
2 N

�a
2 + �b

2 . �8�

Similarly we find N̄b=�b
2N / ��a

2+�b
2�, so that �i= ��i � =�N̄i

and g=Na+Nb=N.
The fact that N is known in our phase state does not affect

the results for the interference patterns which depend just on
the relative phase. Such states have been often used to dis-
cuss the interference of two condensates.11,12,15,28 Our state
can be used to discuss how the relative phase can be conju-
gate to particle number. We write it in a form that makes the

phases explicit:
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��a�b;N� =�N!

gN 	
�Na+Nb=N�

�a
Na�b

NbeiNa�aeiNb�b

�Na ! Nb!
�Na,Nb� .

�9�

Now express the phases in terms of the relative phase �
=�b−�a and the total phase �= �1/2���b+�a� and take the
derivative with respect to �:

− 2i
�

��
��a�b;N� =�N!

gN 	
�Na+Nb=N�

�Na − Nb�

�
�a

Na�b
NbeiNa��+�/2�eiNb��−�/2�

�Na ! Nb!

��Na,Nb� = �a†a − b†b���a�b;N� .

�10�

The phase derivative operator gives the same result as the
number difference operator so that � and �Na−Nb� are con-
jugate variables.19,28 Note that the total phase appears only as
an external factor exp�iN�� and so has no physical signifi-
cance. Thus the individual phases have no physical signifi-
cance; only the relative phase � is a meaningful quantity.

To emphasize this last point and put the phase state in a
more compact form to treat interference, we rename and re-
write it as

��,N� =
1

�gNN!
�a† + �ei�b†�N�0�

=
1

�gN 	
n=1

N � N!

n ! �N − n�!
��ei��N−n�n,N − n� , �11�

where now �=�N̄a / N̄b and � is the relative phase. Also now
g= �1+�2�. We have dropped a meaningless factor of unit
magnitude.

Because we have just two occupied states, the terms in the

Fourier transform of �̂�r� �see, for example, Eq. �A7�� not
referring to states ka and kb never contribute, and we can
more simply write

�̂�r� → cr 
�1

V
�aeika·r + beikb·r� . �12�

We can also make Eq. �12� more compact by writing

cr =�1

V
�a + beik·r� , �13�

with k=kb−ka. The quantity eika·r can again be dropped as a
meaningless factor of unit magnitude.

We want to consider how cr acts on the phase state. We
have

cr��,N� =
1

�gNV
	
n=1

N � N!

n ! �N − n�!
��ei��N−n

���n�n − 1,N − n� + eik·r�N − n�n,N − n − 1�� .

�14�

If we change variables in the first state to n�=n−1, we can

express both terms in the same form and obtain
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cr��,N� = A�r,����,N − 1� , �15�

where

A�r,�� =� N

gV
�1 + �ei�eik·r� . �16�

The average density follows immediately as

��,N��̂†�r��̂�r���,N� = ��,N�cr
†cr��,N� = �A�r,���2

= n̄�1 + x̄ cos�k · r + ��� , �17�

just like Eq. �4�, where now n̄ and x̄ have definitions in terms
of averages. Thus a phase state provides a rigorous context
for a discussion of condensate wave functions and for the
simplified form of treating interference between the two con-
densates. How we might actually prepare one before an ex-
periment is a separate difficult question, which we treat in
the following.

We will find it useful and necessary in Sec. IV to consider
more general cases in which we make measurements of
many particle positions essentially simultaneously. This mea-
surement process allows interference fringes to emerge
where they would otherwise not occur. For our phase state
such calculations are straightforward and add no additional
information because the multiparticle densities all factor in
the phase states. For example, consider the expectation value
of

�̂†�r2��̂�r2��̂†�r1��̂�r1� = cr2

† cr2
cr1

† cr1
� cr2

† cr1

† cr2
cr1

.

�18�

Although cr2
and cr1

† do not commute, we drop a term of
order N compared to one of order N2 in the approximation.
The last form is more convenient to use. By the behavior of
the phase state, we easily obtain

��,N��̂†�r2��̂�r2��̂†�r1��̂�r1���,N�

� ��,N�cr2

† cr1

† cr2
cr1

��,N� = �A�r2��2�A�r1��2

= �
i=1

2

n̄�1 + x̄ cos�k · ri + ��� . �19�

This result generalizes to

��,N��̂†�rm��̂�rm� ¯ �̂†�r1��̂�r1���,N�

� ��,N�crm

†
¯ cr1

† crm
¯ cr1

��,N�

= �
i=1

m

n̄�1 + x̄ cos�k · ri + ��� . �20�

A state in the form crm
¯cr1

�	� is useful for interpreting
experiments. We can consider our experiment as detecting
particle 1 and then 2 shortly thereafter, and so on. After m
detections the wave function evolves to a state missing sev-
eral particles. What is the nature of the state to which it has
evolved? For a phase state it is crm

¯cr1
�� ,N��� ,N−m�.

However, it is more interesting to consider the case of �	�, a

Fock state as we do next.
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IV. INTERFERENCE IN FOCK STATES

It is not evident that experimentalists can prepare a phase
state as we have described. It is more likely that they are
working with Fock states, that is, states in which the particles
numbers Na and Nb in the two condensates are known rather
well. In any case it is likely that there is a greater probability
of initially preparing such a state. However, as several
workers8–15 have realized in recent years, and as we will
show, an interference pattern with some phase can still arise
in a Fock state. If we denote the state sharp in particle num-
ber as �Na ,Nb� and use the Bose annihilation relation

cr�Na,Nb� =�1

V
��Na�Na − 1,Nb� + eik·r�Nb�Na,Nb − 1� ,

�21�

the one-body density in a Fock state is

D1 = �Na,Nb�cr
†cr�Na,Nb� = n , �22�

and there is no interference. Phase and particle number are
conjugate, and the particle number is initially known.

However, if we consider measuring the position of two
particles simultaneously, some correlation should arise. We
have

cr2
cr1

�Na,Nb� =
1

V
��Na�Na − 1��Na − 2,Nb�

+ eik·�r1+r2��Nb�Nb − 1��Na,Nb − 2�

+ �NaNb�ei�k·r1� + ei�k·r2����Na − 1�

��Nb − 1��� , �23�

so the particle number is now slightly less certain. The two-
body Fock correlation function is

D2 = �Na,Nb�cr1

† cr2

† cr2
cr1

�Na,Nb� �24a�

=
1

V2 �Na�Na − 1� + Nb�Nb − 1� + NaNb�ei�k·r1�

+ ei�k·r2��2� �24b�

=n2�1 + x cos k · �r1 − r2�� . �24c�

For two particles there is indeed a position correlation. As we
make more and more measurements the state becomes more
and more mixed among states with various numbers of par-
ticles.

We can rewrite Eq. �24c� in a somewhat different and
useful way. A simple integration shows that

D2 = n2�
0

2
 d�

2

�
i=1

2

�1 + x cos�k · ri + ��� . �25�

If we compare Eqs. �25� and �19�, we see that the results are
similar except that we now integrate over all relative phases.
Remarkably Eq. �25� can be extended to higher order corre-
lation functions. In Ref. 14 it is shown that

Dm = nm�
0

2
 d�

2

�
i=1

m

�1 + x cos�k · ri + ��� , �26�
where it is assumed that m�N.
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To derive Eq. �26�, we invert Eq. �11�, multiply both sides
by e−i��N−n�=e−i�Nb, and integrate over � to give

�Na,Nb� =
gN/2

�Nb
�Na ! Nb!

N!
�

0

2
 d�

2

e−i�Nb���,N� . �27�

Thus, by Eq. �15� we find

crm
¯ �cr1

�Na,Nb�  �
0

2
 d�

2

e−i�Nb�

i=1

m

A�ri,�����,N − m� .

�28�

We will return to analyze this interesting state later. First
consider the m-body Fock correlation function:

Dm = �Na,Nb�crm

†
¯ cr1

† crm
¯ cr1

�Na,Nb� �29a�

�
0

2
 d��

2

�

0

2
 d�

2

e−i��−���Nb�

i=1

m

A*�ri,���

�A�ri,�����,N − m���,N − m� . �29b�

Phase states are not actually orthogonal, but for large N they
are essentially as we show in Appendix A. So if m�N, we
can write ��� ,N−m � �� ,N−m����−���, and

Dm  �
0

2
 d�

2

�
i=1

m

�A�ri,���2, �30�

just as we claimed in Eq. �26�. We will show how to obtain
this result by direct calculation in Appendix B as done in
Ref. 14.

Equation �26� has the form of Eq. �20� but with an inte-
gration over the unknown phase. This result makes sense in
that our initial Fock state did not have a phase defined and
can be expressed as a sum over phase states as in Eq. �27�.

Suppose we have started with a Fock state and have made
m−1 particle measurements and have found particles at po-
sitions R1 , . . . ,Rm−1. Then the probability of finding the mth
particle at position rm is

Pm = nm�
0

2
 d�

2

gm����1 + x cos�k · rm + ��� , �31�

where

gm��� = �
i=1

m−1

�1 + x cos�k · Ri + ��� . �32�

As we will show by simulation, g��� develops a sharp peak
at some a priori unpredictable phase. If we make measure-
ments from the first to the mth particle by this prescription,
the peak becomes narrower as we proceed. As more mea-
surements are made, the particle number in each condensate
becomes less certain �as, for example, in Eq. �23��, so the
phase can be more sharply defined.

Now look back at Eq. �28�. After a fair number m of
measurements, the real part of �i=1

m A�ri ,�� peaks sharply at
some � value, which we denote by �0. This peak means that
the measurements have converted the Fock wave function
into a narrow sum of phase states around ��0 ,N−m�. The
more measurements that are made, the better the definition of
the phase state. Measurements in a Fock state provide a way

to prepare a phase state. We can understand the MIT
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experiments1 in this way. The starting state was prepared as
two separate condensates, whose particle numbers could
have been known. Many subsequent particle measurements
sharpened the phase to some random value and the final
overall observation showed that phase.

V. NUMERICAL SIMULATION

We chose the initial position r1 randomly and then the
next particle is chosen from the probability distribution P2
given by Eq. �31� and so on. We will find that if m is large
enough, gm in Eq. �32� peaks at some a priori unpredictable
phase angle �0 which may fluctuate as m changes, but gradu-
ally settles down. Starting a new experiment from the Fock
state will lead to a randomly different phase angle. We will
consider only the case in which the initial Fock state has
Na=Nb=N /2, that is, x=1. It is convenient to Fourier expand
gm. We write

gm��� = a0 + 	
q=1

�

�aq cos q� + bq sin q�� . �33�

In the integration of Eq. �31� only a0, a1, and b1 will con-
tribute. The integrals gives

Pm�rm�  1 +
a1

2a0
cos�k · rm� −

b1

2a0
sin�k · rm� . �34�

If we define cos��m�
a1 /�a1
2+b1

2, sin��m�
b1 /�a1
2+b1

2,

and Am
�a1
2+b1

2 /2a0, we can write

Pm = K�1 + Am�cos k · rm cos �m − sin k · rm sin �m��
�35a�

=K�1 + Am cos�k · rm + �m�� , �35b�

where K is a normalization factor, and

tan��m� =
b1

a1
�36�

gives the value of the angle in the mth experiment. Because
Pm is a probability, we must have Am�1, so that Pm is al-
ways positive. Because Am has this property, we can write
Am
sin��m�, where 0��m�
 behaves like a polar angle.
Then the emerging phase actually has a space angle designa-
tion ��m ,�m�. We will find numerically that Am→1 rapidly
as we make measurements. In that case the probability of Eq.
�35� looks just like the density prediction of Eq. �4�. More-
over because gm��� is a narrow function with a peak at �0,
the phase defined by the Fourier coefficients is the same as
that defined by the peak of gm, as seen using Eq. �31�.

We work in one dimension for simplicity. At iteration m
we form a gm according to Eq. �32�, whose Fourier transform
gives the parameters a0, a1, and b1. From these we find �m
and Am. To simulate a corresponding particle position mea-
surement x, we must choose from the probability of Eq. �34�;
to do so we form the cumulative probability Cm�x�
=�0

xdx� Pm�x�� and then solve the equation r=Cm�x� for x,
where r is a random number uniformly distributed in the
interval �0,1�. We take the box size L=1 and choose a k
value such that kL is an integer times 2
 to provide periodic
boundary conditions. The normalization of the probability in

Eq. �35� is just the factor K=1/L=1.
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Figures 1 and 2 are plots of �m and Am versus iteration
number in a particular run of 200 iterations. There is no
reason why Am should be unity from the outset. However, Am
proceeds to unity after a small number of iterations. The
result is that �m approaches a sharply defined random phase
angle as predicted. Of course, for small m the fluctuations are
relatively large and settle down only after many measure-
ments, corresponding to an initially wide distribution, gm���,
which progressively narrows as more information is gath-
ered. In Fig. 3 we show plots of the final angular distribution
g200���; it is sharply peaked at the same value found from
the iteration limit. Figure 4 shows the final probability dis-
tribution, Eq. �35�, versus the position x and also shows a
histogram of the positions found in the 200 iterations. We see
that these positions fall in the given distribution with the
expected oscillations and with the same phase as found in the
two other ways: from the asymptote of Fig. 1, and from the
position of the peak in gm���.

Fig. 1. The phase angle �m as a function of the number of iterations.

Fig. 2. The amplitude A=sin � as a function of the number of iterations. The

amplitude converges to unity.
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VI. DISCUSSION

We have shown the interference of two Bose condensates
can be treated rigorously. The usual assumption of two con-
densates with individually known phases becomes associated
with questions about whether we can usefully define the
phase of a single condensate. Using such states leads directly
to the usual relations for interference patterns based on very
simple assumptions. This procedure remains unsatisfying be-
cause it is not very obvious how to prepare such phase states
before looking at the interference. Experimentally it seems to

Fig. 3. The angular distribution g��� as a function of angle; g��� peaks at
the same phase angle as given in Fig. 1.

Fig. 4. The probability distribution function for the position in the interfer-
ence pattern as calculated and the histogram as found in the simulated ex-
periments. The phase here is the same as found by the asymptote of Fig. 1 or

by the maximum of gm in Fig. 3.
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make no difference, because without special preparation,
even with Fock states, we have seen how an interference
pattern arises using Bose condensates.

The discussion of Sec. IV shows explicitly why such
preparation was not necessary. Even if we start with a state
where the particle number in each condensate is precisely
known and many particles are involved in the measurement,
we find a perfect interference pattern emerging, with a well-
defined relative phase. Starting from a state with a definite
number of particles, the experiment will end up with a state
with a definite value of the relative phase. Thus this proce-
dure provides a method for preparing the phase state dis-
cussed in Sec. III. Starting from a Fock state, make, say, 200
position measurements to reach a narrow g200���; the phase
of the wave function of the remaining state of N−100 total
particles will be well defined. The final result is likely a
phase state with a known total number of particles such as
that discussed at Eq. �11�, but an unknown number in each
condensate.

In superfluid calculations it is simpler to treat the problem
with definite phases than to use a Fock state. However, the
actual existence of such a broken symmetry state is subject
to question.18–21 In a ferromagnet the presence of a small
external field breaks the symmetry of the various directions
of the magnetization. The existence of a field that would

make ��̂� nonzero is not as clear, because such states do not
conserve particle number. The existence of a well-defined
relative phase established by measuring particle positions
can be established without being concerned about broken
symmetry.

If the reader is uncomfortable with the idea of a phase
emerging from a series of measurements on particle position,
then the reader might assume, with no change in theoretical
prediction, that the relative phase pre-existed within the two
condensate clouds of particles. That is, the individual con-
densates had some relative phase �a hidden variable� before
they overlapped, and the experiments bring out this previ-
ously hidden phase. In the next realization of the experiment,
starting again from a Fock state, the phase will surely emerge
with a randomly different value, in accordance with conven-
tional quantum mechanics, which expresses the Fock state as
a sum over all phase states as given in Eq. �27�.
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APPENDIX A: COHERENT STATES

Consider the following normalized wave function which
describes a single momentum state k, with a mixture of states
of known particle number Nk,

��k� = e−�1/2��k
2	

Nk

�k
Nk

�Nk!
��Nk� . �A1�

The parameter �k is complex, and we write it in terms of its
magnitude �k and phase �k:

�k = �ke
i�k. �A2�

We can calculate the average number of particles N̄k in this
state. Let ak be the destruction operator for particles in state

�Nk�. Then
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N̄k = ��k�ak
†ak��k� = e−�k

2	
Nk

�k
2Nk

Nk!
Nk = �k

2, �A3�

and �k= ��k � =�N̄k. The state ��k� has the property that it is
an eigenstate of the lowering operator ak:

�ak��k� = e−�k
2	

Nk

�k
Nk

�Nk!
�ak�Nk� = �ke

−�k
2	

Nk

�k
Nk−1

��Nk − 1�!
��Nk − 1�

= �k���k� . �A4�

Thus ak has a nonzero expectation value in this state:

��k�ak��k� = �k = �N̄ke
i�k. �A5�

Clearly the states ��k� provide a definite phase and are not
eigenstates of the number operator.

Next construct a multilevel many-body state with many
possible k values. This state takes the form
��k1

,�k2
,�k3

, . . . �= ��k1
� ��k2

� ��k3
�¯

���k�� 
 ��k1
,�k2,�k3

, . . . �

= 	
�Nk�

�
k
�e−�1/2��k

2 �k
Nk

�Nk!
���Nk1

,Nk2
,Nk3

, . . . � , �A6�

where �Nk� means sum over all possible numbers of particles
Nki

in all the k states.
With such a state, we can consider the expectation value of

the full field operator �̂�r�. Expand the field operator in plane
wave states as

�̂�r� =�1

V
	

k

eik·rak, �A7�

where V is the volume of the system. We have

���k���̂�r����k�� = 	
k

�N̄k

V
ei�keik·r. �A8�

If one of the k states is macroscopically occupied, say, the
momentum state k=ka, we can write

��̂�r�� = �n̄aeika·rei�a +  , �A9�

where na=Na /V and  is the total contribution of the non-
condensed states. The leading term �a�r�=�n̄aeika·rei�a rep-
resents a condensate wave function with a definite phase �a
but indefinite number of particles.

Consider the case of the interference of a double conden-
sate in momentum states ka and kb. For coherent states with
only these two momentum states occupied we can write

��a�b� = e−�1/2���a
2+�b

2� 	
Na,Nb

�a
Na�b

Nb

�Na ! Nb!
��Na,Nb� , �A10�

where the averages N̄a=�a
2 and N̄b=�b

2 are macroscopic
quantities. We manipulate the sums slightly in terms of par-
ticle creation operators a† and b† for the two states. If N
=Na+Nb, we have

��a�b� = e−�1/2���a
2+�b

2� 	
N,Na

�a
Na�b

N−Na

�Na ! �N − Na�!
��Na,N − Na�
�A11a�
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=e−�1/2���a
2+�b

2� 	
N,Na

1

Na ! �N − Na�!

���aa†�Na��bb†�N−Na��0� �A11b�

=e−�1/2���a
2+�b

2�	
N

1

N!
�aa† + �bb†�N��0� �A11c�

=e−�1/2���a
2+�b

2�e��aa†+�bb†���0� . �A11d�

Equation �5b� is the phase state used in Sec. III,
��a�b ;N���aa†+�bb†�N �0�. We see that it is a substate of
the more general coherent state.

APPENDIX B: NEAR ORTHOGONALITY OF PHASE
STATES

We calculate the inner product of two phase states to show
that they are nearly orthogonal for large particle number.
From Eq. �11� we find

���,N��,N� =
1

gN 	
n=1

N
N!

n ! �N − n�!
��2ei��−����N−n

=
1

gN �1 + �2ei��−����N. �B1�

This is a very sharply peaked function of ��−��� as can be
seen by Taylor expanding the logarithm of Eq. �B1� in pow-
ers of ��−��� and then exponentiating the result, keeping
only terms to ��−���2. The result is

���,N��,N� = exp�−
N

2�1 + �2�2 ��� − ��2�
�exp�− i

N

�1 + �2�
��� − ��� . �B2�

In the limit of very large N, ��� ,N �� ,N� is proportional to a
delta function of ��−��� as we assumed in the discussion of
Sec. IV.

APPENDIX C: ALTERNATIVE DERIVATION OF
THE DM EQUATION

We derive the general expression of Eq. �26� for the cor-
relation function Dm. Consider this quantity in its original
form for a Fock state:

Dm = �Na,Nb�crm

†
¯ cr1

†
¯ crm

¯ cr1
�Na,Nb� �C1a�

=
1

Vm �Na,Nb��a† + e−ik·rmb†��a† + e−ik·r1b†� ¯

��a + eik·rmb� ¯ �a + eik·r1b��Na,Nb� . �C1b�

Because this quantity is diagonal in Fock space, each time an
a occurs, there must be a matching a†. The b operators are
similar. We are assuming m�Na or Nb, so that we can al-
ways write a �Na− p ,Nb− l���Na �Na− p−1,Nb− l�, etc. Thus
each a†a gives Na, and each b†b gives Nb. Consider a par-

ticular combination product:
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�a† + e−ik·rjb†��a + eik·rlb� = a†a + b†b + a†beik·rl

+ b†ae−ik·rj �C2a�

→Na + Nb + �NaNbeik·rl + �NaNbe−ik·rj , �C2b�

with the restriction that every time an eik·rl-type term occurs,
there must be a corresponding e−ik·rj-type term somewhere in
the overall product to give the proper balance of creation and
destruction operators. Thus we obtain a series of terms of the
form Fqm

�rm�Fqm−1
�rm−1�¯Fq2

�r2�Fq1
�r1�, where

F0�ri� = Na + Nb, �C3a�

F±1�ri� = �NaNbe±ik·rl, �C3b�

and the sum of all the qj vanishes. That is, we have

Dm =
1

Vm	
�q�

Fqm
¯ Fq2

Fq1
, �C4�

where �q� means sum on all qi with the restriction that 	iqi

=0.
The restriction on the q values can be lifted if we substi-

tute the integral

�
0

2
 d�

2

ei�	qi = �	qi,0

, �C5�

which allows us to write

Dm =
1

Vm�
0

2
 d�

2

�
i=1

m

�F0�ri� + ei�F1�ri� + e−i�F−1�ri��

�C6a�

=nm�
0

2
 d�

2

�
i=1

m

�1 + x cos�k · ri + ��� , �C6b�

as we wished to prove.
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