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We present a simple, one-dimensional example of a total spin-1/2 atom that interacts with another

static atom in the presence of an external magnetic field. The interaction consists of delta potentials

that act differently with each of the two components of the wavefunction. The system has two

coupled channels, admits a closed solution, and features the Feshbach resonance phenomenon by

proper tuning of the magnetic field. VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4804193]

I. INTRODUCTION

The purpose of this article is to present a toy model for the
interaction of two atoms at very low energy in the presence
of an external static magnetic field. The model aims to
mimic the collisions of alkali atoms in ultracold dilute gases
and to retain important features such as the Feshbach reso-
nance mechanism and the association of universal Feshbach
molecules from such atoms, the so called halo states.1,2

Resonance effects are frequent in Physics and are generi-
cally associated with large effects observed under circum-
stances of coincidence of two or more parameters
intervening in the problem, rather than by a particular large
value of any one of them. In the case of the Feshbach reso-
nance, the coincidence is given in an atom–atom collision
where the atoms can undergo a virtual transition to a state
where they are bound and when the incoming energy coin-
cides with the bound state energy. Such a coincidence is rare
in nature, but a properly adjusted magnetic field fosters it in
an atom–atom collision. By means of the Feshbach mecha-
nism, the atom–atom interaction can be made attractive or
repulsive, very large or very small, thus modifying the prop-
erties of the gas.

Let us consider low-energy scattering of alkali atoms, and
let each atom be in a hyperfine state of low energy with zero
internal orbital angular momentum. These states depend on
the interaction of the nuclear spin ~I and the spin ~S of the sin-
gle valence electron through the atom total spin ~F ¼ ~I þ ~S.
Moreover, if an additional external magnetic field B is
applied both spins will interact with it and cause the splitting
of the hyperfine levels (the Zeeman effect).

The atoms are well described as point-like objects and the
collision depends, by means of Born-Oppenheimer poten-
tials, on both the distance of the centers-of-mass of the sepa-
rated atoms and the spins ~S1 ; ~S2 of their valence electrons
(though not on the spins of their nuclei). As a consequence,
these potentials produce transitions that may change the total
spins of the colliding atoms.

In this article, we present a one-dimensional toy model
that reduces the above many degrees of freedom and their
intricacies to a minimum but still retains some distinctive
features of enhancement that we would like to illustrate. It is
clear that no potential depending on the z-coordinate alone
can generate in three dimensions any outgoing spherical
wave from a dispersive center, as a short-range central
potential does. Nevertheless, multichannel scattering as well
as the occurrence of Feshbach resonances are not restricted
to three dimensions. Indeed, examples can be found where
one-dimensional Feshbach resonances play an important

role.3–5 The one-dimensional model we present below is cho-
sen to keep the technical details as simple as possible.
However, similar three-dimensional examples exist in the lit-
erature that are exactly solvable as well.6,7

For the sake of simplicity, let us thus consider a total spin-
1/2 atom of mass m that interacts with a much heavier, spin-
less atom, with their motion confined to the z-axis. We pro-
pose a Hamiltonian for the relative coordinate z of the form

H ¼ �I
�h2

2m

d2

dz2
þ
�

V1ðzÞ 0

0 V2ðzÞ
�
� lBrx; (1)

where l is the atom’s magnetic dipole moment, rx is the
Pauli spin matrix, and I is the 2� 2 identity matrix. This
Hamiltonian consists of a kinetic energy term, a short-range
attractive potential term that interacts differently with the
(total) spin-up and spin-down components of the light atom,
and a term representing the interaction with a constant exter-
nal magnetic field pointing in the x-direction ~B ¼ ðB; 0; 0Þ.

The total spin states j"i; j#i mimic the hyperfine states of
the atom (degenerate in this case), and the potentials
V1ðzÞ;V2ðzÞ mimic the spin-dependent Born-Oppenheimer
interatomic potentials. The time-independent Schr€odinger
equation for such a system reads, in terms of the spin-up
wðzÞ and spin-down uðzÞ components of the wavefunction,

� �h2

2m

d2wðzÞ
dz2

þ V1ðzÞwðzÞ � lB uðzÞ ¼ Et wðzÞ; (2)

� �h2

2m

d2uðzÞ
dz2

þ V2ðzÞuðzÞ � lB wðzÞ ¼ Et uðzÞ; (3)

where Et is the total energy of the system.
In scattering theory, the concept of a channel is introduced

as the quantum state of the colliding atoms before or after
the collision takes place. In our case, when the incoming
atom is sufficiently far from the target so that it does not feel
the potential, the magnetic field lifts the degeneracy of the
light atom ground state and gives rise to two Zeeman levels
with energies 6lB and a level splitting of DZ ¼ 2lB. The
corresponding Zeeman states are the eigenstates of rx:
j6iZ ¼ ðj"i6 j#iÞ=

ffiffiffi
2
p

.8 (The heavy atom does not interact
with the magnetic field.) Therefore, we are faced with a two-
channel scattering problem, one channel for each possible
Zeeman state of the incoming (or outgoing) light atom.

Let us express the Schr€odinger equation in the basis of
Zeeman states—in terms of the components u ¼ ðwþ uÞ
=
ffiffiffi
2
p

and v ¼ ðw� uÞ=
ffiffiffi
2
p

—and label the channels as the u
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and the v channels, accordingly. In this case, we form linear
combinations of Eqs. (2) and (3). As is customary, we shift
the origin of energies upwards by lB and define
E ¼ Et þ lB. An incoming atom in the u channel thus has an
energy equal to E > 0 that can be fixed experimentally. In
terms of the u and v channels, we have

� �h2

2m

d2uðzÞ
dz2

þ VuðzÞ uðzÞ þWðzÞ vðzÞ ¼ E uðzÞ; (4)

� �h2

2m

d2vðzÞ
dz2

þ Vvðz;BÞ vðzÞ þWðzÞ uðzÞ ¼ E vðzÞ; (5)

with

VuðzÞ �
V1 þ V2

2
; Vvðz;BÞ � 2lBþ V1 þ V2

2
;

WðzÞ � V1 � V2

2
: (6)

Here, Vu and Vv are the bare potentials of the u and v chan-
nels; the two channels are coupled by the off-diagonal poten-
tial W and they only decouple if V1 ¼ V2.

We consider attractive delta-function potentials

V1ðzÞ ¼ �g1 dðzÞ; V2ðzÞ ¼ �g2 dðzÞ; (7)

with g1 and g2 positive constants and g1 6¼ g2. One can think
of these delta functions as effective substitutes for short
range potentials in a low energy scattering experiment where
the range is much smaller than the wavelength of the scat-
tered atom. Using these definitions, the potentials in Eq. (6)
become

VuðzÞ ¼ �
g1þ g2

2
dðzÞ; Vvðz;BÞ ¼ 2lB� g1þ g2

2
dðzÞ;

WðzÞ ¼ g2� g1

2
dðzÞ: (8)

The magnetic field has the effect of unbalancing the dissocia-
tion threshold of the potentials Vu and Vv.

9 We see from
Eq. (8) that the threshold for Vv is lifted by 2lB with respect
to Vu (see Fig. 1).

If E lies below the dissociation threshold of a given poten-
tial the corresponding channel is said to be closed; otherwise,
it is said to be open. There are several possibilities:

(i) if E < 0, both channels are closed;
(ii) if 0 < E < 2lB, u is open and v is closed;
(iii) if E > 2lB, both channels are open.

We first consider an open u channel and a closed v chan-
nel; later we will look for bound states with both channels
closed.

II. ONE OPEN AND ONE CLOSED CHANNEL

(0 < E < 2lB)

In the absence of coupling between the channels (W¼ 0)
Eqs. (4) and (5) become independent equations, each driven
by a delta-function potential. Let us call these the bare equa-
tions and write the solutions as uðbÞðzÞ and vðbÞðzÞ. As shown
in the Appendix, uðbÞðzÞ has scattering solutions for any
value of E > 0, whereas vðbÞðzÞ admits only a single bound
state with E < 2lB, given by

eðbÞðBÞ ¼ 2lB� �h2

2m
a2; (9)

with a ¼ mðg1 þ g2Þ=2�h2.
If the channels are coupled (W 6¼ 0) the situation is com-

pletely different. Now u(z) and v(z) are no longer independ-
ent and Eqs. (4) and (5) now admit v(z) (scattering) solutions
for any continuous value of 0 < E < 2lB. It is interesting to
investigate the cause of this rather drastic change.

The potential W that couples the channels endows the
incoming atom in the jþiZ state with a probability ampli-
tude for flipping its (total) spin to the j�iZ state, and vice
versa. Therefore, the two colliding atoms with energy E can
make a virtual transition to a bound state of energy eðbÞðBÞ.
According to the Heisenberg uncertainty relation, this is
only allowed if the duration of the process lasts at most
�h=jE� eðbÞðBÞj, after which the atom’s state is restored to
the original jþiZ. There is no restriction whatsoever on the
values of E with an atom’s presence in the closed channel in
an energy range otherwise forbidden. The existence of the
coupled closed channel modifies the interaction felt by the
atom and the influence may be conspicuous for certain val-
ues of E. If E � eðbÞðBÞ, the duration of the virtual transition
can last a very long time, thus causing a large effect. This is
the so-called Feshbach effect.10,11 There arises an interfer-
ence between two alternative mechanisms that contribute to
scattering: a direct transition through the potential Vu that
leads to the final state in a single step, and an indirect transi-
tion that proceeds through a virtual transition to the other
channel. The interference can be constructive or destructive,
thus enhancing or suppressing the scattering. Note that for a
given value of the energy E, the amount of the detuning
jE� eðbÞðBÞj can be controlled externally by changing B.12

In order to find the explicit solutions, we rewrite Eqs. (4)
and (5) as

d2

dz2
þ k2

� �
uðzÞ ¼ �S dðzÞ; (10)

d2

dz2
� b02

� �
vðzÞ ¼ �S0 dðzÞ; (11)

where we have defined

Fig. 1. Schematic representation of VuðzÞ and VvðzÞ in Eq. (6). The solid hor-

izontal line is the energy E and the dashed segment is the bound state energy

of VvðzÞ. Note that by increasing or decreasing the magnetic field, the VvðzÞ
dissociation threshold at 2lB (horizontal dotted line) is shifted up and down.

In the figure, D ¼ �h2a2=2m.
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k2 ¼ 2mE

�h2
; K2

B ¼
2m

�h2
ð2lBÞ; b02 ¼ K2

B � k2; (12)

and

S

2
¼ a uð0Þ þ w vð0Þ; S0

2
¼ a vð0Þ þ w uð0Þ; (13)

with

a ¼ m

2�h2
ðg1 þ g2Þ and w ¼ m

2�h2
ðg1 � g2Þ: (14)

The scattering solution—the incoming wave eikz at the open
channel entrance plus outgoing scattered waves—can be
written as (see Appendix)

uðzÞ ¼ eikz � S
eikjzj

2ik
¼ eikz � 1

ik
½a uð0Þ þ w vð0Þ� eikjzj;

(15)

vðzÞ ¼ S0
e�b0jzj

2b0
¼ 1

b0
½a vð0Þ þ w uð0Þ� e�b0 jzj: (16)

The sources in the right-hand-sides of these equations are
proportional to the values that the wavefunctions take at the
origin, which can be obtained self-consistently by setting
z¼ 0 in Eqs. (15) and (16) and solving the resulting linear
system. From Eq. (16), we find

vð0Þ ¼ w

b0 � a
uð0Þ; (17)

allowing us to write Eq. (15) as

uðzÞ ¼ eikz � aeffðb0Þ uð0Þ
eikjzj

ik
; (18)

where

aeffðb0Þ ¼ aþ w2

b0 � a
: (19)

Equations (18) and (19) summarize the remarkable result
we want to emphasize: the net influence of the closed chan-
nel is to provide the open channel with an effective interac-
tion Veff , in this case, an effective delta-function potential
given by (see Appendix)13–17

VeffðzÞ ¼ �geffðb0Þ dðzÞ; with geffðb0Þ �
�h2

m
aeffðb0Þ:

(20)

Therefore, the entire range �1 < aeffðb0Þ < þ1 is avail-
able for the effective coupling. The effective coupling con-
stant aeff strongly depends on the incident energy as well as
on the magnetic field through the combination b0ðk;KBÞ [see
Eq. (12)].

We have found that by varying B at fixed energy, both the
strength and the sign of the interaction are under external
control. This is the Feshbach phenomenon.

There are two values of b0 around which aeff flips its sign,
changing the character of the interaction from attractive to
repulsive and vice-versa. These values are given by

b0c ¼ a� w2

a
; (21)

where the effective coupling vanishes [aeffðb0cÞ ¼ 0], and

b00 ¼ a; (22)

where the effective coupling diverges (see Fig. 2). Given a
magnetic field B, the value of b00 corresponds to an incident
energy coinciding to the bare closed-channel bound-state
energy E0ðBÞ ¼ eðbÞðBÞ [see Eq. (9) and Fig. 2]. The energy
corresponding to b0c is given by

EcðBÞ ¼ 2lB� �h2

2m
a� w2

a

� �2

; (23)

which gets a contribution from the coupling w to the closed
channel.18

Finally, we find for Eqs. (15) and (16)

uðzÞ ¼ eikz þ rðk;BÞ eikjzj; (24)

vðzÞ ¼ ikw

ðik þ aÞðb0 � aÞ þ w2
e�b0jzj; (25)

where

rðk;BÞ ¼ � 1

1þ i½k=aeffðb0Þ�
(26)

is the reflection amplitude. The spatial extent of the wave-
function in the v channel is 1=b0 ¼ �h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mð2lB� EÞ

p
,

which bears no relation to its counterpart 1=a of vðbÞðzÞ (see
Appendix).19

III. LOW-ENERGY SCATTERING

Three dimensional low-energy scattering with a short-
range, spherically symmetric potential can be described to a
good approximation by a single parameter, the scattering
length a3d . At such low energy, the wavelength of the

Fig. 2. Plot of the effective interaction aeffðb0Þ in Eq. (19). By varying

0 < b0ðk;BÞ <1, aeff can take any value in the range �1 < aeff < þ1.

This plot corresponds to the choice w ¼ 0:3 a in Eq. (14).
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incoming atom is much larger than the range of the poten-
tial—the potential effectively acts as a point-like dispersive
center and the scattering amplitude is spherically symmetric
too with a behavior in terms a3d given by2

f ðkÞ ¼ � a3d

1þ ik a3d þ Oðk2Þ : (27)

We take this expression as a reference to define a(B), the
one-dimensional analogue of a3d, by writing the reflection
amplitude as

rðk;BÞ ¼ � 1

1þ ik aðBÞ þ Oðk3Þ ; (28)

where the difference stems from the different units of f(k),
which has units of length, and rðk;BÞ, which is dimension-
less. Upon Taylor expanding in powers of k and using Eqs.
(18), (24), and (25), we find

aðBÞ � 1

aeffðk ¼ 0;BÞ ¼
1

aþ w2=ðKB � aÞ

¼ 1

a
� ðw=aÞ

2

KB � b0c
; (29)

where KB, a, w, and b0c are defined in Eqs. (12), (14), and
(21). Note that in the last equality, we have separated the
open u-channel bare piece 1=a from the contribution due to
channel coupling, the latter of which has a pole at KB ¼ b0c;
that is, it diverges at a field Bc given by [see Eq. (12)]

Bc ¼
1

2l
�h2

2m
b02c ¼

1

2l
�h2

2m
a� w2

a

� �2

: (30)

Retaining the pole contribution and the constant term only
we find that, for values of B close to Bc,

aðBÞ ¼ a0 c� DB

B� Bc
þ OðB� BcÞ

� �
; (31)

where

a0 ¼ 1=a; c ¼ 1� 1

2

w2

a2 � w2
;

DB ¼ 1

l
�h2

2m
w2 1� w

a

� �2
� �

: (32)

Notice that a(B) changes its sign across Bc: aðBÞ > 0 for
B < Bc and aðBÞ < 0 for B > Bc. We also note that the value
B0 for which aðB0Þ ¼ 0 is found from Eq. (29) to be
�h2a2=ð4lmÞ.

A word of caution is in order at this point. In spite of the
similarities with the three-dimensional case, the implications
of a vanishing or a divergent scattering length are very differ-
ent in one and three dimensions. While vanishing a3d means
vanishing cross-section, or complete transparency, in the one-
dimensional case, it means quite the opposite—a reflection
coefficient equal to unity coincides with complete opacity; the
converse being true when the scattering length diverges.

What remains true in both the three- and one-dimensional
cases is that the divergence of the scattering length appears in
the presence of a zero-energy bound state in the spectrum.20,21

IV. BOUND STATES AND HALO STATES

Finally, let us look for the discrete bound states (with
E < 0). If B¼ 0, the original Hamiltonian (1) is diagonal and
features no special behavior; henceforth, we assume B 6¼ 0.
The equations we need to solve are similar to Eqs. (10) and
(11), with k2 replaced by ð�b2Þ � 2mE=�h2 < 0. The solu-
tions are (see Appendix)

uðzÞ ¼ Ne�bjzj; vðzÞ ¼ N0e�b0 jzj; (33)

and the constraint is now b02 ¼ b2 þ K2
B, where these param-

eters are as defined in Eq. (12). Inserting this Ansatz into the
Schr€odinger equation, the following two relations for the
constants N, N0 arise:

N0

N
¼ w

b0 � a
¼ b� a

w
: (34)

From the second equality in this equation, we obtain the
energy quantization condition,

ðb0 � aÞðb� aÞ ¼ w2; (35)

which can be cast in the form

b ¼ aeffðb0Þ: (36)

We see that the quantization condition is the same as for an
attractive delta potential (see Appendix) with the effective
coupling aeff found in Eq. (19).

Figure 3 shows a plot of the solutions as a function of b0.
Both the number of bound states and their energies depend
on B: for KB � b0c there are two bound states whereas for
KB > b0c there is just one.

In what follows, we consider a magnetic field just under-
neath the critical value Bc, which means a value of KB just
below b0c, and we focus on the least bound of the two bound
states that exist in this case. We call it the halo state for rea-
sons that will become apparent immediately.

Fig. 3. Graphical solution [see Eq. (36)] of aeffðb0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02 � K2

B

q
. The thin

solid black lines represent aeffðb0Þ and the thick grey lines representffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02 � K2

B

q
for two different values of KB. The solutions are the b0 values

where the curves intersect (denoted by black dots). Depending on the value

of KB (the onset of the hyperbola on the b0 axis), there are either two solu-

tions or one; two solutions if KB � b0c and one solution otherwise. In the fig-

ure, we have plotted the solutions for two such values of KB.
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For simplicity we first rewrite Eq. (36) in a more conven-
ient way for the analysis in terms of b as

b ¼ aþ w2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ K2

B

q
� a

: (37)

At KB ¼ b0c, this equation admits a zero energy bound state
with b ¼ 0. In order to find the solution for slightly smaller
values of KB, we insert b ¼ 0 in the right-hand-side of
Eq. (37) and find

b ¼ 1

aðBÞ þ OðB� BcÞ2: (38)

The leading contribution is given by the inverse scattering
length a(B)—the same length parameter we found in Eq.
(29)—plus very small corrections that are quadratic in the
departure of the magnetic field from its critical value.

In the range of KB just below b0c, the value of a(B) is domi-
nated by the pole term in Eq. (31) and is large and positive
as corresponds to values of B just underneath Bc. Therefore,
the u-channel bound-state wavefunction extends over a large
distance equal to a(B), hence the name of halo state.
Accordingly, it follows from Eq. (38) that its energy scales
as the inverse square of the scattering length; the larger the
a(B), the smaller the energy (in magnitude),

EhaloðB � BcÞ ¼ �
�h2

2m

1

aðBÞ2
; (39)

and thus corresponds to a state that is weakly bound. This is
the energy of a large molecule that has a tiny binding
energy.

From Eq. (33), the halo state wave function becomes
uðzÞ ¼ Ne�jzj=aðBÞ and extends out to a (very large) distance
a(B). However, the extent of v(z) in Eq. (33) is 1=b0 and
remains bounded. As B gets sufficiently close to Bc (from
the left), a(B) becomes unboundedly large, whereas 1=b0

approaches 1=b0c.
The constants N, N0 are fixed by the normalization condition

ð1
�1

dz
�
juðzÞj2 þ jvðzÞj2

�
¼ N2aðBÞ þ N02

b0
¼ 1; (40)

in addition to the relation N0=N ¼ w=ðb0 � aÞ in Eq. (34).
These conditions lead to

N2 aðBÞ þ w

b0 � a

� �2
1

b0

" #
¼ 1 ) N ’ aðBÞ�1=2:

(41)

We conclude that near the Feshbach resonant value Bc, the
properties of the halo state are determined by a single large
parameter, the correlation length a(B); its energy in Eq. (39),
as well as the u-channel wave-function uðzÞ ¼ aðBÞ�1=2

e�jzj=aðBÞ, adopt universal forms in terms of a(B), which
hold independently of the details of the coupling with the
v-channel.

Due to the large spatial extent of u(z), there is only a tiny
probability that the atoms will be present in the v-channel, a
probability that reduces to

N02

b0
’ w

b0 � a

� �2
1

b0aðBÞ � 1: (42)

To summarize, we see that the scattering length a(B) not
only determines the behavior of the low-energy scattering
amplitude in Eq. (29) but also the halo-state energy as well
as its u-channel wavefunction. This is because the energy
spectrum of the halo-state energy, although negative, lies
very close to the positive low energies in the continuum of
the unbounded scattering states.

V. CONCLUSIONS

In recent years, a lot of activity has been devoted to the
field of dilute, ultracold alkali atoms. Part of this activity has
relied on quantum-mechanical effects that appear in the pres-
ence of an applied magnetic field. One such effect is the
Feshbach resonance that we have exemplified with an
exactly solvable, one-dimensional toy model. We have
shown how the coupling to a closed channel produces an
effective interaction the intensity of which, as well as its
attractive or repulsive character, can be changed by tuning
the magnetic field. For values of the magnetic field close to
the Feshbach resonant value Bc, the model also has a halo
bound state with the characteristic universal dependence on
the (diverging) scattering length.

In an experiment at extremely low energies, such as in a
dilute ultracold gas, let the magnetic field vary in the neigh-
borhood of the Feshbach resonant critical value Bc. Assume
we start with a magnetic field above Bc and decrease it very
slowly, in an adiabatic manner. If the change in B is slow
enough when crossing the critical field Bc, the atoms will
remain in the lowest energy state (which is the halo state for
B < Bc). In this way, by starting from dissociate atoms and
by means of an adiabatic decrease of the magnetic field
across the critical value Bc weakly bound molecules are
produced.

Notice that this transition is accompanied by an abrupt
change in the reflection amplitude behavior, which switches
from totally reflective, rðk ! 0;B 	 BcÞ ¼ �1þ OðkÞ, to
reflectionless at the exact critical value,

rðk! 0;BcÞ ¼
i

2

a=w2

½1� ðw=aÞ2�
k þ Oðk2Þ; (43)

prior to the formation of the halo molecules.
As for the scattering length, its behaviour is dominated by

the pole contribution in Eq. (31). It flips its sign from negative
[aðB > BcÞ < 0] to positive [aðB < BcÞ > 0] and diverges at
the critical value Bc, which is the distinctive sign of a
Feshbach resonance in this context. For this critical value of
the field, a zero-energy bound state EhaloðB ¼ BcÞ ¼ 0
appears in the spectrum [see Eq. (39)].

In recent years, the Feshbach resonance has become a fun-
damental tool used to tune the strength of interactions
between ultracold atoms over several orders of magnitude
with unprecedented control, simply by tuning a magnetic
field.1,2
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APPENDIX: MATHEMATICAL DETAILS

All the solutions we have presented can be easily checked.
We have used the following two facts:

d2

dz2
þ k2

� �
eikjzj

2ik
¼ dðzÞ; d2

dz2
� b2

� �
e�bjzj

2b
¼ �dðzÞ;

(A1)

the first one being suitable for outgoing waves.
Let us briefly review the spectrum of a one-dimensional

Hamiltonian with an attractive delta potential given by

� �h2

2m

d2vðzÞ
dz2

� gdðzÞvðzÞ ¼ EvðzÞ: (A2)

For E > 0, this equation becomes

d2

dz2
þ k2

� �
vðzÞ ¼ �2avð0ÞdðzÞ; (A3)

where a ¼ mg=�h2 and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE=�h2

q
. Considering an enter-

ing plane wave plus an outgoing scattered wave, the solution,
according to Eq. (A1), is of the form

vðzÞ ¼ eikz � 2avð0Þ eikjzj

2ik
; (A4)

where, using self-consistency, one finds vð0Þ¼�ð1þa=ikÞ�1
,

so that

vðzÞ ¼ eikz � a
ik þ a

eikjzj: (A5)

The reflection r(k) and transmission t(k) amplitudes defined
as

vðz! �1Þ 
 eikz þ rðkÞe�ikz;

vðz! þ1Þ 
 tðkÞeikz; (A6)

can be read off immediately, and using the notation
a0 ¼ 1=a as in Eq. (32), they read

rðkÞ ¼ � 1

1þ ika0

; tðkÞ ¼ ika0

1þ ika0

: (A7)

If E < 0, the Hamiltonian (A2) always has a single bound

state. Using b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjEj=�h2

q
, Eq. (A2) becomes

d2

dz2
� b2

� �
vðzÞ ¼ �2avð0ÞdðzÞ; (A8)

and according to Eq. (A1), we have

vðzÞ ¼ a
b

vð0Þ e�bjzj: (A9)

Setting z¼ 0, one is led to conclude that

b ¼ a; (A10)

which is the quantization condition for the bound-state
energy E ¼ ��h2a2=2m, whereas vð0Þ remains free for nor-
malization of the wavefunction. The end result is

vðzÞ ¼
ffiffiffi
a
p

e�ajzj; (A11)

showing that the wavefunction of the bound state extends
over a distance a0 ¼ 1=a around z¼ 0.
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