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Wigner functions and Weyl transforms of operators offer a formulation of quantum mechanics that
is equivalent to the standard approach given by the Schrodinger equation. We give a short
introduction and emphasize features that give insight into the nature of quantum mechanics and its
relation to classical physics. A careful discussion of the classical limit and its difficulties is also
given. The discussion is self-contained and includes complete derivations of the results presented.
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I. INTRODUCTION: WHY WIGNER FUNCTIONS?

In the standard formulation of quantum mechanics the
probability density p(x) in position space x is given by the
square of the magnitude of the wave function, p(x)=|¢(x)|>.
Thus knowing #(x) it is easy to visualize the distribution
p(x). Obtaining the distribution in momentum p is also
straightforward. The wave function in p is found by

amrﬁffm%wwzww, M

where all integrations are understood to be over the entire
space. The quantity |@(p)|*> gives the probability density in
the momentum variable. Although straightforward, the mo-
mentum distribution is difficult to visualize if one only has
(x). It would be desirable to have a function that displays
the probability distribution simultaneously in the x and p
variables. The Wigner function, introduced by Wigner in
1932, does just that. Wigner’s original goal was to find
quantum corrections to classical statistical mechanics where
the Boltzmann factors contain energies which in turn are
expressed as functions of both x and p. As is well known
from the Heisenberg uncertainty relation, there are con-
straints on this distribution and thus on the Wigner function.

Another reason for a representation of a quantum state in
phase space is to examine the connection between quantum
and classical mechanics. Quantum mechanics inherently
deals with probabilities, while classical mechanics deals with
trajectories in phase space. If we wish to compare the two,
we can consider ensembles of trajectories in phase space for
the classical case and density distributions in x and p or
Wigner functions for the quantum case.

Given the wave function ¢ the standard way to obtain the
expectation value of a quantity A is by

<m=fwnﬁw&w=wWw, (2)

where A is the operator corresponding to A. The operator Ais
a function of the position and momentum operators X and p,
A=A(%, p). We would like to think of the state ¢/(x) as de-
scribing some probability distribution in phase space, call it
P(x,p), which is everywhere positive and such that
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JJP(x,p)A(x,p)dxdp gives the expectation value of A(x,p).
In general, it is not possible to find such a probability distri-
bution in quantum mechanics,2 and so the Wigner function
cannot be a simple probability distribution. For this reason, it
is often called a quasidistribution. Of course, a simple prob-
ability distribution determining expectation values is pos-
sible in the classical world.

A main goal of quantum mechanics is to obtain expecta-
tion values for physical observables. If the Wigner function
is to be a complete formulation of quantum mechanics, it
must also be able to reproduce these expectation values of all
functions of x and p. When using Wigner functions the ex-
pectation values are obtained in conjunction with the closely
associated Weyl transforms of the operators corresponding to
physical observables. As shown in Sec. IV the correct Weyl
transform is critical for obtaining the spread of the energy of
a state; without it, the Wigner function is little more than a
visual aid for understanding quantum states.

The literature on Wigner functions is extensive. There are
several fine review articles™ and chapters in books*’ on the
Wigner function, Weyl transforms, and related distributions.
Several articles on the Wigner function alone without the
accompangying Weyl transform have appeared in this
journal.Gf A paper by Snygg9 is similar in approach to the
present paper, but more formal and abstract. My goal is to
give a shorter and more focused presentation of these topics
with an eye on the relation between quantum and classical
physics. 1 will also point out a few features that have not
been emphasized previously. Special emphasis will also be
given to the Wigner—Weyl description’s ability to shed light
on the classical limit of quantum mechanics.

The Weyl transform and Wigner function are introduced in
Sec. II. Other characteristics are examined in Sec. III. Sec-
tion IV considers the harmonic oscillator as an example and
also contains some warnings. In Sec. V we find the time
dependence of the Wigner function. Up to this point the pre-
sentation is devoted to pure states. Section VI considers the
generalization to mixed states. The relation between the
Wigner—Weyl formulation and other distributions is also dis-
cussed. Section VII examines the classical limit of the
Wigner—Weyl description of quantum mechanics. Finally,
Sec. VIII discusses the advantages and disadvantages of the
Wigner—-Weyl description in comparison to the standard
Schrodinger equation approach. The Appendix contains a
few derivations to allow the main points of the presentation
to flow more freely.
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II. THE WEYL TRANSFORM AND THE WIGNER
FUNCTION

The Weyl transform A of an operator A is defined bylo
A(x.p) = f P x + y/2|ALx - y/2)dy, 3)

where the operator has been expressed in the x basis as the

matrix (x'|A|x). The Weyl transform will be indicated by a
tilde. The Weyl transform converts an operator into a func-
tion of x and p. As shown in the Appendix it can also be
expressed in terms of matrix elements of the operator in the
momentum basis,

Ax,p) = f ¢ p 4 ul2)|Alp — ul2)du. (4)

A key property of the Weyl transform is that the trace of the

product of two operators A and B is given by the integral
over phase space of the product of their Weyl transforms,

Ti{AB] = % f fg(x,p)g(x,p)dx dp. (5)

The derivation of Eq. (5) is straightforward, but is left for the
Appendix.

To represent the state, we introduce the density operator p.
For a pure state |¢) it is given by

p= X, (6)
which expressed in the position basis is
(x]plx") = ) * (x"). ()

One of the virtues of the density operator and thus the
Wigner function is that it is easily generalized to mixed
states. If we form the trace of p with the operator corre-
sponding to the observable A, we have for the expectation
value

TilpA] = Tel|y)(lA] = (wlA] ) = 4). (8)
Thus using Eq. (5) we have
(Ay=Ti[pA] = % f pAdx dp. 9)

The Wigner function is defined as

W(x,p) =plh= % f TPy (x + y/2) i (x — y/2)dy, (10)

and the expectation value of A is given by

(A= f f W(x,p)A(x,p)dx dp. (11)

We see that the expectation value of A has been obtained by
what looks like the average of the physical quantity repre-
sented by Alx, p) over phase space with probability density
W(x,p) characterizing the state.

If the Wigner function is integrated over p alone and use is
made of [e¢”""dp=hd(x), we have
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f W(x,p)dp = ¢ (x)g(x). (12)

Equation (12) gives the probability distribution for x. A simi-
lar integral over x gives

f W(x.p)dx = ¢*(p)¢(p). (13)

Equation (13) gives the probability distribution for the mo-
mentum variable.

Thus we seemed to have achieved our goal. The Wigner
function represents the distribution in phase space repre-
sented by (x). The projection of W(x,p) onto the x axis
gives the probability distribution in x, and the projection on
the p axis gives the distribution in p. Expectation values of
physical quantities are obtained by averaging A(x,p) over
phase space. We will see that the interpretation of W(x,p) as
a simple probability distribution is spoiled by a number of
features.

III. CHARACTERISTICS OF THE WEYL
TRANSFORMATION AND WIGNER FUNCTION

A direct consequence of the definition of the Wigner func-
tion in Eq. (10) is that it is real, as can be seen by taking the
complex conjugate of Eq. (10) and changing the variable of
integration from y to —y.

Using Eq. (4) we can also express the Wigner function in
terms of the momentum representation of |¢),

W(x,p)=plh= % f M+ ul2| Y Pp — u/2)du (14a)

1 .
== f "o (p + ul2) o(p — u/2)du. (14b)

h

The Weyl transform of the identity operator 1 is 1 because

1= f e PR (x4 12| T|x = yi2)dy

:fe""’y/ﬁé(x+y/2—(x—y/2))dy: 1. (15)

We use Egs. (15), (10), and (5) and find that

f f W(x,p)dxdp =Ti[p]=1. (16)

Thus W(x,p) is normalized in x,p space. Also from the defi-
nition of the density operator we see that for pure states p’
=p, and thus Tr[p?]=Ti{p]=1. From this relation and Egs.
(5) and (10) we see that

ffW(x,p)zdxdp=h_l. (17)

The Wigner functions have a reasonable translation prop-
erty. If the wave function i(x) gives the Wigner function
W(x,p), then the wave function ¢(x—b) will give W(x
—b,p). Shifts in the wave function lead to corresponding
shifts in the Wigner function in the position variable x. Also,
if the original wave function is replaced with
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#x)exp(ixb,/h), the new Wigner function becomes W(x,p
—b,). Shifts in momentum of the original wave function lead
to corresponding shifts of the Wigner function in the momen-
tum variable p. Both of these properties follow directly from
the definition of the Wigner function, Eq. (10). The signs in
these shifts might be a little disturbing. If {(x) is concen-
trated about x,, then y(x—b) will be concentrated about x
+b. If (x) has a certain momentum distribution, then
x)exp(ixb,/h) will have the same distribution shifted by
+b,. Bach of the shifts shift their respective distribution by
+b or +b,, respectively.

Consider two density operators, p, and p,, from different
states ¢, and ¢, respectively. We can form the combination

Tt pub] = [l ) (18)
The Weyl transform of Eq. (18) using Egs. (5) and (10) is

f f W, p) Wiy (ox, p)dax dp = h™" || ). (19)

The product of Wigner functions integrated over phase space
is the square of the inner product of the original wave func-
tions divided by &. The left-hand side of Eq. (19) acts as a
positive inner product of the original states. If we now con-
sider orthogonal states where (i,,| #,)=0, we have

J J Wa(x’p) Wb(x’p)dx dp =0. (20)

Thus some and indeed most Wigner functions must be nega-
tive for some regions of x,p space.

The definition of the Wigner function, Eq. (10), can be
expressed as the inner product of two wave functions. First,
note that

f Px = y12) ¢ (x = y/2)dy

=2f Plx = y2) i (x = y/2)d(y/2) =2. (21)

Thus we may define the two normalized functions of y,
(V)= " h(x+y/2)/ 2 and ¢(y)=i(x-y/2)/ 2, and
express the Wigner function as

W(x.p) = (2/h) f Y (), (v)dy. (22)

Thus
|W(x,p)| < 2/h, (23)

and the distribution W(x,p) cannot take on arbitrarily large
values as would be allowed in a classical distribution in
phase space. From the definition of the Wigner function in
Eq. (10) we see that all even wave functions reach +2/h at
(x,p)=(0,0), and all odd wave functions reach —=2/h at the
same point. Thus a symmetric wave function with widely
separated peaks will have a Wigner function with the maxi-
mum possible value, +2/h, at (x,p)=(0,0). A similar anti-
symmetric wave function will give —2/h at the same point.
The Wigner function will take on these extreme values even
if the original wave function is zero in the region of x=0.
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Given the Wigner function W(x,p) we can recover the
original wave function (x)."" We multiply the definition of

the Wigner function in Eq. (10) by ¢*"/" and integrate over
p to obtain

f W(x,p)e? idp = g (x — x'12) (x + x'12). (24)

We set x=x/2 and then x’=x in Eq. (24) and recover {(x) up
to an overall constant with

1
4*(0)

The constant represented by *(0) can be determined up to a
phase by normalization of i{(x). Note that not all functions of
x and p which obey the previously listed constraints given in
Egs. (16), (17), and (23) are acceptable Wigner functions.
For pure states a test would be to first use the W(x, p) to find
the wave function ¢(x) using Eq. (25). Then use this (x) in
Eq. (10) to determine if the original Wigner function W(x, p)
is recovered.

Now consider the Weyl transform of the operators corre-

Px) = f W(x/2,p)e™dp. (25)

sponding to the observables. Suppose that the operator Ais
only a function of the operator X, which allows us to write

A=A(%). The Weyl transform in this case is particularly
simple. From Eq. (3) we have

A= j e PR (x 4 y/2|A()€)|x —y/2)dy

= j e PYIA(x = y/2) 8(y)dy = A(x). (26)

We see that if the operator Ais purely a function of %, then its
Weyl transform is just the original function with the operator
with X replaced by x. If we start with an operator dependent
only on the momentum operator p and Eq. (4), we find a

similar result. If the operator Bis purely a function of p, then
its Weyl transform is simply the original function with the
operator with p replaced by p. We can extend this argument
to sums of operators where each term is purely a function of
X or p. Thus the Weyl transform of the Hamiltonian operator

H(£,p)=T(p)+U(%) becomes H(x,p)=T(p)+U(x), where T
and U are the kinetic and potential energies. The expectation
values of x, p, T, U, and H are given by

(x) = f f W(x,p)xdx dp, (27a)
(p)= f f W(x,p)pdx dp, (27b)
(I)= f f W(x,p)T(p)dx dp, (27¢)
(U):fjW(x,p)U(x)dxdp, (27d)
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Fig. 1. Plots of the Wigner functions for the two lowest energy states of the
harmonic oscillator; (a) n=0 and (b) n=1. For these plots a and h are set
equal to 1.

(Hy= f f W(x,p)H(x,p)dx dp. (27e)
These results could also have been obtained from Egs. (12)
and (13). The Wigner function acts like a probability distri-
bution in phase space except for the fact that W can be nega-
tive. The expectation values of other quantities will not be as
simple.

IV. AN EXAMPLE: THE HARMONIC OSCILLATOR

We apply the developments in the previous two sections to
the harmonic oscillator. Its Hamiltonian and two lowest en-
ergy states are given by

[:]= 2— + T)?z, (28)
m
1 —x2/(2a2)
Yo(x) = 7= e 1), (29)
vmya
1 2x _ 2,2
() = 5= \/gge‘* e, (30)
NTT

where a’=#/(mw). The corresponding Wigner functions for
iy and ¢, can be found using Eq. (10),

2
Wy(x,p) = l; exp(— a’p*h? = x*}a?), (31)

2
W, (x,p) = Z(— 1+ 2(ap/h)?

+2(x/a)Hexp(— a’p*/h* — x*a?). (32)

Plots of W, and W, with a=1 and h=1 are shown in Fig. 1.
We see that both functions obey the inequality in Eq. (23).
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W, equals +2 at (x,p)=(0,0) and W, equals -2 at the same
point.

We now take a closer look at the lowest energy state, Eq.
(31). The expectation value of the energy can be determined
using Eq. (27¢), and we find

2 w2 ho
<H)=ffW0(x,p)<§—m+m2x )dxdp=7. (33)

Although Eq. (33) is correct, the way it is obtained is a little
disturbing. This result should shout out Zw/2 because this
value is the only value the energy can take. We would expect
all of the nonzero points of the distribution in phase space to
lie on an ellipse corresponding to the energy 7iw/2. How-
ever, the expectation value is obtained by taking an average
of combinations of x and p corresponding to different ener-
gies with probability Wy(x,p). We would expect such a dis-
tribution to imply a spread in energy leaving us with an
apparent contradiction. The energy spread A is determined
by A’=(H?)—(H)>. The second term is (Aw/2)?; for the first

term we must have
(H?) :f f Wo(x,p)fﬁfdx dp. (34)

The Weyl transform of H? will not simply be H2(x,p) be-

cause H is no longer a sum of terms purely dependent on &

or p, but involves cross terms. The Weyl transform is given
by

~

H2 = 541 (2m)? + m2w*#4 + o*(32p% + p222)/4. (35)

The first two terms on the right are p*/(2m)>+m*w*x*/4.
The last term is determined with the help of

~

27+ pAr=2x%p? - k2, (36)

which is derived in the Appendix. When this expression is
included we find

~ fw)?

H? = H(x,p) - %. (37)
Thus we find after carrying out the integration that

(H = (3ho)?, (38)

and the resulting spread A is equal to zero as it should.

We see that even for the Wigner function of Eq. (31),
which is positive everywhere, quantum behavior is still
present. It is the way the physical results are extracted, using
not only the Wigner function, but also the Weyl transform of
the desired operator, which give this system its quantum be-
havior. It is widely believed that a Wigner function which is
positive everywhere can exhibit only classical phenomena.12
As we see from this example, this belief is incorrect.

William B. Case 940



V. TIME DEPENDENCE OF THE WIGNER
FUNCTION

By taking the derivative of Eq. (10) with respect to time
we have

%;/=I%Je—zp}/ﬁ|:alf/j (x y/2)¢( + /2)

&v,b(x +y/2)

py U (x - y/Z)}dy (39)

The partial derivatives on the right-hand side can be ex-
pressed using the Schrédinger equation,

alx. hoPylen) 1
%:—E iit)+£U(x)¢(x,t). (40)

We use Eq. (40) to write Eq. (39) as

ow W, W
o, (41)
ot ot ot
where
&WT l J — pv/ﬁ azlﬂ*(x y/2)
- r___~ i —————x+y/2
ot 4dmim ox* Yot y/2)
. FPip(x +y/2)
_pramypy D 2)
ox
W, 2 .
TtU - 77; f e P U(x +y/2) = Ulx = y12) 1 (x = y/2)
i

X ix + y/2)dy. (43)
We consider each of these terms in the Appendix and find

oWy p IW(x,p)

a o m (442)
aWU 1 1\*#U(x)
E( (2s+1)!( ) x>t
& 2s+1
X (—) W(x,p). (44b)
ap

Equation (41) with Eq. (44) is equivalent to solving the
Schrodinger equation, as can be seen by the following argu-
ment: Consider the wave function /(x,0) and its correspond-
ing Wigner function W(x,p,0). As we saw in Eq. (25) the
relation between ¢ and W is one to one except for an overall
constant phase. We then use the Schrodinger equation to de-
termine i(x,f) and Egs. (41) and (44) to find W(x,p,t). Be-
cause both equations are linear and first order in 7, these
solutions will be unique once the initial functions are given.
Since Egs. (41) and (44) were derived from the Schrodinger
equation, these solutions must have the same one-to-one re-
lation as the original wave function and Wigner function.
Thus the two methods must be equivalent.

Note that the result in Eq. (44a) is entirely classical in that
it contains no #, while Eq. (44b) is more complicated. If all
derivatives of U(x) higher than the second order are zero, as
for a free particle, a constant force, and a harmonic oscillator,
then Eq. (44b) becomes
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Wy dU(x) oW(x,p)
o ax

(45)
With this assumption the expression governing the evolution
of the Wigner function becomes

IW(x,p)  p IW(x,p) . aU(x) dW(x,p)
o m ox ox ap

(46)

Equation (46) is the classical Liouville equation. In such a
regime the motion of the Wigner function in phase space is
exactly that of classical physics under the influence of the
potential U(x). If higher derivatives of U(x) are present, then
the additional terms will give a diffusion-like behavior.

For a harmonic oscillator the motion in x, p space is purely
classical. The time evolution of the classical harmonic oscil-
lator is described by
(47a)

Xo =x cos(wt) — i sin(wt),
mw

Do = p cos(wt) + mwx sin(wt), (47b)

where x and p are the values of the position and momentum
at time ¢, and x( and p, are the values at r=0. We need only
to require that each point of the Wigner function moves in
elliptical paths in phase space. Thus if the Wigner function at
time =0 is W(x,p,0), the Wigner function at a future time ¢
is given by

W(x,p,1) = W(x cos(wt) = — sm(wt) p cos(wr)

+ mox sin(wt),O) . (48)

For the harmonic oscillator all the analysis with Hermite
polynomials and exponentials has only to do with the sort of
state that can be prepared and not with the physics of its time
evolution.

As an application of the time evolution of a harmonic
oscillator state we take the Wigner function at time =0 to be
the lowest energy state of the harmonic oscillator shifted by
b in the x direction. If we use the rule for translation given in
Sec. III, W(x,p,0) is easily obtained from Eq. (31),

2
W(x,p,0) = N exp(— a’p*h? - (x - b)*1d®). (49)

From the previous discussion we see that the time evolution
of the state is motion in an ellipse in the (x,p) plane centered
about (0,0). The Wigner function at other times becomes

2 2
W(x,p,t) = Y exp{— %(p cos(wt) + mwx sin(wr))?

1 p . 2
- —2<x cos(wt) — — sin(wt) — b) } . (50)
a mw
We note that although the source of the Wigner function was
the ground state of the harmonic oscillator and thus a proper
Wigner function, the oscillator dictating the motion may be a
different one; the a in Eq. (50) can be taken as arbitrary and
need not be constrained by the relation a’=%/(mw). If we do
add the requirement that this state be the shifted ground state
of the same oscillator, we may use a’>=%/(mw) and find
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Fig. 2. Plots of the Wigner functions of a (a) coherent state and a (b)
squeezed state. The state starts at the right and moves in a clockwise fashion
about (0,0). Both are shown at times t=0, t=7/4, and t=T/2, where T is the
period for the harmonic oscillator. In generating these plots the following
values were used: h=1, w=1, m=2m, b=5; for the coherent state, a=1 as
follows from a*=%/(mw). For the squeezed state, a=2.

2

a bh 2
p+ — sin(wr)
a

2
Wx,p,t) = — -—=
(x,p,1) hexp[ 72

- %(x—bcos(wt))z] (51)

Because the x and p dependencies have now factored, we see
that o*y= W dp will be a Gaussian of constant width a
moving back and forth with amplitude b and angular fre-
quency . This state is the coherent state. Coherent states
were introduced by Glauber'*' in the study of quantum op-
tics as the closest quantum description of a classical electro-
magnetic wave. These states play a parallel role in the study
of the harmonic oscillator. As the Wigner function moves
around its path in phase space, its projection on the x axis
moves back and forth with unchanging profile.

We now return to Eq. (50) and consider its implications
without the restriction on a, a*=#/(mw). The initial state is
no longer the shifted ground state of the harmonic oscillator
describing the motion. It will have a different ratio of spread
in the x and p directions from the coherent state. This state is
the squeezed state.'* Equation (50) now describes the time
evolution of this state where m and w refer to the harmonic
oscillator. Based on this evolution in phase space we can
imagine how this state will evolve and how its projection on
the x axis will differ from that of the coherent state. Although
it will still oscillate with angular frequency w, its width in x
will vary during the motion. The coherent state and the
squeezed states are shown in Fig. 2 at =0, t=T7/4, and ¢
=T/2, where T is the period of the oscillator.
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A similar treatment can be given of the free particle. Here
each point would move in a straight line parallel to the x axis
in phase space as dictated by its position and momentum.
The Wigner function evolves as

W(x,p,t) = W(x - Bt,p,O). (52)
m

Equation (52) corresponds to a shear of the distribution.
Parts of the Wigner function above the x axis move to the
right in proportion to how far above the x axis they lie.
Points below the axis move to the left in a similar fashion.
Many of these results would be difficult to obtain starting
from the Schrodinger equation.

VI. MIXED STATES AND OTHER DISTRIBUTION
FUNCTIONS

There is an interesting complementarity between classical
physics and quantum physics. In quantum mechanics, linear
combinations of wave functions ¢(x,z) that satisfy the
Schrodinger equation are also solutions to the Schrédinger
equation. This property is the usual linearity of quantum me-
chanics. When the transformation is made to the correspond-
ing Wigner functions and the x, p space, this linearity is lost.
Suppose that f=4,+ g As can be seen from Eq. (10), we
will not have W,=W,+Wg. For classical systems there is
linearity in phase space. If we have one distribution D ,(x,p)
and add another D,(x,p), we obtain the proper representation
of the sum of the two by taking D(x,p)=(D,(x,p)
+Dy(x,p))/2. Classical distributions are linear in phase
space.

For mixed states the definition of the density operator,
Eq. (6), is generalized by replacing it with

p=2 Pl (53)
J

The probability of each state P; will be positive and 2;P;
=1. The expectation values will still be given by (A;

:Tr[[)fi]. The Wigner function is calculated as before with
Eqgs. (10) and (3),

W(x,p) = plh= 2 PW,(x,p), (54)
J

where W;(x,p) is the Wigner function obtained for |z,/fj>
alone. Thus there is a linearity of mixed states in phase
space. In this way, the quantum system of mixed states takes
on some of the character of a classical system. Of the rela-
tions that were found in Sec. III only Eq. (17), which de-
pends upon p>=p, is no longer applicable. The Wigner func-
tion can be inverted along the lines of Eq. (25) to recover the
density operator if it exists.

We now give an example comparing pure and mixed
states. For the pure state we take the sum of two coherent
states, one centered at x=+b, the other at x=—b. This state
can be formed from two ground states of the harmonic os-
cillator in Eq. (29) shifted by a distance b in opposite direc-
tions in x,

y=Alh(x —b) + p(x +b)], (55)

where A is a normalization constant. The Wigner function for
this state can be found using Eq. (10) giving
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Fig. 3. Plots of the Wigner functions for a (a) pure state and a (b) mixed
state consisting of two coherent states. In generating these plots the follow-
ing values were used: h=1, a=1, and b=4.

W(x,p) — —(a17)2/h2[e—(x - b)2/a2 + e—(x + b)2/a2

- 5 5 €
h(1 + 777

+ 26774 cos(2bp/h)]. (56)

For the mixed state of the same two coherent states we can
just sum the Wigner functions of the shifted ground states,
Eq. (31), inserting a factor of 1/2 representing the equal
probability of obtaining each,

1
W(x,p) = E[WO(X —b,p)+ Wy(x+b,p)] (57a)
:le—azpzlﬁz[e—(x - b)z/a2 + e—(x + b)z/az] ) (57b)

h

The Wigner functions given in Egs. (56) and (57b) are shown
in Fig. 3. As we can see, the mixed state has two peaks
centered at x= * b, and the pure state is similar to the mixed
state with nonclassical behavior between the two peaks
where the wave function is small. This behavior near (0,0)
for symmetric or antisymmetric states was discussed in Sec.
111

As was indicated in Sec. I, the Weyl transform and the
Wigner function can be easily generalized to many dimen-

sions. For the Weyl transform of operator A we replace Eq.
(3) with

943 Am. J. Phys., Vol. 76, No. 10, October 2008

g(x],xz, s P1sP2s )

= f f v v Py APy

XXy +y1/2,%0 + yo/2, .. .|A|x1
_y1/2,x2—y2/2, >dy1dy2 . (58)

The defining equation for the Wigner function for a pure
state ¢(x;,x,,...) becomes

W(XI,XZ, s P15P2s )

ziff e o ol P1Y TPy )
hn

><’71’()‘71 +y1/2,x2+y2/2, )
XYF(x) = y1/2,x0 = yo/2, .. )dydyy -+, (59)

where 7 is the dimension of the system.

The Wigner function is not the only candidate that gives a
distribution in x,p space and a representation of expectation
values for quantum mechanics in the form of Eq. (11). The
other candidates represent trade-offs between the distribution
function and the transformed operators, some making the
distribution look tamer at the expense of the transform of the
operator.3 All are capable of giving all of the quantum de-
tails. It is not surprising that this ambiguity exists and that
there is no unique choice. As pointed out in Sec. I, finding a
proper probability distribution in phase space to represent
quantum mechanics is impossible. Thus it is not surprising
that there are many ways of approximately performing this
task, each falling short of the goal.

VII. CLASSICAL LIMIT

At this point it might seem that we could take the limit
fi—0 and obtain classical physics. We might insist that we
begin with a positive distribution in phase space at r=0 either
by the classical nature of the preparation or by using some
smoothing scheme based on the inability to observe details in
the distribution in phase space (coarse graining). The equa-
tion of evolution of W(x,p,1), Egs. (41), (44a), and (44b),
reduces to the classical case when 2— 0. The difference be-
tween the Weyl transform, A(x,p), of the operator A
=A(X,p) and the function A(x,p) disappears when 7 — 0.
This difference is due to the fact that X and p do not com-
mute ([£,p]=ih), which led to the extra term in Eq. (37).
Thus in this limit we can calculate expectation values in the
usual way as an integral of W(x,p)A(x,p) over x and p. We
might try to give such an argument but we cannot.

The problem with these naive assumptions can be seen
easily. Dropping the higher order terms in % in Eq. (44b) is
suspect. Note that from the definition of the Wigner function
Eq. (10), (9/dp)**! will bring a factor of 1/%*!, which will
more than offset the £%* factor unless some help can be found
in the density operator. This issue has been considered by
Heller,15 who reached similar conclusions to those expressed
here. As an example, consider the ground state of the har-
monic oscillator given in Eq. (31). Although we are using
states of the harmonic oscillator, we are not assuming that
the Hamiltonian dictating the motion is that of the harmonic
oscillator. This construction is simply a way of getting a
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proper Wigner function. If we take (J/dp)***! of this Wigner

function and the limit h—0, we obtain
(=2a’p/h2)>+! exp[—a®p?/#?] for the dependence on p and
h. As i—0 the exponential becomes narrower with signifi-
cant values only for p~#/a. With this constraint
(Wy/ ap)**! goes as 1/A**!. Thus the terms in Eq. (44b)
that appear to go as A% actually go as 1/% and prevent their
neglect in the #— 0 limit. Part of the problem is that as %
— 0 the Wigner function of the pure state becomes very nar-
row in the p direction because for a pure state the width in p
is tied to the width in x via %. It might be argued that we
should have taken the width in p as fixed in the #— 0 limit,
allowing the Wigner function to become narrow in the x
distribution. It might seem that this limit would avoid the
problems with the higher order derivatives in p. In general,
such an approach would not be satisfactory. As we saw in
Fig. 2 for the harmonic oscillator, initial distributions can
become rotated in phase space interchanging the widths of
the distributions in x and p.

It is expected that in the classical limit we cannot deter-
mine distributions with higher and higher precision. We want
to control the widths in x and p independently. Once the
width in x is fixed we cannot make the width in p arbitrarily
small, but we can construct a mixed state that has an arbi-
trarily wide distribution in p. This construction is done by
forming a mixed state of ground states of the harmonic os-
cillator in Eq. (31) shifted in the p direction with normalized
probability density,

1
P(p) = ——e 77, (60)
c\NTT

where ¢ is a positive constant. The Wigner function of the
mixed state is

W(x,p) =J Wo(x,p = po) P(po)dpy

1

—_——
ma*c? + h?

2,2 22,22, 2
e~ la er /(c“+h%la )' (61)

We now have a Wigner function with width « in the x direc-
tion and width Vc¢?+#42/42 in p. The #— 0 limit can be taken
of this Wigner function and the neglect of the derivatives
with respect to p beyond the first in Eq. (44b) can now be
justified.

If we apply this same procedure to the double coherent
pure state in Eq. (56), we obtain in the limit A —0,

1
W(x,p) =
2mac(l +e”

+ e—(x + }))2/a2 + Ze—xz/aze—bz/az] ) (62)

o )2) e—pz/cz[e—(x - h)z/a2
a

Again we see that the behavior is considerably smoother than
the pure state and closely resembles the expression for the
mixed state of two coherent states given in Eq. (57b). All that
remains of the nonclassical behavior near (0,0) shown in Fig.
3 is a peak suppressed by a factor of e, Again the
neglect of terms containing derivatives with respect to p be-
yond the first order is justified. Can we carry out this pro-
gram of introducing mixed states and successfully taking the
f—0 for all cases? That is not so clear. Note the concern is
not just that W might become negative, although that would
be a problem, but the rapid variation of W.
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It is well known that many classical nonlinear systems
exhibit very complicated behavior which can evolve into dis-
tributions that we would expect to have large higher order
derivatives.'® The issue of the incompatibility of classical
mechanics and quantum mechanics has been pointed out by
Ford'” based on information theory arguments and is a cen-
tral question in quantum chaos. This question is still open.18
A recent paper19 analyzed the nonlinear Duffing oscillator as
a classical system and as a quantum system. Their respective
evolutions in phase space are then shown side by side and
clearly show a classical system that develops fine structures
in phase space, while the quantum system develops negative
regions in the corresponding Wigner function.

We may also consider systems that start off classically but
evolve into the g[uantum regime. In the experiments of Arndt
and co-workers” a beam of Cgo molecules from an oven
passes through a grating with a grating constant of 100 nm.
This experiment reveals an interference pattern at a distance
of 1.2 m. The interference pattern is clearly a quantum ef-
fect. The grating spacing, although fine, is much larger than
the de Broglie wavelength of the molecules, which is about
2.8 pm. The reason that the pattern is revealed is due to the
growth of transverse coherence with distance from the grat-
ing. Thus we have a seemingly classical system that evolves
into a quantum system. We could argue that making % very
small would reduce the effect, but propagation over a greater
length would bring the pattern back.

In the end, what can we say about the classical limit? As
we can see the limit is subtle and involves not just the time
dependence of the states, but the operators and nature of the
states themselves. If we can say that the initial distribution in
phase space is positive and smooth everywhere and if the
Hamiltonian is such as to leave the distribution sufficiently
smooth so as to allow us to neglect the higher order terms in
i with their high order derivatives with respect to p, then the
opening argument of this section should hold. In the end, we
believe that the quantum description correctly describes our
world.

We note that the distinction between classical and quan-
tum is not simply the distinction between large and small,
but the extent to which we know the distribution. If we pin
down the distribution in phase space, either due to the details
of preparation, details of evolution, or fineness of measure-
ment, to details approaching AxAp=#, the quantum nature
will emerge.

VIIL. SUMMARY: WIGNER-WEYL VERSUS
SCHRODINGER

Almost all quantum mechanics texts present the subject
based on the Schrédinger equation, wave functions, and op-
erators. The Wigner—Weyl approach presented here is com-
pletely equivalent. The question of which approach is to be
used depends on the system under consideration and the
questions asked. Our initial goal was to find a phase space
representation of the quantum state. This representation was
given by the Wigner function. It was found to possess some
disappointing features due to the quantum character of the
system, which is completely described by the formulation.

What was accomplished beyond a visual description of a
quantum system? Two were discussed in the paper. For the
harmonic oscillator and the free particle the time evolution of
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the system is simple in this formulation and is identical to
that of the classical system. These features are hidden in the
standard Schrodinger approach.

The second virtue of the Wigner—Weyl approach is its
ability to naturally include mixed states. The Schrodinger
equation is written in terms of the wave function, and is
limited to a description of pure states. As we saw in Sec. VI
the Wigner—Weyl description easily moves from the descrip-
tion of a pure state to that of mixed states. We saw an appli-
cation of this description in Sec. VII. As an added benefit the
time evolution of the Wigner function given in Eqgs. (41) and
(44) was in a form that helped us understand the classical
limit. There are still open questions, but we gained a clearer
picture of the problem. Had we started with the Schrodinger
equation and taken i — 0 we would conclude that we should
drop the kinetic energy.

It is also possible to obtain the Wigner functions corre-
sponding to the energy eigenstates directly from the time
evolution of the Wigner function, Eq. (41).> Thus for the
harmonic oscillator, Eq. (31) could be obtained directly with-
out the use of the result given in Eq. (29).

Should we give up the Schrodinger equation in favor of
the Wigner—Weyl approach? Certainly not. The simplicity of
the Schrodinger equation makes it easier to solve directly
and ideal for finding approximate solutions. However, there
is much to be gained by studying the Wigner—Weyl descrip-
tion.
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APPENDIX: DETAILS OF THE DERIVATIONS

In the following we will fill in some details of derivations
that were omitted in the main text.

Equation (4). The first task is to express the Weyl trans-
formation in terms of momentum eigenstates. The definition
of the Weyl transformation is given in Eq. (3). The identity
operator can be expressed as 1=[|p){p|dp, where the states
|p) obey the orthogonality condition {(p|p’)=8(p—p’). We
substitute this expression on both sides of the operator of the

operator A on the right-hand side of Eq. (3) giving

g:fffe_ipy/h<x+y/2|p')<p'|A|p">

X{(p"|x = y/2)dydp' dp".

Next we note that (x|p)=h="? exp(ixp/#) (see, for example,
Ref. 21) and use

(A1)

f exp(iyp/h)dy = hé&(p) (A2)
to carry out the y integration giving

f f S(p' +p")2=p)p' [Alp"e™ "7 dp'dp". (A3)

Next we change variables u=p'—p", v=p'+p"”, and dudv
=2dp’ dp”. With this change of variables Eq. (A1) becomes
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A= f f 8 = 2p){(v + u)/2|A| (v — u)/2)e™™ du dv,
(A4)

where we have used the relation &(y/2)=28(y). Carrying out
the v integration, we have the desired result

A= f My 4 ul2|Alp — u/2)du. (A5)

Equation (5). We next derive the key relation between the
trace of two operators and their respective Weyl transforms.

Suppose we have two operators A and B and their Weyl
transforms

A(x,p) = f e (x + y/2|A|x —y/2)dy, (A6a)

B(x,p) = f ey Iy 4 y’/2|]§|x —y'12)dy’. (A6b)

We form the product of these two and integrate over all of
x,p space and find

f f A(x,p)B(x,p)dx dp

=IJJJe‘i”(y+-",)/h(x+y/2|A|x—y/2)

X(x+y'12|Blx - y'/2)dx dp dy dy'. (A7)

The p integration is done using Eq. (A2), giving a delta
function which is used to do the y’ integration:

ffg(x,p)g(x,p)dxdp=hff{x+y/2|1&|x—y/2>
X(x—y/2|1§|x+y/2)dxdy.
(A8)

Then we perform the change of variables u=x-y/2, v=x
+y/2, and du dv=dx dy, giving

ffg(x,p)g(x,p)dx dp:hff<v|AA|u)<u|B?|v>du dv

=h Ti[AB], (A9)

which is Eq. (5), the desired relation between the trace of
two operators and their Weyl transforms.

Equation (36). From the definition of the Weyl transform
in Eq. (3) we have

~—

PR+ 2pt= f e PV x4+ v/2|pPR% + B2px — v/2)dv

(A10a)

=f e PV (2x% + v2/2)(x + v/2|px — v/2)dv.
(A10b)

We insert the identity 1=[|p’)(p’|dp’ just after p? and find
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]32)22 + )22132

J J p'2e™ P22 4 v22)(x + v/2|p")

X{(p'|x = v/2)dv dp’ (Alla)

1 , ;o
an f f e P (2x2 vz/Z)Fe”’ Uidy dp' .
(A11b)

We next perform two integrations by parts on the v variable®
and obtain the desired result,

&
ﬁ2A2+)22 H2 —hzf o) 2[e”’”/h(2x +02%/2)]dv

=2x°p* - h2. (A12)

Equation (44a). We note that the integral in the first term
of Eq. (42) can be written as

J "”V/ﬁ—azw =y )z,b(x+y/2)dy

P
R (= y/2
-2 J i TV EZY2) oy (A1)
dyox
Equation (A13) can be integrated by parts to give
2i O (x—y/2
—ife"”y/h—w (x—y )l,lr(x+y/2)dy
h ox
P (x — y/2) dx + y/2
+fe_,py/ﬁ Y= y12) dplx +y )dy (Al4)
ox ox

If combined with the integral in the second term in Eq. (42)
rewritten in a similar fashion, we obtain the result in Eq.
(44a),

W J .
#:- ﬁa j e~ PV (x — yI2)ih(x + y/2)dy
/4
=- %E' (A15)

Equation (44b). For the dW,,/ dt part of W/t we assume
that U(x) can be expanded in a power series in x and write

Ux+y/2) = U(x—y/2)

1 1\ [1)\?
ST ()] e
1 23&23+1U( ) .
o 25+ 1)1( ) ax%“x v (A16b)

When Eq. (A16) is incorporated into Eq. (43), we find Eq.
(44b).

YElectronic mail: case@ grinnell.edu
'E. Wigner, “On the quantum correction for thermodynamic equilibrium,”
Phys. Rev. 40, 749-759 (1932).

946 Am. J. Phys., Vol. 76, No. 10, October 2008

M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, “Distribu-
tion functions in physics: Fundamentals,” Phys. Rep. 106, 121-167
(1984).

°H. Lee, “Theory and application of the quantum phase-space distribution
functions,” Phys. Rep. 259, 150-211 (1995).

*S. R. deGroot and L. C. Suttorp, Foundations of Electrodynamics (North-
Holland, Amsterdam, 1972).

Sw. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin,
2001).

SR. A. Campos, “Correlation coefficient for incompatible observables of
the quantum harmonic oscillator,” Am. J. Phys. 66, 712-718 (1998).

D.F. Styer, M. S. Balkin, K. M. Becker, M. R. Burns, C. E. Dudley, S. T.
Forth, J. S. Gaumer, M. A. Kramer, D. C. Oertel, L. H. Park, M. T.
Rinkoski, C. T. Smith, and T. D. Wotherspoon, “Nine formulations of
quantum mechanics,” Am. J. Phys. 70, 288-297 (2002).

SM. Belloni, M. A. Doncheski, and R. W. Robinett, “Wigner quasi-
probability distribution for the infinite square well: Energy eigenstates
and time dependent wave packets,” Am. J. Phys. 72, 1183-1192 (2004).

°T. Snygg, “Use of operator functions to construct a refined correspon-
dence principle via the quantum mechanics of Wigner and Moyal,” Am.
J. Phys. 48, 964-970 (1980).

10H. Weyl, The Theory of Groups and Quantum Mechanics (Dover, New
York, 1931) p. 275. Weyl’s original goal was to find a transformation that
would give the quantum operator starting from the classical function.
Based on that our Eq. (3) should be called the inverse Weyl transforma-
tion.

L. Cohen, Time-Frequency Analysis (Prentice Hall, Upper Saddle River,
NJ, 1995), p. 127.

123, Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge
U.P,, Cambridge, 1987), Chap. 21. In fairness to Bell it should be pointed
out that he seemed to be equating “quantum behavior” with “nonlocality.”
Recent work suggests that nonlocality can be found even for Wigner
functions that are everywhere positive. See K. Banaszek and K. Wodk-
iewicz, “Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner
representation,” Phys. Rev. A 58, 4345-4347 (1998).

BR. J. Glauber, “The quantum theory of optical coherence.” Phys. Rev.
130, 2529-2539 (1963).

“M. 0. Scully and M. S. Zubairy, Quantum Optics (Cambridge U.P., Cam-
bridge, 1997), Chap. 2.

E. I. Heller, “Wigner phase space method: Analysis for semiclassical
applications,” J. Chem. Phys. 65, 1289-1298 (1976); 67, 3339-3351
(1977).

197, Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Sys-
tems, and Bifurcations of Vector Fields (Springer, New York, 1983),
Chaps. 1 and 2.

177, Ford and M. Ilg, “Eigenfunctions, eigenvalues, and time evolution of
finite, bound, undriven, quantum systems are not chaotic,” Phys. Rev. A
45, 6165-6173 (1992).

18See, for example, E. J. Heller and S. Tomsovic, “Postmodern quantum
mechanics,” Phys. Today 46, 38—46 (1993).

191, Katz, A. Retzker, R. Staub, and R. Lifshitz, “Signatures for a classical
to quantum transition of a driven nonlinear oscillator,” Phys. Rev. Lett.
99, 040404-1-040404-4 (2007).

20M. Arndt, O. Nairz, J. Voss-Andreae, C. Keller, G. Van der Zouw, and A.
Zeilinger, “Wave-particle duality of Cg, molecules,” Nature (London)
401, 680-682 (1999); O. Nairz, M. Arndt, and A. Zeilinger, “Quantum
interference experiments with large molecules,” Am. J. Phys. 71, 319-
325 (2003).

2p. 1. Griffiths, Introduction to Quantum Mechanics (Pearson Prentice
Hall, Upper Saddle River, NJ, 2005), 2nd ed., p. 103.

2The careful reader may be concerned about the dropping of the terms at
infinity that occur during the integration by parts. This neglect can be
justified by replacing exp(—ipy/fi) in the definition, Eq. (3), with
exp(—ipy/fi—e€y?), where € is a small positive constant. The calculation
can now be carried out and € allowed to go to zero afterward giving the
same result as was found previously.

William B. Case 946



