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The advance of perihelion, in particular for Mercury, is regarded as a classical test of general

relativity, but a number of other (in some cases much larger) contributions to this phenomenon are

seldom discussed in detail in textbooks. This paper presents a unified framework for evaluating the

advance of perihelion due to (a) general relativity, (b) the solar quadrupole moment, and (c)

planetary perturbations, the last in a ring model where the mass of each perturbing planet is

“smeared out” into a coplanar circular orbit. The exact solution of the ring model agrees to within

4% with the usually quoted figure. Time-dependent contributions beyond the ring model contain

some surprising features: they are not small, and some with long periods could mimic a secular

advance. VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4813067]

I. INTRODUCTION

This paper is concerned with the advance of perihelion of
a planet, say Mercury. General relativity (GR) famously pre-
dicts a rate of advance X � 43 arcsec per century—in agree-
ment with observations—as cited in elementary textbooks1–4

and popular accounts,5–12 and as derived in GR texts.13–19

The best current value20 for the GR effect is 42:9860:04 arc-
sec/century. However, the so-called “observed” value
actually refers to the remaining discrepancy after other con-
tributions are subtracted, a point not always made explicit.1

Apart from non-inertial effects13,14,17 of �5025 arcsec/
century, planetary perturbations13,14,17 amount to �532
arcsec/century, but are seldom analyzed in an accessible
manner, except for a ring model21,22 to which reference will
be made below. This article fills the pedagogical gap by
developing a unified and accessible framework that applies
to (a) GR, (b) the solar quadrupole moment,13,14,17,23–25 and
also (c) the ring model of planetary perturbations. Other
possibilities are not discussed, such as modifications of
the inverse-square law26 or a hypothetical inner planet
(Vulcan).27 The entire discussion is placed within the context
of a small perturbation upon an inverse-square force, exclud-
ing situations such as motion near a black hole.28

The analysis presented here is principally of pedagogical
and historical interest. Modern solar system tests of GR20

would not be restricted to the advance of perihelion, nor
would X be expressed as a sum of additive contributions
from different causes. Rather, numerical solutions of the
N-body system in a parameterized post-Newtonian (PPN)
formalism9,13,14,17,18 are fitted to data including accurate
modern measurements on the moon and on spacecraft. The
Mercury data no longer constitute the principal constraints
on the PPN parameters.

Section II reviews the Kepler problem, with an attractive
central force per unit mass GM=r2 in standard notation, lead-
ing to elliptic orbits with

r�1 � u ¼ r�1ð1þ e cos /Þ; (1)

where / is the heliocentric longitude in the orbital plane
(x-axis along the perihelion), e > 0 is the eccentricity, and r
is the semi-latus rectum, related to the semi-major axis a by

r ¼ að1� e2Þ. The orbit in Eq. (1) is closed, so that X ¼ 0.
The mass of the planet relative to the Sun is ignored through-
out, so that the Sun is regarded as stationary.

All three contributions to the advance of perihelion
involve an additional attractive radial force per unit mass in
the orbital plane of the form

ðGM=r2Þ kf ðrÞ; (2)

where k is a formal small parameter and kf is dimensionless.
Section II shows that such a perturbation leads to an advance
that can be calculated exactly, and the leading term alone

X � p
T

kf1; (3)

with f1 ¼ r�1ðdf=duÞ, provides a good estimate in practice

[ðe=2Þ2 � 0:01 for Mercury], and is exact for both GR and

the quadrupole moment. This approximate result, in essen-

tially this form, is given by several authors29,30 and could

have been guessed apart from the numerical prefactor—a

constant value of f, equivalent to changing the solar mass M,

does not cause an advance of perihelion; for small eccentric-

ities only a small range of r is sampled, so only the first-

order variation of f(r) enters the final result.
The general formalism is applied to GR (Sec. III), the

quadrupole moment (Sec. IV), and the ring model of plane-
tary perturbations (Sec. V), thus giving a unified account of
all three effects. Time-dependent contributions beyond the
ring model (Sec. VI) contain some surprises: nearly resonant
perturbations lead to long-period oscillations that could
mimic a secular advance, with substantial amplitudes even
when averaged over fairly long time windows. The ampli-
tudes are large because the time-dependent effects contain
dominant terms that cancel in the ring model. Some conclud-
ing remarks are given in Sec. VII.

II. GENERAL FORMALISM

A. Kepler problem

The familiar Kepler problem is first solved to set the stage.
The radial equation of motion is, in standard notation
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d2r

dt2
¼ �GM

r2
þ J2

r3
; (4)

where J ¼ r2ðd/=dtÞ is the conserved angular momentum
per unit mass. Using u ¼ r�1 and eliminating t via d=dt
¼ Ju2ðd=d/Þ then leads to

d2u

d/2
þ u ¼ GM

J2
; (5)

where, crucially, the coefficient of u is unity. The solution
to this equation is given by Eq. (1), where r ¼ J2=GM.
One constant of integration is eliminated and the sign of e
determined by a choice of / ¼ 0. The orbit is closed,
rð/Þ ¼ rð/þ 2pÞ, and the perihelion does not advance.

The time t and the angle / are related by t ¼ Tð/=2pÞ
þDðe;/Þ (see Appendix A), where T is the period. The term
D has the following properties: (a) it is 2p-periodic in /; (b)
in its Fourier series representation, the coefficients of sin m/
and cos m/ are OðemÞ (and in particular D vanishes for
e ¼ 0); and (c) its average value is zero. Any function satis-
fying (a) and (b) will be said to be weakly oscillatory (WO).

B. Time-independent perturbations

With an extra time-independent radial force as given in
Eq. (2), the radial equation becomes

d2r

dt2
¼ �GM

r2
½1þ kf ðrÞ� þ J2

r3
: (6)

Changing variables to u and eliminating t as before, one gets

d2u

d/2
þ u ¼ GM

J2
þ GM

J2
kf ðuÞ: (7)

Next expand in powers of k: uð/Þ¼ u0ð/Þþku1ð/ÞþOðk2Þ.
Using the zeroth-order solution u0¼r�1ð1þ ecos/Þ, we get

d2u1

d/2
þ u1 ¼

GM

J2
f ðu0ð/ÞÞ

¼ r�1f ðr�1 þ r�1e cos /Þ

¼ r�1
X1
k¼0

fke
k cosk /

� r�1gð/Þ ¼ r�1
X

m

gm cos m/; (8)

where f has been expanded in a Taylor series about u ¼ r�1,
with

fk ¼
r�k

k!

dkf

duk

����
u¼r�1

; (9)

and the even periodic function gð/Þ has been expressed in a
Fourier series. Incidentally, gð/Þ is WO, and gm ¼ OðemÞ.

The solution u1ð/Þ is the sum of a homogeneous solution
and inhomogeneous solutions due to each gm. The homoge-
neous solution just takes u to another Kepler orbit, with
no advance of perihelion. When m 6¼ 1, the inhomogeneous
solution proportional to cos m/ does not contribute to the
advance of perihelion.31 This leaves the resonant term

m ¼ 1, and the corresponding inhomogeneous solution
satisfies d2u1=d/2 þ u1 ¼ r�1g1 cos /, with solution32 u1

¼ ð1=2Þr�1g1/ sin /. Putting u0 and u1 together gives

u � u0 þ ku1

¼ r�1ð1þ e cos /Þ þ 1

2
kr�1g1/ sin /

� r�1½1þ e cosðð1� ðkg1=2eÞÞ/Þ�: (10)

The next perihelion occurs at ½1� ðkg1=2eÞ�/P ¼ 2p or

/P � 2p 1þ kg1

2e

� �
; (11)

so that the perihelion advance per cycle is D/P ¼ pkg1=e,
giving a rate of advance33

X ¼ D/P

T
¼ p

T

kg1

e
: (12)

It remains to determine g1. Multiply Eq. (8) by cos / and
integrate over ½0; 2p�; then using

ð2p

0

cos2kþ2/ d/ ¼ p

22kþ1

ð2k þ 2Þ!
½ðk þ 1Þ!�2

; (13)

we obtain

g1 ¼
X1
k¼0

f2kþ1C2kþ2
kþ1 ðe=2Þ2kþ1; (14)

where Cn
m ¼ n!=½m!ðn� mÞ!�. Substituting g1 back into

Eq. (12) yields the key result

X ¼ p
2T

k
X1
k¼0

C2kþ2
kþ1 f2kþ1ðe=2Þ2k: (15)

Several features of Eq. (15) can be understood from gen-
eral considerations:

• As discussed, only the variation of f(u) around some mean
value (described by the coefficients fk, k > 0) would
contribute.

• For e� 1, u has a small excursion around r�1, so f can be
approximated by its linear variation f1, and more generally
higher coefficients fk are associated with higher powers of e.

• The problem is invariant under e! �e, /! /þ p, so
only even powers of e appear.

• The series is rapidly convergent, e.g., ðe=2Þ2 � 0:01 for
Mercury; in fact, we shall see that for both GR and the
quadrupole moment, all terms except f1 are exactly zero.

III. GENERAL RELATIVITY

In GR, the equations of motion are13–19 r2ðd/=dsÞ ¼ J ¼
constant and

d2r

ds2
¼ �GM

r2
þ J2

r3
þ 3GMJ2

c2r4
; (16)
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where s is the proper time. But since the physical interpreta-
tion of s does not enter the calculation, it can be regarded as
t and the formalism in Sec. II can be applied. Comparing
with Eq. (6), one has kf ¼ �ð3J2=c2r2Þ; since this expres-
sion is quadratic in u, the series (15) has only the first term

kf1 ¼ �
6J2

c2r2
¼ � 6GM

að1� e2Þc2
: (17)

For Mercury, kf1 ¼ 1:60� 10�7 and hence X ¼ ðp=TÞkf1

¼ 42:9 arcsec/century, in agreement with the “observed”
value. The result is correct to all orders in e, a fact not always
emphasized. In fact, some derivations unnecessarily use the
approximation e� 1.16

IV. QUADRUPOLE MOMENT

If the Sun is slightly oblate, then the gravitational potential
is given by13,14,17

�GM

r
1� J2

rs

r

� �2 3 cos2h� 1

2

� �" #
; (18)

where rs is the mean radius of the Sun and J2 is the conven-
tional quadrupole parameter. Estimates of J2 range from
“high” values25 of order 10�5, to “medium” values34 of order
10�6, with more recent consensus converging to “low” val-
ues17,35 of order 10�7. Our purpose here is not to examine
the evidence for the different estimates, but simply to relate
X to J2, whatever the latter might be. A time-dependent
quadrupole moment J2 has also been suggested,25 possibly
varying with the sunspot cycle.

Using Eq. (18) in the equatorial plane and differentiating
to obtain the force gives kf ðrÞ ¼ ð3=2ÞJ2r2

s u2. Again, the se-
ries in Eq. (15) has only one term

kf1 ¼ 3J2

rs

r

� �2

: (19)

Putting this into the formalism of Sec. II then gives, in the
case of Mercury,

X ¼ ðJ2=10�7Þ � 0:0127 arcsec=century: (20)

For currently accepted “low” values of J2, this contribution
is very small compared to that of GR, but a derivation such
as that presented here is still needed to establish this fact.

V. PLANETARY PERTURBATIONS

A. Ring model

In the ring model,21,22 the mass Mi of each planet36 i ¼ 2;
3;…; 8 is “smeared out” into its orbit, assumed to be a circle
of radius Ri centered at the Sun and coplanar with the orbit
of Mercury. Following Price and Rush,21 Ri is taken to be
the semi-major axis ai. Other choices are equally plausible,
but the difference is negligible. For example, if Ri is taken to
be the semi-latus rectum ri or ðaibiÞ1=2 ¼ rið1� e2

i Þ
�3=4

(ei

is the eccentricity of the orbit of each perturbing planet), the
final result would increase by only 0.27% or 0.07%, respec-
tively. [Although these ambiguities of order e2

i are small, the
same cannot be said of terms of order e2, e.g., in Eq. (15).]

The potential due to this ring at radius r in the orbital
plane is

kUðiÞðrÞ ¼ �G

ð
Mi

2pRi

1

jr� r0jRi du; (21)

where in polar coordinates r0 ¼ ðRi; h ¼ p=2;uÞ, and a for-
mal small parameter k is again inserted. Without loss of gen-
erality, assume r is on the x-axis so that

kUðiÞðrÞ ¼ � GMi

2pRi

ð2p

0

Ri duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2

i � 2rRi cos u
p

¼ � 2GMi

pRi
KðniÞ; (22)

where

ni ¼
r

Ri
(23)

and KðniÞ is the complete elliptical integral of the first
kind.37 Expanding KðniÞ in powers of ni gives

kUðiÞðrÞ ¼ �GMi

Ri

X1
n¼0

ð2n� 1Þ!!
ð2nÞ!!

� �2

n2n
i ; (24)

which can also be obtained by expanding the integrand in
Eq. (22) and integrating term by term, without involving the
elliptic integral. Here ni < 1; for perturbation by a hypotheti-
cal inner planet (Vulcan),27 the expansion should be carried
out in n�1

i . The radial dependence of each term in Eq. (24)
is ð1=RiÞn2n

i ¼ r2n=R2nþ1
i , so by comparison with the usual

spherical harmonic expansion of jr� r0j�1
in angular mo-

mentum indices ð‘;mÞ, it is recognized that ‘ ¼ 2n.
Thus each planet contributes to the force in Eq. (2) an

amount

kFðiÞðrÞ ¼ GMi

R2
i

X1
n¼1

ð2n� 1Þ!!
ð2nÞ!!

� �2

ð2nÞ n2n�1
i ; (25)

and to kf ðrÞ an amount

kf ðiÞðrÞ ¼ �Mi

M

X1
n¼1

ð2n� 1Þ!!
ð2nÞ!!

� �2

ð2nÞ n2nþ1
i

¼ � Mi

2M
n3

i þ
9

8
n5

i þ
75

64
n7

i þ � � �
� �

: (26)

Defining the Taylor coefficients f
ðiÞ
k as in Eq. (9) and using

Eqs. (15) and (26), one obtains a solution for X, exact to first
order in the perturbation (i.e., in k or Mi=M), as a triple sum

X ¼ p
2T

X
i

Mi

M

X1
k¼0

X1
n¼1

2k þ 2

½ðk þ 1Þ!�2
ð2n� 1Þ!!
ð2nÞ!!

� �2

� ð2k þ 2nþ 1Þ!
ð2n� 1Þ! n2nþ1

i

e
2

� �2k

: (27)

Because all functions such as f iðrÞ are expanded about
r ¼ r, the quantity ni defined in Eq. (23) should henceforth
be evaluated at ni ¼ r=Ri.
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To make sense of the large number of terms, one can assign
a weight to each:

W ¼ Mi

M
naeb; (28)

where, referring to Eq. (27), a ¼ 2nþ 1 ¼ ‘þ 1, b ¼ 2k.
The largest weights (W0 � 3� 10�7) are associated with the
leading terms (a ¼ 3, b ¼ 0) for Venus and Jupiter; each
contributes 	100 arcsec/century to X. Truncating at
W < 10�3 W0, only 29 terms survive (respectively, 12, 7, 3,
4, 2, 1, 0 terms for the 7 planets).

The resultant contributions to X are shown in column (b)
of Table I, with a total X ¼ 554 arcsec/century, 4% higher
than the accepted value. The contributions of Uranus and
Neptune are negligible. Column (a) of Table I is due to Price
and Rush21 and is explained below.

B. Discussion

Price and Rush21 solved the ring model with two addi-
tional and unnecessary approximations. First, they assume ni

is small, resulting in a closed but inexact expression for the
perturbing force

FðiÞðrÞ ¼ GMi

2Ri

ni

1� n2
i

¼ GMi

2Ri
ðni þ n3

i þ � � �Þ; (29)

agreeing with Eq. (25) only to first order in ni; the leading
relative error is n2

i =8 	 3% in the case of Venus. Second,
their calculation is accurate only to lowest order in e.38 For
any perturbing force F(r), the result in the second unnum-
bered equation below their Eq. (20) agrees exactly with the
f1 term in our Eq. (15). In fact, the analog to Eq. (27) in the
calculation of Price and Rush21 could be obtained from Eq.
(27) by keeping only the e0 terms and replacing

2
ð2n� 1Þ!!
ð2nÞ!!

� �2

ð2nÞ ! 1; (30)

to account for the difference between Eqs. (25) and (29).
Under the assumption21 of a nearly circular Mercury orbit, it

is somewhat arbitrary whether one takes the radius to be the
semi-major axis a (ni ¼ a=Ri) or the semi-latus rectum r
(ni ¼ r=Ri). The difference is 	12% in n3

i and 	20% in n5
i .39

Column (a) shows the results reported in Price and Rush,21 eval-
uated using ni ¼ a=Ri and giving X ¼ 531:1 arcsec/century.
(Actually X ¼ 531:9 arcsec/century is quoted;21 the small

difference appears to be due to rounding.) Using ni ¼ r=Ri

gives X ¼ 451:5 arcsec/century, while keeping all powers of e2

in Eq. (15) gives X ¼ 531:8 arcsec/century. Finally, if the cor-
rect force expression in Eq. (25) is used, our results in column
(b) are obtained—these are exact for the ring model to first
order in k or Mi=M. The excellent agreement found by Price
and Rush21 is fortuitous, due to the cancelation of several errors:
the error in the potential and the failure to keep higher powers
of e.

The same ring model was also solved by Stewart,22 using
the Laplace–Runge–Lenz (LRL) vector. The evaluation is
carried out to all orders in e, so it does not matter that the for-
malism is referenced to a rather than r.39 Our result essen-
tially agrees with Stewart’s (555.8 arcsec/century). Within
the ring model, the two approaches are complementary. The
LRL vector is more elegant but less accessible to students
and also requires the numerical evaluation of an integral; our
approach is more elementary and the result in Eq. (27) is in
closed form (though as an infinite summation).

The ring model itself suffers from three further errors. First,
the eccentricities of the orbits of the perturbing planets lead to
corrections of OðeiÞ.40 Second, these orbits are tilted from the
Mercury orbit by some angle vi. And third, the perturbing
planets are moving in their orbits. Stewart22 has shown that
the first two effects reduce X by 4.4%, giving excellent agree-
ment with the usually quoted figure of 532 arcsec/century.
That calculation is unavoidably complicated because of the
geometry, and will not be further discussed here.

In anticipation of the time-dependent corrections (Sec.
VI), it is useful to explain the leading indices a ¼ 3, b ¼ 0
for the time-independent case in Eq. (28). First, a ¼ ‘þ 1.
The ‘ ¼ 0, a ¼ 1 monopole term is equivalent to changing
the solar mass, which does not cause an advance of perihe-
lion. The ‘ ¼ 1, a ¼ 2 dipole contribution vanishes by the
symmetry of the ring; thus the leading term is ‘ ¼ 2, a ¼ 3.
In the time-dependent treatment, when the perturbing planet
is at a particular position on the ring, symmetry is destroyed
and the dipole term will contribute with a ¼ 2.

To understand the powers of e, first note that the effect of
the perturbing force goes as kf1, i.e., variations of kf , which
can be sampled only if there is a nonzero e; thus g1 ¼ OðeÞ.
This perturbation in modifying the second term in u0ð/Þ
¼ r�1ð1þ e cos /Þ is therefore of order g1=e [see Eq. (10)],
so X goes as e0. Again, the situation is different in the time-
dependent case. When the perturbing planet is at a particular
position on the ring, symmetry is broken and Mercury would
experience a nonzero effect even if its orbit were circular.
Therefore the force expression (analogous to g1) starts at e0

and X starts at e�1, i.e., b ¼ �1.
Thus, a ¼ 2 and b ¼ �1 terms will appear in the time-

dependent case because symmetry is broken. In particular,
because the leading term goes as n2

i rather than n3
i , Uranus

and Neptune will turn out to be important, even though they
are negligible in the ring model.

VI. TIME-DEPENDENT CONTRIBUTIONS

A. Derivation

This section sketches the salient features of the
time-dependent contributions beyond the ring model,
with details given in Appendix B. The perturbation is
due to a planet41 of mass Mi at position riðtÞ ¼ ðRi; hi

¼ p=2;/iðtÞÞ, with /iðtÞ ¼ xitþ /0
i . The potential is

Table I. Precession caused by the ring masses of the other planets on

Mercury, in arcsec/century. Column (a) is the result of Price and Rush;21

column (b) is our result.

Planet ai(AU) ni Mi=M (a) (b)

Venus 0.72 0.5126 2:448� 10�6 268.8 292.6

Earth 1 0.3707 3:003� 10�6 92.3 94.7

Mars 1.5 0.2433 3:227� 10�7 2.4 2.4

Jupiter 5.2 0.07123 9:545� 10�4 159.9 156.7

Saturn 9.2 0.03868 2:858� 10�4 7.6 7.5

Uranus 19.2 0.01931 4:364� 10�5 0.14 0.14

Neptune 30.1 0.01234 5:150� 10�5 0.04 0.04

Total 531.1 554.0
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kUðr;/; tÞ ¼ �GMijr� riðtÞj�1
. For Ri > r, an expansion in

terms of spherical harmonics42 gives, for cos h ¼ cos hi ¼ 0,

kUðr;/; tÞ ¼ �GMi

X
‘;m

D‘;m
r‘

R‘þ1
i

eim½/�/iðtÞ�; (31)

where D‘;m ¼ ½ð‘� mÞ!=ð‘þ mÞ!�jPm
‘ ð0Þj

2
. The m ¼ 0 terms

in Eq. (31) reproduce the ring model, so the time-dependent
contributions can be evaluated by summing the m > 0 terms
and adding the complex conjugate, to be denoted as

P0
.

A key parameter is the ratio of orbital periods

qi ¼
xi

x
¼ T

Ti
(32)

between Mercury (T) and the perturbing planet (Ti). The
phase in the exponential in Eq. (31) is

m½/� /iðtÞ� ¼ mð1� qiÞ/� m/0
i : (33)

In addition, various periodic functions such as ð1þ e cos /Þ�‘
in r‘ all combine into WO functions that can be decomposed
into harmonics e�in/, so that apart from a constant, the overall
phase goes as

½mð1� qiÞ � n�/ � �/ � ð1þ lÞ/: (34)

If qi is (nearly) rational, then for certain integer pairs
ðm; nÞ, l is (nearly) zero and the perturbing potential goes
(nearly) as ei/, which will cause a (nearly) secular response.
Assuming qi to be not exactly rational, this leads to two
important and complementary conclusions. On one hand,
theoretically, these time-dependent terms do not contribute
to the secular rate of advance—on an infinite time scale, the
average value is zero. On the other hand, over finite time
windows nearly resonant terms cannot in practice be distin-
guished from truly secular terms.

Each term in the four-fold summation (over planets i,
angular momenta ‘;m, and the harmonic components n of
the WO functions) is again associated with a weight W as in
Eq. (28), with a ¼ ‘þ 1 
 mþ 1 and b ¼ n� 1. We impose
three conditions: (a) the weight should not be too small, e.g.,
W 
 10�3 W0; (b) the time-dependence is close to resonance,
e.g., jlj < 5� 10�3 (the resultant sinusoidal variations have
periods longer than 50 years); and (c) the sum ‘þ m should
be even because D‘;m vanishes otherwise. Then only two
terms remain, due to Uranus and Neptune (see Table II),
each giving a time-dependent rate of advance

X ¼ �~Xi cos /i;
~Xi ¼

p
T

Mi

M
n2

i e
�1; (35)

where /i is the azimuthal position of planet i at the time
(measured from the perihelion of Mercury).43 The sinusoidal
terms have periods (namely, the orbital periods Ti of the per-
turbing planets) 84 years and 165 years, respectively, and

large amplitudes ~Xi ¼ 21:2 and 10.3 arcsec/century. Note
that l is involved (schematically) in the combination
sinðl/Þ=l [cf. Eq. (B9)], which for small l becomes a linear
term from which l disappears.

Incidentally, because the two surviving terms have m ¼ 1,
n ¼ 0, Eq. (34) shows that l ¼ �qi, so the condition jlj � 1
translates to qi ¼ xi=x� 1. Therefore these terms can be
evaluated by a much simpler quasi-static calculation, in which
between two perihelions of Mercury the perturbing planet is
assumed to be at a fixed position /i.

B. Comparison of terms

The leading time-dependent terms (a ¼ 2, b ¼ �1) are
larger than those with a ¼ 3, b ¼ 0 in the ring model,
because symmetry is broken. Nevertheless, most terms have
larger values of jlj; their effects can be identified and
removed from data covering say at least 50 years.44 For
Uranus and Neptune, the next important term would have
n ¼ 1, with an extra power of e. In addition, to have a small
l, m would then have to be 2 and therefore ‘ 
 2, a 
 3, giv-
ing an extra power of ni. Altogether, the next term is reduced
by a factor of eni 	 4� 10�3 (the numerical value referring
to Uranus) and can be ignored. This is the reason why we
may take e ¼ 0 in the calculation in Appendix B.

C. Time averaging

The large oscillatory terms can be suppressed if data are
averaged over a time Dt, so that the factors cos /i are
replaced by their averages, and the effective amplitudes

become ~Xi ! ðsin ci=ciÞ~Xi, where ci ¼ pDt=Ti. Using a win-
dow of 100 years, the two leading terms in Table II have
amplitudes –3.2 and 5.1 arcsec/century, still by no means
negligible. Of course, it is possible to remove such sinusoidal
terms more effectively by fitting the data.

Therefore the advance of perihelion caused by planetary
perturbations (imagining other effects to be turned off) dur-
ing a century is not the figure of 532 arcsec often quoted, but
depends, to the tune of a few arcsec, on which period one is
talking about.

VII. CONCLUSION

A formalism has been developed for evaluating the pre-
cession of a Keplerian orbit (e.g., Mercury) due to an axially
symmetric static perturbation. This formalism, solved to first
order in the perturbation (but with no other approximations),
provides a unified platform for discussing general relativity
(GR), the solar quadrupole moment, and the perturbation of
the other planets in a ring model. This solution for the ring
model improves upon the work of Price and Rush;21 the
result agrees with that of Stewart22 using the LRL vector,
and with the usually quoted value to about 4%, a difference
well accounted for by the eccentricities and departures from
coplanarity of the orbits of the perturbing planets.22

In a more general model, the perturbing planets move in
coplanar circular orbits. An angular momentum analysis
reveals that the m ¼ 0 terms exactly recover the static ring
model, so that the other terms provide the time-dependent
corrections. Provided the ratios of orbital periods are not
rational, all these terms lead to rates of advance that are sinu-
soidal in time. In theory, these are distinguishable from a sec-
ular advance, but in practice, terms with periods comparable
to the observational window (say 50 to 100 years) must be

Table II. The relevant contributions to X, with non-negligible weights and

long periods possibly indistinguishable from a secular advance.

Planet i ‘ m n W l

Uranus 1 1 0 8� 10�8 �0.00286

Neptune 1 1 0 4� 10�8 �0.00146
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considered. Only two such terms have significant amplitudes
and they can be identified with the quasi-static perturbations
due to Uranus and Neptune. Even when averaged over a cen-
tury, the effects are, surprisingly, still at the level of a few
arcsec/century.

In the planetary problem, all terms contribute as
ðMi=MÞðr=RiÞaeb, where M is the mass of the Sun, the per-
turbing planet i has mass Mi and orbital radius Ri, and the
orbit of Mercury has radius r and eccentricity e. The leading
time-dependent contributions have values of a and b that are
each one unit less than the corresponding values for the ring
model; thus Uranus and Neptune have significant time-
dependent effects even though they make negligible contri-
butions in the ring model. The difference in the indices
comes about because the ring model has axial symmetry,
whereas a moving perturbing mass does not.

The approximation of circular orbits lends itself naturally
to a frequency-domain analysis, in which secular terms and
long-period oscillations are conceptually distinguished. In
the time domain (including analysis of observational data),
the two components could be confused unless the time win-
dow is at least several centuries. This potential pitfall does
not afflict modern treatments based on fitting numerical solu-
tions to observational data.

The formalism and results in this paper help to close the
pedagogical gap in treatments of the advance of perihelion
as a test of GR. In terms of pedagogy, the material can be
presented at three levels: (a) the axially symmetric static
model and keeping only f1 in Eq. (15); (b) the same model
keeping all fk; and (c) including time-dependent contribu-
tions. The first and possibly the second of these, at least,
should be accessible to students of GR.

The general result keeping only f1 is, apart from notation,
the same as that given by Adkins and McDonnell29 in their
Sec. II. For larger eccentricities, their result in Sec. III is
expressed as an integral, whereas ours is expressed as a
power series in ðe=2Þ2. Chashchina and Silagadze46 have
also derived the precession as an integral, by considering the
Hamilton vector that is perpendicular to the Runge–Lenz
vector. Our result may be more convenient for numerical
evaluation, especially since e is small. Schmidt30 has given
an expression for the advance of perihelion, valid for arbi-
trary radial force fields F but small e; converted to our nota-
tion, his result reads

X ¼ 2p
T
½ð3þ rF0=FÞ�1=2 � 1�: (36)

To compare to our result, let F be an inverse-square field
perturbed by the additional force in Eq. (2), and evaluate
Eq. (36) to first order in k; a straightforward computation
recovers Eq. (3). Beyond the common domain of validity (k
and e both small), our result is valid for small k and any e,
whereas Schmidt’s30 is valid for small e and any k (if k is not
regarded as a formal small parameter, then with the addi-
tional force in Eq. (2), the total force F is entirely arbitrary);
each is therefore useful in a different situation. For the plane-
tary problems under discussion here, k 	 10�7 whereas
e 	 0:1, so our formalism is the relevant one.
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APPENDIX A: RELATING TIME AND ANGLE

FOR A KEPLER ORBIT

In order to express t in terms of /, use r2ðd/=dtÞ ¼ J to get

dt

d/
¼ r2

J

1

ð1þ e cos /Þ2

¼ r2

J
P0ðeÞ þ

X
m

0
PmðeÞcos m/

� �
; (A1)

where the periodic function is expressed in a Fourier series, andP0
means the exclusion of the m ¼ 0 term. Straightforward

computation then gives37 P0ðeÞ ¼ ð1� e2Þ�3=2
, while Pm

¼ OðemÞ. Integrating Eq. (A1) then gives t ¼ Tð/=2pÞ
þDðe;/Þ, in which the linear term has been related to the pe-
riod, now recognized to be T ¼ 2pðr2=JÞð1� e2Þ�3=2

. The
periodic term is

Dðe;/Þ ¼ r2

J

X
m

0 PmðeÞ
m

sin m/; (A2)

which has the three properties described in Sec. II A.

APPENDIX B: TIME-DEPENDENT MODEL

Start with the Lagrangian (per unit mass) for the motion of
Mercury

L ¼ 1

2
ð _r2 þ r2 _/

2Þ � �GM

r
þ kUðr;/; tÞ

� �
; (B1)

with kU given in Sec. VI A. This leads to the equations of
motion

dJ

d/
¼ �k

r2

J

@Uðr;/; tÞ
@/

� kSJ;

d2u

d/2
þ u� GM

J2
¼ k

r2

J2

@U
@r
þ @U
@/

du

d/

� �
� kSu:

(B2)

Now write J ¼ J0 þ kJ1 þ � � �, u ¼ u0 þ ku1 þ � � �, where
J0 and u0 describe the zeroth-order solution of Sec. II, in par-
ticular, with J0 ¼ constant. Then the first-order solution
satisfies

dJ1

d/
¼ SJð/Þ;

d2u1

d/2
þ u1 ¼ Suð/Þ; (B3)

where the source terms on the right-hand sides are to be eval-
uated using J0 and u0.

The somewhat messy computation is exhibited only in the
e! 0 limit; higher-order terms in e will turn out not to be
important (see Sec. VI B). The second term in Su can be
neglected because du0=d/ ¼ �e sin / ¼ OðeÞ. Then evaluat-
ing the first term in Su for the zeroth-order solution gives

Su ¼ �
Mi

M
r�1

X
‘;m

0
D‘;mn‘þ1

i eimð1�qiÞ/e�im/0
i ; (B4)

where we have used Eq. (33) and put rð/Þ ¼ r for e ¼ 0.
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For e 6¼ 0, extra periodic functions appear because of the
factors of ð1þ e cos /Þ�1

in rð/Þ, from the term Dð/Þ when
expressing t in terms of /, and from the second term in Su.
All these lead to WO functions, whose Fourier series con-
tains terms with e�in/ and amplitude OðenÞ. As indicated in
Sec. VI B, these terms with n > 0 can be ignored.

Next evaluate the effect of one such typical term with

d2u1

d/2
þ u1 ¼ �

Mi

M
r�1ðse�im/0

i Þei�/ þ c:c:; (B5)

where s stands for a typical coefficient in Eq. (B4):
s ¼ D‘;mn‘þ1

i ; note that s is real if only n ¼ 0 terms are kept.
The solution to Eq. (B5) is

u1ð/Þ ¼
Mi

M
r�1 2s

�2 � 1
cosð�/� m/0

i Þ (B6)

and

u ¼ r�1 ð1þ e cos /Þ þ k
Mi

M

2s

�2 � 1
cosð�/� m/0

i Þ
� �

:

(B7)

Henceforth assume � � 1, jlj � 1, since otherwise the
second term is observationally distinguishable from a slowly
precessing ellipse and can be assumed to be filtered out from
the data. Setting du=d/ ¼ 0 to find the perihelion angle /P,
we get

e sin /P þ k
Mi

M

s

l
sinð�/P � m/0

i Þ ¼ 0: (B8)

Now put /P ¼ 2Npþ k/P1ðNÞ þ � � � and evaluate Eq. (B8)
to first order in k to obtain

/P1ðNÞ ¼ �
Mi

M

s

el
sinð2Npl� m/0

i Þ: (B9)

The perihelion shifts in each cycle by45

D/P ¼
d/P1

dN
¼ �Mi

M

2ps

e
cos w; (B10)

where w ¼ 2Npl� m/0
i is readily recognized to be �m/i

evaluated at the time t ¼ tN when Mercury has executed N
cycles. Thus, each such term contributes to X a time-varying
term given by

X ¼ � p
Te

Mi

M
2s cos m/i: (B11)

The actual solution consists of many such terms, in a four-
fold sum involving i; ‘;m; n. Fortunately, most terms can
be dropped on account of the combination of several
requirements:

Weight. Each term contributes to X with a weight W
given by Eq. (28), now with a ¼ ‘þ 1 and b ¼ n� 1. [The
latter is shifted by one unit on account of the prefactor ð1=eÞ
in Eq. (B11).] If we require W 
 10�3 W0, then 140 sets of
ði; ‘; nÞ values remain—roughly four times as many as in the
corresponding time-independent case, because a need not be
odd and b need not be even.

Oscillatory period. Assume (somewhat arbitrarily) that
all observations of X are made over periods >50 years, or
>200 orbital periods for Mercury. In this case only jlj
< 5� 10�3 need be considered, and only four sets of ði; ‘; nÞ
values remain; moreover, for each of these, at most one
value of m will make jlj small.

Other conditions. Only those terms with ‘þ m even will
contribute.

Only two terms remain (Table II). Both have n¼ 0, and
this result has been anticipated and used to simplify many in-
termediate expressions. The rest of the calculation is shown
in Sec. VI.
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