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There has been much interest in applying the results of statistical mechanics to single molecule
experiments. Recent work has highlighted nonequilibrium work-energy relations and fluctuation
theorems that have an equilibriumlike �time independent� form. I give a simple heuristic example
where an equilibrium result �the barometric law for colloidal particles in water� can be derived using
the thermodynamically nonequilibrium behavior of a single colloidal particle falling through the
water due to gravity. This description is possible because the particle, even while falling, is in
mechanical equilibrium �the gravitational force equals the viscous drag force� at every instant. The
results are generalized using Onsager’s thermodynamic action approach for stochastic processes to
derive time independent equations that hold for thermodynamically nonequilibrium �and even
nonstationary� systems. These relations offer great possibilities for the rapid determination of
thermodynamic parameters from single molecule experiments. © 2006 American Association of Physics
Teachers.
�DOI: 10.1119/1.2205883�
I. INTRODUCTION

Great advances have been made recently in the experimen-
tal study of very small �nanometer size� systems. It has be-
come possible to follow the stretching and unfolding of a
single protein pulled by an atomic force microscope �AFM�
�Ref. 1� and to monitor the stepping of an individual molecu-
lar motor driven by a chemical fuel and influenced by an
external force exerted by an optical trap.2 These experiments
are in many ways analogous to those devised by Galileo to
test the fundamental laws of macroscopic mechanics. Unlike
large spheres falling through air or rolling down inclined
planes, single molecules in water are subject to very signifi-
cant thermal fluctuations and to viscous drag forces so large
that in almost all cases inertia �the mv̇ term in Newton’s
equation� is negligible.3 The development of a theory to de-
scribe these thermodynamically nonequilibrium single mol-
ecule experiments is of great importance, not only for fun-
damental understanding, but also to facilitate development of
nanotechnology.

In this paper, I discuss the Onsager-Machlup4 theory for
nonequilibrium stochastic processes, of which single mol-
ecule experiments provide interesting recent examples. Be-
cause molecules in solution, even under the influence of an
external force, are at every instant very close to mechanical
equilibrium, that is, the viscous drag force is equal and op-
posite the net mechanical force, Onsager’s theory is appli-
cable despite the fact that most single macromolecule experi-
ments are done far from thermodynamic equilibrium. Using
Onsager’s approach, it is simple to derive time independent
equations relating the work done by the external forcing to
the internal potential due to intramolecular forces in the
single molecule.

To make the basic ideas clear, we first consider a very
simple system, a colloid in water.

II. EQUILIBRIUM DESCRIPTION OF A COLLOIDAL
SUSPENSION

The thermodynamic equilibrium distribution for colloidal
particles in dilute aqueous suspension follows the familiar

5–7
barometric or exponential law
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ceq�hj�
ceq�hi�

= e−mg�hj−hi�/kBT, �1�

where ceq�hj� and ceq�hi� are the equilibrium concentrations
of particles at heights hj and hi, respectively, g is the accel-
eration due to gravity, kB is Boltzmann’s constant, and T is
the absolute temperature. For spherical particles of radius r,
the effective mass is m=4�r3��p−�w� /3, where �p and �w

are the mass densities of the particle and water, respectively.
Equation �1� is an equilibrium result that implicitly involves
many particles so that the concentrations �particle densities�
are well defined.

III. SINGLE PARTICLE PERSPECTIVE

We can look at colloids from the very different perspective
of a single particle falling through solution �see Fig. 1�. The
forces acting are gravity, mg, viscous drag �v��rv �where
��10−3 kg/ �m s� is the viscosity of water�, and a random
thermal noise force due to the molecular movement of the
water molecules. After a sufficiently long time �about m /�
=10−6 s for a micron-sized particle� the particle reaches ter-
minal velocity vterm=mg /�, where the force of gravity is
balanced by the viscous drag and there is no further accel-
eration, that is, the particle is in mechanical equilibrium. Let
the particle’s height be hi at time t=0 after the terminal ve-
locity is attained. The subsequent probability density func-
tion P�hj , t �hi ,0�� P�h , t� for the particle’s position is8

P�h,t� =
1

	4�Dt
e−�h + �mg/��t�2/4Dt, �2�

where h=hj −hi. Equation �2� is a solution of Fick’s equation
for diffusion with drift9

�P�h,t�
�t

= D
�2P�h,t�

�h2 +
mg

�

�P�h,t�
�h

, �3�

where D is the diffusion coefficient.
Equation �2� describes a Gaussian distribution with mean

2 2 2
position �=−�mg /��t and variance � = 
h�t� �− 
h�t��
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=2Dt. Although it is more likely that the particle moves
downward, at short times there is a reasonable chance that
thermal noise will cause the particle to be found slightly
higher than where it started. Because the distance from the
center of the Gaussian to the original position hi is �mg /��t,
the probability for a particle to be above its starting point at
time t is 1 /2 erfc���mg /��t�2 /4Dt�, where erfc�x� is the
complement of the error function.

These upward trajectories have been termed violations of
the second law of thermodynamics on short time and small
length scales10 because the entropy change is negative for
these trajectories.11 The upward trajectories do not demon-
strate a violation of the more relevant Thomson �Lord
Kelvin� formulation of the second law which states that no
repeatable �cyclic� process can do work on the environment
with the sole change being a decrease in the temperature of
the system. However, the upward trajectories can be ex-
ploited in a nonisotropic system to allow the random input of
energy to drive directed motion by a Brownian motor
mechanism.12,13

If we transpose hi and hj in the probability density to
obtain P�hi , t �hj ,0�� P�−h , t� in Eq. �2�, we find the prob-
ability density for a particle to be at hi at t, given that it
started at hj at t=0. The ratio P�h , t� / P�−h , t� is

P�h,t�
P�− h,t�

= e−mgh/�D. �4�

Remarkably, time has disappeared altogether in Eq. �4�, and
substituting Einstein’s relation14 �D=kBT, we regain the
equilibrium barometric law, Eq. �1�, which now relates the
conditional probability to be at hj at t given that it was at hi
at t=0 to the conditional probability to be at hi at t given that
it was at hj at t=0. An analogous relation for an overdamped
particle in an arbitrary potential was derived in a more gen-
eral context in Ref. 15 using Onsager’s thermodynamic ac-
tion approach.4

Because the probability density function is normalized,
�−�

+�P�h , t�dh=�−�
+�P�−h , t�dh=1, we also have


emgh/kBT� = 
−�

+�

emgh/kBTP�h�dh = 1. �5�

The quantity mgh is the energy lost when a particle falls a

Fig. 1. A single colloidal particle falling in solution due to gravity. The size
of the particle as drawn and the probability density curve P�h� for the center
of mass height is approximately to scale for a 1 �m sphere with time mea-
sured in units of m /�.
distance h.
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Relations analogous to Eqs. �4� and �5�, known as gener-
alized fluctuation-dissipation theorems, were derived from a
very different perspective by Bochkov and Kozovlev.16

IV. MICROSCOPIC REVERSIBILITY
AND DETAILED BALANCE

We can understand the origin of Eq. �4� in terms of the
principle of microscopic reversibility15—the idea that at
equilibrium every process is as likely as the microscopic re-
verse of that process. The equilibrium probability to observe
a particle move from some position hi at time 0 to a position
hj at time t by any trajectory is ceq�hi�P�hj , t�¯ �hi ,0�, which
at equilibrium must equal the probability to observe the exact
reverse process,

ceq�hi�P�hj,t� ¯ �hi,0� = ceq�hj�P†�hi,t� ¯ �hj,0� . �6�

From Eq. �1�, we thus have15

P�hj,t� ¯ �hi,0�
P†�hi,t� ¯ �hj,0�

= e−mgh/kBT. �7�

for any path, where the † indicates the reverse trajectory.
Although Eq. �7� was derived using knowledge of the behav-
ior of the system at equilibrium, it is valid irrespective of
how different the actual concentration distribution is from
the equilibrium distribution. The conditional probabilities
P�hi , t�¯ �hj ,0� and P†�hj , t�¯ �hi ,0� are defined indepen-
dent of any reference to the concentrations themselves.17

The derivation of Eq. �7� is analogous to the use of de-
tailed balance18 �a corollary of microscopic reversibility� to
derive that the ratio of rate constants for a chemical reaction
is equal to the exponential of the free energy difference over
the product of the gas constant and temperature,
exp��G0 /RT�. Consider a simple reaction

A�
kr

kf

B , �8�

where kf and kr are the forward and reverse rate coefficients,
respectively. Detailed balance dictates that kfceq,A=krceq,B,
where ceq,A and ceq,B are the equilibrium concentrations of
species A and B, respectively. Because ceq,B /ceq,A
=exp��G0 /RT�, we also have kf /kr=exp��G0 /RT�, a rela-
tion that holds irrespective of how different the actual con-
centration ratio cA�t� /cB�t� is at any time from the equilib-
rium ratio ceq,B /ceq,A.

V. SINGLE MOLECULE EXPERIMENTS

Interest in the generalized fluctuation-dissipation theorem
has recently been rekindled, particularly by the work of
Evans,19 Jarzynski,20 and Crooks21 who have made important
progress by relating experimental observables, such as en-
ergy dissipation, and work done by an external force in
single molecule experiments to thermodynamic parameters,
such as the Gibbs or Helmholtz free energy. Hummer and
Szabo22 pointed out that the relations are implicit in the
Feynman-Kac path integral theorem and demonstrated how
the nonequilibrium work energy relations and fluctuation
theorems can be used to interpret single molecule experi-
ments. Several relations derivable from the generalized
fluctuation-dissipation theorem have been tested experimen-

23,24
tally by Bustamante and colleagues who showed that a
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relatively small number of single molecule experiments can
be used to obtain very good estimates of the equilibrium free
energy changes in the system.

It is often stated that many single molecule experiments
are carried out “far from equilibrium.” The 10–100 nN force
typical for an AFM pulling experiment is enormous com-
pared to the 10–20 pN force associated with even strong
molecular motors25 and the rate of change of the force–up to
several hundred nN per second–seems very large. However,
when we compare the rate of change of the force �dF /dt
�100 nN/s� with the ratio of the characteristic force3 Fchar

=�2 /��10−9 N to the characteristic relaxation time for a
nanometer object in solution tchar=�r2 /�	m /��10−12 s
�Fchar / tchar�103 N/s�, we see that the system is very close to
mechanical equilibrium at all times. The characteristic quan-
tities are written in terms of the particle radius r�10−9 m,
density ��103 kg/m3, and the viscosity of the solution �
�10−3 kg/ �m s�. The closeness to mechanical equilibrium
allows writing the microscopic reversibility conditions, Eqs.
�6� and �7�, to be written in terms of only the position of the
particle. On time scales long compared to tchar, the time scale
for thermal relaxation, it is implicit that the velocity distri-
bution is the same everywhere and given by the Maxwell
velocity distribution function. Although the system is in me-
chanical equilibrium, the system is far from thermodynamic
equilibrium as it continues to move and dissipate energy to
its environment. How can we describe such systems theoreti-
cally?

VI. LANGEVIN EQUATION FOR SINGLE
MOLECULE STRETCHING

Onsager and Machlup4 proposed a model for a thermody-
namic nonequilibrium stochastic process based on the equa-
tion R
̇=X+�, where 
 is a generalized displacement, X is a
generalized force, R is a transport coefficient, and � is a
Gaussian distributed random force. The key physical ap-
proximation is that the flux 
̇ depends linearly on the force X
that causes it. Typical macroscopic laws obeying such a re-
lation are Ohm’s law for electrical conduction, Fick’s law for
diffusion, and Fourier’s law for heat conduction. Important
for our considerations here, at a low Reynolds number3

�which is the case for essentially all nanometer-scale motions
of macromolecules in solution� the velocity �not the accel-
eration!� is proportional to the instantaneous local mechani-
cal force26 and hence can be described by an equation of the
form given in Ref. 4.

Consider a macromolecule surrounded by water and teth-
ered between a flat surface and the tip of an AFM �Fig. 2�.
The end-to-end extension of the molecule, h, depends on
many intramolecular interactions which give rise to an inter-
nal potential27 U�h� as well as on an external, possibly time
dependent force g�t�Fext applied using the AFM. Hence, the
net force is F=g�t�Fext−U��h�. Following Onsager, we de-
scribe stretching of the macromolecule by a Langevin
equation:28–30

�ḣ = F + 	2�kBT��t� . �9�

The effect of the aqueous solution is modeled in terms of two
forces, a thermal noise term 	2�kBT��t�, which fluctuates
rapidly compared to all other time scales in the system, and a

˙
viscous drag force �h, which slows the motion induced by
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the fluctuation term. The amplitude 	2�kBT reflects the
fluctuation-dissipation relation between the random colli-
sions with solvent molecules that accelerate the particle and
the viscous drag of the fluid that counteracts this accelera-
tion. The time dependence of the random force is modeled as
a Gaussian noise with zero mean and standard deviation
dt−1/2 which in the limit dt→� becomes white noise31 with
the statistical properties 
��t��=0 and 
��t���t���=�t− t��. It
can be shown that the probability density function P�h , t� for
the stochastic process defined by Eq. �9� satisfies the partial
differential equation �3� with mg replaced by −F. In this
slightly generalized context, Eq. �3� is known as the forward
Fokker-Planck equation.32

The net mechanical force F=g�t�Fext−U��h� is the combi-
nation of the gradient of the internal potential, U��h� and the
external force g�t�Fext. The work �force�displacement�
done by the external forcing over the time t,

wext�h�t�� = 
0

t

ds�g�s�Fext � ḣ� , �10�

depends on the velocity ḣ, and the reversible work done on
the system by moving the particle in the internal potential,

�U = 
0

t

ds�U��h� � ḣ� = U�h�t�� − U�h�0�� , �11�

depends only on the endpoints. The difference, wdis�h�t��

Fig. 2. �a�. In a typical single molecule stretching experiment a protein is
attached at one end to the cantilever of an AFM and at the other to a
substrate on a translatable stage. A force is applied through the cantilever tip
and maintained constant via feedback. After a waiting period, the molecule
undergoes an unfolding transition thereby relieving its internal tension. A
plot of the extension h versus time, obtained by simulation of the Langevin
equation �9� �using Eq. �A1�� with a bistable potential is shown, with the
trajectory near the transition illustrated in detail in the exploded view. The
external force was taken to be constant in time �g�t�=1�. �b�. Bistable po-
tential resulting from the combination of the potential of mean force arising
from internal chemical interactions and the external force.
=wext�h�t��−�U, is the dissipated energy.
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VII. ONSAGER-MACHLUP THERMODYNAMIC
ACTION APPROACH

Given the initial condition h�0�, the specification of ��t� in
Eq. �9� defines a unique trajectory for h�t�. For discrete time
tk=k�t, k=0,1 , . . . ,n we have

P��k� 	 e−�k
2
�t/2. �12�

Because the noise is “delta correlated” 
�k�l�=�t−1k,l, the
probabilities of the values of � in any sequence are indepen-
dent, and we can write33

P���n,t� . . . ��0,0�� 	 �
k=0

n

e−�k
2
�t/2 = e�k=0

n −�k
2
�t/2. �13�

In the limit �t→0 the sum becomes an integral, and we can
write the probability of a trajectory as15

P���t�� 	 e−�0
t ds�2�s�/2. �14�

From Eq. �9�, ��t�= �ḣ−F /�� /	2D, so we can further write

P���t�� 	 e−S/D, �15�

where

S

D
=

1

4D


0

t

ds�ḣ − F/��2

=
�U − wext���t��

2�D
+

1

4D


0

t

ds�ḣ2 + F2/�2� �16�

is the thermodynamic action divided by the diffusion
coefficient.30 To find the most probable path leading from
�hi ,0� to �hj , t�, we maximize the probability P���t�� subject
to the endpoints, which requires that the action Eq. �16� be
minimized.34

By taking the ratio of the probability for the forward and
reverse path, we immediately obtain the generalization of

Eq. �7�. In the reverse path ḣ→−ḣ, so wext��†�t��
=−wext���t�� and �U†=−�U, but the argument of the integral
in the second line in Eq. �16� is unchanged and we have15

P���t��
P��†�t��

= e�wext���t��−�U�/kBT, �17�

where we used kBT=�D. The work probability density func-
tion is given by

P�Wdis� = 
��t�

d���t��Wdis − wdis����t���P����t�� . �18�

For every trajectory with dissipated work Wdis, there is a
corresponding reverse trajectory with dissipated work −Wdis.
The ratio of the probabilities for forward and reverse trajec-
tories is given by Eq. �17�, so the ratio of the work probabili-
ties is

P�Wdis�
P�− Wdis�

= eWdis/kBT. �19�

Because �−�
� P�Wdis�dWdis=�−�

� P�−Wdis�dWdis=1, we also

have
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e−Wdis/kBT� = 
−�

�

dWdise
−Wdis/kBTP�Wdis�

= 
−�

�

dWdisP�− Wdis� = 1. �20�

The second law of thermodynamics states that the average
work done in any process is greater than �or in the reversible
case equal to� the energy stored, 
Wext−�U��0. The second
law is, by Jensen’s inequality,35 consistent with, but does not
require, Eq. �20�.

Equations �19� and �20�, which follow immediately from
Eq. �17�, agree with the generalized fluctuation dissipation
theorem of Bochkov and Kuzovlev,16 the derivation of Eq.
�20� as a nonequilibrium work relation by Jarzynski,20 and
the derivation of Eq. �19�, the entropy production fluctuation
theorem, by Crooks.21 We have derived these relations from
the Onsager-Machlup thermodynamic action approach4

based on the approximation that acceleration �ḧ� is negligible
and the assumption that the underlying noise ��t� is Gaussian
distributed in the stochastic description of the system by the
Langevin equation �9�. This approximation and assumption
are extremely well founded for single molecules in solution.
The former is assured by the small size of the molecules and
by the viscosity of the solution. The latter is assured by the
central limit theorem, because the macroscopic motion of a
molecule is the result of an enormous number of individual
molecular collisions.14

Equations �19� and �20� are remarkable in their simplicity
and in the fact that they do not depend on time. Suppose that
we start a system in any configuration, with an arbitrary ex-
ternal force having any time dependence, and allow the sys-
tem to evolve for an arbitrary time. Equation �19� says that
the ratio of the probability of receiving a certain sequence of
“kicks” from the environment in which an amount of energy
Wdis is dissipated to the probability to receive a sequence of
kicks in which the energy dissipated is −Wdis equals eWdis/kBT.
Further, Eq. �20� says that if we do the experiment many
times �but not necessarily starting always in the same con-
figuration� and take the exponential average, we would find

e−Wdis/kBT�=1. These statements are valid arbitrarily far from
thermodynamic equilibrium, but were derived here based on
approximating the system as being in mechanical equilib-

rium so that the inertial term mḧ that would otherwise appear
in Eq. �9� can be ignored. It remains an open question as to
whether Onsager’s extension of his approach to systems with
kinetic energy36 can be used to generalize the applicability of

Eqs. �19� and �20� to include systems where mḧ is not neg-
ligible.

Note that we have only considered situations, where the
process of interest �for example, motion of colloidal particles
and extension of a polymer� is away from thermodynamic
equilibrium, but not the medium in which the process occurs.
It is implicitly assumed that the medium is in equilibrium
and hence the diffusion and viscosity coefficients and the
temperature are well defined. For this reason, the derivation
of Eq. �20� from the Langevin equation �9� does not directly
speak to the criticism of Cohen and Mauzerall37 who argue
that Eq. �20� is not an identity in systems where temperature

is ill defined.
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VIII. CONCLUSIONS

In nanoscale physics, it is essential to remember that
“equilibrium” does not have an unambiguous meaning. The
nonequilibrium aspect of a typical experimental system
shows up as a mean energy dissipation rate that is nonzero.
The mechanical equilibrium aspect shows up in the absence
of acceleration.3

When Onsager-Machlup theory is mentioned, the almost
uniform response by scientists is that the Onsager approach
is applicable only near equilibrium in the linear response
regime. Although these restrictions are technically correct,
they are also very misleading. The equilibrium required for
application to single molecule studies is that the system be
near to mechanical equilibrium. For macromolecules in so-
lution, it is almost impossible to achieve a situation where
this condition is not the case. Further, linear response re-
quires that the velocity depend linearly on the net force that
causes it, not necessarily on the externally applied force.26

Also, although it is required that the underlying noise pro-
cess ���t�� in Eq. �9� be Gaussian, it is not required �nor in
general expected� that functions of the noise such as the po-
sition and work be themselves Gaussian.

Mechanical equilibrium allows a simple description of the
distribution of the fluctuations of quantities about their mean
values in thermodynamically far from equilibrium situations.
The closeness to mechanical equilibrium is ultimately the
explanation for the “unreasonable” effectiveness of equilib-
rium theory for interpreting single molecule experiments that
are far from thermodynamic equilibrium.

Time independent relations that hold for nonequilibrium
and even nonstationary processes offer great possibility for
the rapid determination of thermodynamic parameters from
single molecule experiments. This paper is intended to pro-
vide a background for understanding these equilibriumlike
relations and to shine light on their historical origins.

APPENDIX A: SUGGESTED
PROBLEMS—DISCRETIZING THE LANGEVIN
EQUATION

By discretizing Eq. �9� at times tk=k�t for k
=0,1 ,2 , . . . ,n, we obtain the update equation31 suitable for
numerical evaluation

hk+1 = hk + �−1Fk�t + 	2D�tNk, �A1�

where15 Fk=g�tk�Fext−1/2�U��hk+1�+U��hk�� and the Nk

=N�0,1� are independent Gaussian random variables of zero
mean �=0, unit standard deviation �=1, and take on values
nk according to the density function

P�nk� =
1

	2�
e−nk

2/2. �A2�

We used the relation N�� ,�2�=�+�N�0,1� to convert to a
unit normal Gaussian random variable, where � is the mean,
and � is the standard deviation of the distribution. To carry
out a simulation, we substitute a sample value nk for the
Gaussian random variable Nk, carry out the indicated arith-
metic in Eq. �A1�, and proceed to the next iteration, thus
generating a sequence of positions and times �hk ,k�t�. From
the sequence, any function of position and time can be cal-
culated. We choose �t long compared to the velocity relax-

ation time tchar, so that the noise nk reflects an average over
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many individual molecular collision, but short enough that
the maximum potential energy change due to the distance
traveled in �t, U��h��h /�t, is small compared to the thermal
energy kBT. An example of the simulated motion in the com-
bined potential is shown in Fig. 2�a�, where the trajectory
between the two wells is shown in detail.

Equation �A1� provides a computationally simple way to
simulate the motion of systems for which thermal noise is
significant but for which acceleration is negligible. The dis-
cussion and manipulation of the resulting data sets �series of
positions versus time� provides an excellent way for students
to gain practice and insight into the analysis of the types of
data typically obtained in single molecule pulling experi-
ments. I have used the following three problems in teaching
molecular biophysics.

Problem 1. Demonstrate explicitly the validity of Eq. �17�
for a Langevin simulation using Eq. �10� for the harmonic
potential, U=kh2. Discuss the difference between the prob-
ability for a trajectory between two values hi and hj from 0 to
t �the relative frequency with which such a trajectory is ob-
served� and the conditional probability to observe a trajec-
tory ending at hj�hi� at t given that the particle started at
hi�hj� at 0. Discuss the tradeoffs involved in the decision as
to whether to use large time steps �t and large bin sizes dh
or small time steps and small bin sizes.

Problem 2. Calculate the work and dissipation for several
well-to-well transitions for a quartic potential such as that
shown in Fig. 2. Plot the work probability densities analo-
gous to those used in Ref. 23 and estimate the number of
trajectories necessary to obtain an adequate statistical weight
near the tails of the distributions �regions far from the maxi-
mum� to draw conclusions about the validity of Eq. �19� and
Eq. �20�.

Problem 3. In regions that are neither near a maximum
nor a minimum of the potential energy the motion of the
particle is tightly distributed around a most probable

trajectory4 defined by15 ḣ= ±F /�. Calculate the most prob-
able trajectory for transition between wells in a bistable po-
tential and compare to several simulated transitions using Eq.
�A1�. Discuss how the most probable trajectory obtained by
averaging over many stochastic simulations �or single mol-
ecule experiments� could be used to directly obtain the un-
derlying potential energy profile.
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