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We consider classical Yang-Mills theory with point sources and derive equations of motion for the

coupled particle-field system. As an example, we discuss the special case of Yang-Mills theory

coupled to point particles in (1þ 1) dimensions. We formulate the initial value problem for the

system and describe several example solutions. VC 2011 American Association of Physics Teachers.
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I. INTRODUCTION

Yang-Mills theory plays a central role in explaining fun-
damental interactions, because both the strong and weak
interactions are described by Yang-Mills theories.1,2 Stu-
dents are usually introduced to Yang-Mills theory in the
context of quantum field theory and never encounter Yang-
Mills theory in its classical form. In contrast, students do
not study quantum electrodynamics until they have thor-
oughly mastered classical electrodynamics. In this paper,
we fill this gap by discussing classical Yang-Mills theory
coupled to point sources. We derive the equations of motion
for the coupled particle-field system and present several
example solutions to these equations for Yang-Mills theory
in (1þ 1) dimensions.

In Sec. II, we briefly review ordinary classical electrody-
namics. In Sec. III, we generalize ordinary electrodynamics to
what we call color electrodynamics, which can be thought of
as electrodynamics with three different types of charge. In
Sec. IV, we generalize from color electrodynamics to Yang-
Mills theory by means of symmetry principles. We then spe-
cialize to the case of (1þ 1) dimensions. In Sec. V, we discuss
ordinary electrodynamics in (1þ 1) dimensions, and in Sec.
VI, we discuss Yang-Mills theory in (1þ 1) dimensions. In
Sec. VII, we present several example solutions to the equa-
tions of motion for Yang-Mills theory in (1þ 1) dimensions.

The following notation is used. The sign function �(x) is
defined such that �(x)¼ 1 if x> 0, �(x)¼ 0 if x¼ 0, and
�(x)¼� 1 if x< 0. The step function h(x) is defined such that
h(x)¼ 1 if x> 0, h(x)¼ 1/2 if x¼ 0, and h(x)¼ 0 if x< 0.

II. ORDINARY ELECTRODYNAMICS

We begin by briefly reviewing ordinary classical electro-
dynamics. For simplicity, we consider the case of a single
point particle source. Let m and q denote the mass and elec-
tric charge of the particle, and let zl(s) and wl(s)¼ dzl(s)/ds
denote its position and velocity at proper time s. The electro-
magnetic field is described by a vector potential Al from
which we derive the field strength tensor Fl�:

Fl� ¼ @lA� � @�Al: (1)

The field strength tensor satisfies the field equation

@lFl� ¼ 4pJ�; (2)

where the current density Jl is given by3

JlðxÞ ¼ q

ð
wlðsÞ dð4Þðx� zðsÞÞ ds: (3)

The particle equation of motion is

m
dwl

ds
¼ qFl�w�: (4)

Equations (1)–(4) give a complete description of
electrodynamics.

An important property of electrodynamics is that it is
invariant under the transformation Al ! Alþ @lk, where k
is an arbitrary position-dependent parameter. Such a trans-
formation is called a local abelian gauge transformation:
local, because k can be different at different points in space-
time, and abelian, because the net effect of two such trans-
formations is independent of the order in which they are
performed.

III. COLOR ELECTRODYNAMICS

We will now generalize electrodynamics so that instead of
one type of charge, electric charge, we have three types of
charge, which we call color charge.4 We denote the three
color charges of the particle by qx, qy, and qz, and we define
a vector ~q � ðqx; qy; qzÞ, which we call the charge vector.
Note that ~q is a vector in color space, not physical space. We
will refer to vectors in color space as color vectors and will
denote them by using horizontal arrows.

In color electrodynamics there are three vector potentials,
one for each type of color charge, which we collect to form a
color vector ~Al. The corresponding field strength tensor ~Fl�

is given by

~Fl� ¼ @l~A� � @�~Al: (5)

The field strength tensor satisfies the field equation

@l~F
l� ¼ 4p~J�; (6)

where the color current density ~Jl is given by

~JlðxÞ ¼ ~q
ð

wlðsÞ dð4Þðx� zðsÞÞ ds: (7)

The particle equation of motion is

m
dwl

ds
¼ ~q � ~Fl�w�: (8)

Equations (5)–(8) give a complete description of color
electrodynamics.

The physical interpretation of color electrodynamics is
simple: each type of color charge produces a corresponding

925 Am. J. Phys. 79 (9), September 2011 http://aapt.org/ajp VC 2011 American Association of Physics Teachers 925



color field that obeys the laws of ordinary electrodynamics,
and charges and fields of different colors do not couple to
each other. The force on a particle is the sum of the forces
exerted by each of the three color fields.

Color electrodynamics is closely analogous to ordinary
electrodynamics. For example, two particles with charge
vectors ~q1 and ~q2 experience an attractive force if ~q1 �~q2 is
negative and a repulsive force if ~q1 �~q2 is positive. Also, the
field equation for the theory is linear and therefore obeys the
superposition principle: the field generated by a collection of
particles is the sum of the fields generated by the individual
particles.

Like ordinary electrodynamics, color electrodynamics is
invariant under local abelian gauge transformations, which
in this case take the form

~Al ! ~Al þ ~kl; (9)

where the color vector ~k is an arbitrary position-dependent
parameter. But there is an additional symmetry of color elec-
trodynamics that is not present in ordinary electrodynamics:
we are free to globally rotate the color vectors. That is, the
theory is invariant under the transformation

~q! R~q; ~Jl ! R~Jl; (10)

~Al ! R~Al; ~Fl� ! R~Fl�; (11)

where R is an arbitrary rotation matrix.
This rotational symmetry implies that the theory depends

only on the relative orientation of color vectors, not on their
absolute orientation in color space. For example, we saw that
the force between two particles depends only on the dot
product ~q1 �~q2. Invariance under global color rotations is
analogous to invariance under Lorentz transformations,
because a Lorentz-invariant theory depends only on relative
velocities, not on absolute velocities.

In what follows, it will be useful to restrict ourselves to in-
finitesimal transformations. This restriction does not entail a
loss of generality, because finite transformations can always
be composed out of sequences of infinitesimal transforma-
tions. Consider a rotation R of infinitesimal magnitude h
about an axis n̂. For an arbitrary color vector~v, we have that
R~v ¼~vþ ~h�~v, where ~h � hn̂. From Eqs. (9)–(11), it fol-
lows that color electrodynamics is invariant under the
transformation

~q! ~qþ ~h�~q; (12)

~Jl ! ~Jl þ ~h� ~Jl; (13)

~Al ! ~Al þ ~h� ~Al þ @l~k; (14)

~Fl� ! ~Fl� þ ~h� ~Fl�; (15)

where ~k and ~h are infinitesimal color vectors. The color vec-
tor ~h must be constant, but ~k can be different at different
points in spacetime. We will refer to this transformation,
which combines a local abelian gauge transformation with a
global color rotation, as a general transformation.

IV. YANG-MILLS THEORY

Color electrodynamics is invariant under local abelian
gauge transformations and global color rotations. We will

now generalize color electrodynamics so that it is invariant
not just under global color rotations, but local color rotations
as well; that is, we want our theory to be invariant under gen-
eral transformations for which both ~k and ~h depend on
position.

We first introduce some terminology: a color vector ~v that
transforms like ~v!~vþ ~h�~v under a general transforma-
tion is said to transform properly. So ~q, ~Jl, and ~Fl� should
transform properly, but ~Al should not. Our first task is to find
an expression for the field strength tensor that transforms
properly, given Eq. (14) for the transformation of the vector
potential. We want to generalize color electrodynamics, so
we start by considering the tensor

~Fl�
0 � @l~A� � @�~Al: (16)

From Eqs. (14) and (16), it follows that

~Fl�
0 ! ~Fl�

0 þ ~h� ~Fl�
0 þ @l~h� ~A� � @�~h� ~Al; (17)

so ~Fl�
0 does not transform properly. Another natural tensor to

consider is

~Fl�
1 � g~Al � ~A�; (18)

where g is a constant with units of inverse charge. From Eqs.
(14) and (18), it follows that

~Fl�
1 ! ~Fl�

1 þ ~h� ~Fl�
1 þ g@l~k� ~A� þ g~Al � @�~k; (19)

so ~Fl�
1 does not transform properly either.5 In fact it is not

possible to define a viable field strength tensor if ~h and ~k are
taken to be independent parameters. But if we define

~Fl� � ~Fl�
0 þ ~Fl�

1 ¼ @l~A� � @�~Al þ g~Al � ~A�; (20)

and take ~k ¼ �ð1=gÞ~h, the unwanted terms in Eqs. (17) and
(19) cancel, and ~Fl� transforms properly.6

Our theory is thus not invariant under independent local
abelian gauge transformations and local color rotations, but
is invariant under general transformations for which
~k ¼ �ð1=gÞ~h:

~q! ~qþ ~h�~q; (21)

~Jl ! ~Jl þ ~h� ~Jl; (22)

~Al ! ~Al þ ~h� ~Al � ð1=gÞ@l~h; (23)

~Fl� ! ~Fl� þ ~h� ~Fl�: (24)

Such transformations are called local nonabelian gauge
transformations: nonabelian, because the net effect of two
such transformations depends on the order in which they are
performed. In what follows, we will consider only nonabe-
lian gauge transformations rather than arbitrary general
transformations, and we will say that a vector ~v transforms
properly if it transforms like ~v!~vþ ~h�~v under local non-
abelian gauge transformations.

Now that we have an expression for the field strength
tensor, we would like to generalize the field equation (6). We
immediately encounter a problem due to the presence of the
derivative @l, because if an arbitrary color vector ~v trans-
forms properly then its derivative @l~v does not:
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@l~v! @l~vþ @l
~h�~vþ ~h� @l~v: (25)

Let us define an operator Dl such that

Dl~v ¼ @l~vþ g~Al �~v: (26)

From Eqs. (23), (25), and (26), it follows that if~v transforms
properly, then so does Dl~v:

Dl~v! Dl~vþ ~h� Dl~v: (27)

Thus, we will take the field equation to be

Dl~F
l� ¼ ~Fl� þ g~Al � ~Fl� ¼ 4p~J�: (28)

The particle equation of motion (8) for color electrody-
namics is already invariant under local nonabelian gauge
transformations and thus requires no modification:

m
dwl

ds
¼ ~q � ~Fl�w�: (29)

There is one more complication we must address to com-
plete the theory: whereas in color electrodynamics the charge
vector ~q is a fixed quantity, in our generalized theory it must
be allowed to depend on the proper time s. We can under-
stand why from the following considerations. By using Eqs.
(20) and (26), we can relate the commutator of Dl and D� to
the field strength tensor ~Fl�:

½Dl;D��~v ¼ DlD�~v� D�Dl~v ¼ g~Fl� �~v: (30)

If we apply D� to both sides of Eq. (28), we find that

4pD�
~J� ¼ D�Dl~F

l� ¼ ð1=2Þ½D�;Dl�~Fl� ¼ 0; (31)

where we have used the antisymmetry of ~Fl� and substituted
for [Dl, D�] using Eq. (30). Thus, the source ~Jl must satisfy
the current conservation relation

Dl~J
l ¼ @l~J

l þ g~Al � ~Jl ¼ 0: (32)

The current density is given by

~JlðxÞ ¼
ð
~qðsÞwlðsÞ dð4Þðx� zðsÞÞ ds; (33)

where we have allowed for the possibility that ~q depends on
s. If we apply @l to both sides of Eq. (33) and integrate by
parts, we find that

@l~J
lðxÞ ¼ �

ð
~qðsÞ d

ds
dð4Þðx� zðsÞÞ ds (34)

¼
ð

d~qðsÞ
ds

dð4Þðx� zðsÞÞ ds : (35)

Here we have used the fact that

d

ds
dð4Þðx� zðsÞÞ ¼ �wlðsÞ@ld

ð4Þðx� zðsÞÞ: (36)

If we substitute Eqs. (33) and (35) into the current conserva-
tion equation (32), we find that

ð
d~q

ds
þ g~Al �~qwl

� �
dð4Þðx� zðsÞÞds ¼ 0: (37)

Thus, the equation of motion for the charge vector ~q is

d~q

ds
¼ �gwl~Al �~q: (38)

Therefore to satisfy current conservation, as described by
Eq. (32), we must allow the charge vector to vary in time as
described by Eq. (38). From Eq. (38), it follows that
dj~qj2=ds ¼ 2~q � d~q=ds ¼ 0, so the magnitude of the charge
vector is constant in time.

We have now completed our generalization of color elec-
trodynamics. The field strength tensor and current density
are given by Eqs. (20) and (33), the field equation is given
by Eq. (28), and the evolution of the particle is described by
Eqs. (29) and (38). The resulting theory is known as Yang-
Mills theory.7 It is invariant under local nonabelian gauge
transformations, as described by Eqs. (21)–(24).

Yang-Mills theory differs from color electrodynamics
because there are nonlinear terms in the field strength tensor
(20) and the field equation (28), and because the charge vec-
tor is rotated by the vector potential as described by Eq. (38).
The presence of these new features is dictated by the require-
ment that Yang-Mills theory be invariant under local nona-
belian gauge transformations. The nonlinear terms and the
rotation rate of the charge vector are all proportional to g, so
for g¼ 0, Yang-Mills theory reduces to color electrodynam-
ics. The greater the value of g, the more important these new
features become, and the more Yang-Mills theory deviates
from color electrodynamics. Because of the nonlinear terms,
Yang-Mills theory does not obey the superposition principle.

V. ELECTRODYNAMICS IN (1 1 1) DIMENSIONS

For simplicity, we will consider the special case of Yang-
Mills theory in (1þ 1) dimensions. For comparison, we first
consider ordinary electrodynamics in (1þ 1) dimensions.8

We define

Al ¼ ðV;AÞ; Jl ¼ ðq; JÞ; (39)

zl ¼ ðt; zÞ; wl ¼ ðc; cvÞ; (40)

where v¼ dz/dt and c¼ (1� v2)�1/2. In (1þ 1) dimensions,
the electromagnetic field is described by the single electric
field E:F10¼�F01. From the definition of the field
strength tensor given in Eq. (1), we find that

E ¼ �@xV � @tA: (41)

In (1þ 1) dimensions, the field equation (2) can be expressed
as the pair of equations9

@tE ¼ �2J; (42)

@xE ¼ 2q; (43)

and the particle equation of motion (4) can be expressed as

du=dt ¼ ðq=mÞE; (44)

where u: cv¼ (1� v2)�1/2v. From Eq. (3), we find that q
and J are given by
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qðt; xÞ ¼ qdðx� zðtÞÞ; (45)

Jðt; xÞ ¼ qvðtÞdðx� zðtÞÞ: (46)

Equations (41)–(46) give a complete description of electro-
dynamics in (1þ 1) dimensions. If we compare this theory to
electrodynamics in (3þ 1) dimensions, we see that Eqs. (42)
and (43) are analogous to Maxwell’s equations, and Eq. (44)
is analogous to the Lorentz force law.

VI. YANG-MILLS THEORY IN (1 1 1) DIMENSIONS

Now let us consider Yang-Mills theory in (1þ 1) dimen-
sions. We define

~Al ¼ ð~V; ~AÞ; ~Jl ¼ ð~q; ~JÞ; (47)

zl ¼ ðt; zÞ; wl ¼ ðc; cvÞ: (48)

From the definition of the field strength tensor ~Fl� given in
Eq. (20), we find that ~F10 ¼ �~F01 ¼ ~E, where

~E ¼ �@x
~V � @t

~Aþ g~A� ~V: (49)

In (1þ 1) dimensions, Eq. (28) can be expressed as the pair
of equations

@t
~E ¼ �2~J � g~V � ~E; (50)

@x
~E ¼ 2~qþ g~A� ~E; (51)

and Eqs. (29) and (38) can be expressed as

du=dt ¼ ~q � ~E=m; (52)

d~q=dt ¼ �gð~V � v~AÞ �~q: (53)

From Eq. (33) for the charge density, we find that ~q and ~J
are given by

~qðt; xÞ ¼ ~qðtÞdðx� zðtÞÞ; (54)

~Jðt; xÞ ¼ vðtÞ~qðtÞdðx� zðtÞÞ: (55)

Equations (49)–(55) give a complete description of Yang-
Mills theory in (1þ 1) dimensions.

Let us now consider the initial value problem for the sys-
tem. We will take the dynamical variables for the field to be
~E, ~V, and ~A, and the dynamical variables for the particle to
be zl, wl, and ~q. The first field equation (50) gives us an
equation of motion for ~E. We can obtain an equation of
motion for ~A by using the definition of ~E given in Eq. (49):

@t
~A ¼ �@x

~V � ~Eþ g~A� ~V: (56)

To obtain an equation of motion for ~V, we impose the Lor-
entz gauge condition DlAl ¼ @l~A

l ¼ 0:

@t
~V ¼ �@x

~A: (57)

The equations of motion (50), (52), (53), (56), and (57) com-
pletely determine the evolution of the system: given initial
conditions for the dynamical variables, we can integrate
these equations to evolve the system in time.

Note that we have not yet used the second field equation
(51). This equation does not serve as an equation of motion;

rather it acts as a constraint on the allowed initial conditions.
We define a color vector ~G to measure the violation of this
constraint:

~G � @x
~E� 2~q� g~A� ~E: (58)

By using the equations of motion (50) and (56) for ~E and ~A,
together with the current conservation equation (32), one can
show that

@t
~G ¼ �g~V � ~G: (59)

Thus, if the constraint is satisfied by the initial conditions
ð~Gð0; xÞ ¼ 0Þ, it will remain satisfied as the system evolves
in time ð~Gðt; xÞ ¼ 0Þ.

So far we have considered only the case of a single parti-
cle, but it is straightforward to generalize to the case of N
particles. Let zl

n ¼ ðt; znÞ, wl
n ¼ ðcn; cnvnÞ, and ~qn denote the

position, velocity, and charge vector of particle n. The equa-
tions of motion for particle n are

dun=dt ¼ ~qn � ~E=m; (60)

d~qn=dt ¼ �gð~V � vn
~AÞ �~qn; (61)

where un : cnvn. The equations of motion for the field vari-
ables ~E, ~V, and ~A are still given by Eqs. (50), (56), and (57),
but the charge density ~q and current density ~J are now given
by

~qðt; xÞ ¼
X

n

~qnðtÞdðx� znðtÞÞ; (62)

~Jðt; xÞ ¼
X

n

vnðtÞ~qnðtÞdðx� znðtÞÞ: (63)

VII. EXAMPLE SOLUTIONS

Let us now consider some example solutions to Yang-
Mills theory in (1þ 1) dimensions. We will first describe a
two-particle solution. Let us assume that at time t¼ 0 the
particles have equal and opposite charge vectors:

~q1ð0Þ ¼ �~q2ð0Þ ¼ ~Q0: (64)

It is straightforward to show that the following expressions
satisfy the initial conditions (64), the equations of motion
(50), (56), (57), and (61), and the constraint equation
~Gð0; xÞ ¼ 0:

~q1ðtÞ ¼ �~q2ðtÞ ¼ ~Q0; (65)

~Eðt; xÞ ¼ ~Q0ð�ðx� z1ðtÞÞ � �ðx� z2ðtÞÞÞ; (66)

~Alðt; xÞ ¼ ~Q0

ð
ðwl

1ðsÞDrðx� � z�1ðsÞÞ

� wl
2ðsÞDrðx� � z�2ðsÞÞÞ ds:

(67)

Here xl: (t, x), and Dr(x
�)¼ h(t� |x|) is the retarded Green

function for the inhomogeneous wave equation in (1þ 1)
dimensions. The remaining equation of motion (60) becomes

du1=dt ¼ �du2=dt ¼ �a�ðz1 � z2Þ; (68)

where a � j~Q0j2=m. From Eq. (68), we see that the particles
feel an attractive force whose strength is independent of the
particle separation.
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Let us assume that the particles start out at rest at the ori-
gin with equal and opposite velocities, so that

z1ð0Þ ¼ z2ð0Þ ¼ 0; u1ð0Þ ¼ �u2ð0Þ ¼ U0: (69)

We can integrate Eq. (68) subject to these initial conditions
to obtain

z1ðtÞ ¼ � z2ðtÞ ¼ a�1ðð1þ U2
0Þ

1=2

� ð1þ U2
0 f 2ð2t=TÞÞÞ�ðf ðt=TÞÞ; (70)

where f(x): 1� 2(x� [x]) and T: 4U0/a. Here [x] denotes
the integer part of x; that is, [x] is the largest integer less
than or equal to x. Thus, the particles undergo periodic oscil-
lations with period T and amplitude a�1ðð1þ U2

0Þ
1=2 � 1Þ. In

Fig. 1, we plot the particle trajectories for U0¼ 0.5 and
a¼ 1.

Note that this solution is independent of the coupling con-
stant g. This independence follows from the fact that g enters
into the equations of motion only as a prefactor to cross
products of color vectors such as ~E, ~V, ~A, and ~qn. Because
these vectors are all oriented along ~Q0, the cross products all
vanish, and the solution is therefore independent of g.

In particular, the solution satisfies the equations of motion
for g¼ 0 Yang-Mills theory, which we have seen is equiva-
lent to color electrodynamics. By a suitable choice of gauge,
we can always take ~Q0 to lie entirely along the x̂-axis, in
which case only one of the three types of color charge is
actually present. Thus, the particle trajectories are a solution
to the equations of motion for ordinary electrodynamics,
where the electric charges of the particles are taken to be
6j~Q0j. As we would expect, the two particles undergo peri-
odic oscillations due to their mutual Coulomb attraction.

Let us now consider a four-particle solution. We will take
the initial conditions for the particles to be

z1 ¼ z2 ¼ �z3 ¼ �z4 ¼ Z0; (71)

u1 ¼ �u2 ¼ u3 ¼ �u4 ¼ U0; (72)

~q1 ¼ �~q2 ¼ �Q0x̂; (73)

~q3 ¼ �~q4 ¼ �Q0ŷ: (74)

First, let us take g¼ 0, for which Yang-Mills theory reduces
to color electrodynamics. Because the charge vectors for par-

ticles 1 and 2 lie along the x̂-axis, and the charge vectors for
particles 3 and 4 lie along ŷ-axis, the particle pairs (1, 2) and
(3, 4) carry different types of color charge and thus do not
interact with each other. The two pairs therefore evolve inde-
pendently: the two particles in each pair undergo periodic
oscillations due to their mutual Coulomb attraction, as
described by the two-particle solution. The resulting four-
particle solution is plotted in Fig. 2(a) for Z0¼ 0.1, U0¼ 0.5,
and a � Q2

0=m ¼ 1.
Next, we consider g= 0. We can evolve the system in

time by numerically integrating the equations of motion sub-
ject to the initial conditions for the particle variables given in

Fig. 1 Particle positions z1 and z2 versus time t.
Fig. 2 Particle positions z1, z2, z3, and z4 versus time t. (a) g¼ 0. (b) g¼ 1.

(c) g¼ 5.
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Eqs. (71)–(74).10,11 We also need initial conditions for the
field variables, which we take to be

~Eð0; xÞ ¼ ~Vð0; xÞ ¼ ~Að0; xÞ ¼ 0: (75)

Note that the initial conditions satisfy the constraint equation
~Gð0; xÞ ¼ 0. In Figs. 2(b) and 2(c), we plot the resulting par-
ticle trajectories for g¼ 1 and g¼ 5, where Z0, U0, and a
have the same values as in Fig. 2(a). At early times, the two
pairs of particles oscillate independently, and the solution is
well approximated by the solution for g¼ 0. At late times,
the nonlinear terms in the equations of motion become im-
portant and the solutions deviate from the g¼ 0 solution.
The time at which the deviation begins is t ’ 4 for the g¼ 1
solution and t ’ 2 for the g¼ 5 solution. As we would
expect, the deviation is more pronounced for larger values of
g. In Figs. 3(a) and 3(b), we plot the components of the
charge vectors ~q1 and ~q2 for the g¼ 5 solution. As expected,
the charge vectors are rotated by the vector potential. Figures
2 and 3 show that the nonlinearity of g= 0 Yang-Mills
theory can produce very complicated dynamics.

As a consistency check, we repeat the calculation of the
g¼ 5 solution using a different choice of gauge. We use the
same initial conditions for the particle variables as before,
but we take the initial conditions for the field variables to be

~Eð0; xÞ ¼ ~Að0; xÞ ¼ 0; ~Vð0; xÞ ¼ V0x̂; (76)

where V0¼ 1. We perform the numerical integration and find
that the particle trajectories are still given by Fig. 2(c). This
result is expected, because the particle trajectories are inde-
pendent of the choice of gauge. The charge vectors, how-
ever, do depend on the choice of gauge, and for the new
initial conditions they evolve as shown in Fig. 4. Note that
although the directions of the charge vectors depend on the
choice of gauge, the magnitudes do not: a gauge transforma-
tion rotates the charge vectors, but does not scale them. The
magnitudes of the charge vectors are thus independent of
time and independent of the choice of gauge.

These solutions help illustrate how Yang-Mills theory can
be viewed as a two-step generalization of ordinary electrody-
namics. The solution shown in Fig. 1 can be understood
entirely in terms of ordinary electrodynamics: the particles
undergo periodic oscillations due to their mutual Coulomb
attraction. In Fig. 2(a), we move from ordinary electrody-
namics to color electrodynamics: the two particles in each
pair undergo periodic oscillations due to their mutual Cou-
lomb attraction, but the pairs do not interact with each other
because they carry different types of color charge. The solu-
tions shown in Figs. 2(b) and 2(c) show how the nonlinear
terms in the Yang-Mills field equations give rise to compli-
cated particle dynamics when g= 0.

Fig. 3 Charge vector components versus time t. (a) Charge vector ~q1. (b)

Charge vector~q2.

Fig. 4 Charge vector components versus time t. (a) Charge vector ~q1. (b)

Charge vector~q2.
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VIII. CONCLUSIONS

We have described classical Yang-Mills theory with parti-
cle sources and derived the equations of motion for the
coupled particle-field system. As an example, we described in
detail the special case of Yang-Mills theory coupled to par-
ticles in (1þ 1) dimensions. We presented several example
solutions and showed that the nonlinearity of the equations of
motion leads to complicated particle dynamics. The investiga-
tion of the particle dynamics in this (1þ 1)-dimensional sys-
tem could form the basis of some interesting research projects
for students.
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