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Multiscale energy spreading in hard-particle chains

Arkady Pikovsky
Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany

® (Received 5 April 2025; accepted 7 July 2025; published 23 July 2025)

We consider a one-dimensional array of particles interacting via an infinite well potential. We explore the
properties of energy spreading from an initial state where only a group of particles has nonzero velocities,
while others are at rest. We characterize anomalous diffusion of the active domain via moments and entropies
of the energy distribution. Only in the special cases of a single-well potential (hard-particle gas) and when the
distance between particles is half the potential width, does diffusion exhibit a single scale; otherwise, multiscale

anomalous diffusion is observed.
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I. INTRODUCTION

One-dimensional classical nonlinear lattices possess quite
peculiar transport properties. On the one hand, many such
systems demonstrate anomalous heat transport, in which the
finite-size heat conductivity diverges as a power of the lat-
tice length [1-3]. In a typical setup, one attaches a lattice
to two heat baths with different temperatures and measures
the energy exchanges with them. Because according to the
Green-Kubo theory, conductivity can be expressed in terms
of the equilibrium fluctuations of the heat current, anomalous
transport manifests itself in a nonintegrable power-law decay
of the correlation function of the energy current [4]. Another
manifestation of anomalous heat transport is a superdiffusive
spreading of local energy perturbations on top of the equi-
librium state with finite temperature (finite energy density)
[5]. Theoretical and numerical findings about anomalous heat
transport have been confirmed in experiments [6-9].

Another setup where one-dimensional lattices demonstrate
nontrivial transport properties is the spreading of initially
localized perturbations on top of a zero-temperature state.
Due to the effect of Anderson localization [10], in a linear
lattice, even a small amount of disorder leads to exponential
localization of eigenmodes, which blocks spreading at large
times. However, the nonlinearity of the lattice may result in
chaos, which destroys localization and leads to subdiffusive
spreading. One popular example is a disordered nonlinear
Schroedinger lattice [11-14]. However, even for this widely
studied model, it is still not clear whether spreading persists
at very large times, as chaos may degenerate into local-
ized quasiperiodic modes [15,16]. Spreading in a nonlinear
Schroedinger lattice has been observed in optical experiments
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[17]. While in the context of the Schroedinger lattice, one fol-
lows the spreading of the wave packet, for nonlinear lattices of
Klein-Gordon or Fermi-Pasta-Ulam-Tsingoi type, one studies
the spreading of energy from a localized perturbation on top
of a zero-temperature state [18-22]. While in many numerical
experiments a subdiffusive spreading is observed, asymptotic
regimes at large times remain elusive. For the experimental
realization of such a spreading in a disordered granular chain,
see Ref. [23].

In this paper, we explore energy spreading on top of a
zero-temperature state for hard-particle models previously
studied in the context of anomalous heat transport. These
models share basic properties, such as conservation of mo-
mentum, with lattices possessing smooth coupling potentials,
but allow for an efficient numerical implementation. We will
demonstrate that, while in some cases anomalous superdif-
fusion or subdiffusion, characterized by a single exponent
(monoscale diffusion), is observed, a hard-particle chain
generally exhibits multiscaled diffusion, where differently de-
fined “lengths” of the spreading domain grow with different
exponents.

II. MODEL FORMULATION

Our basic model is a one-dimensional chain of particles
interacting via an infinite well potential [24-26]. This hard-
particle chain (HPC) is defined via the Hamilton function

2
14
H = E 2—mi+U(xi+1 - Xx),

0o Ax <O0and Ax > a™ !,

A =
VAD=10  g<ar<al

(1)

The essential dimensionless parameter of the problem is 0 <
a < 1, the ratio of the mean distance between the particles
and the potential width. We set the initial distance between
the particles to 1; thus, the parameter a enters the definition
of the potential (the width of the well) in (1). To ensure the
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FIG. 1. Examples of the energy spreading process: trajectories
x;(¢) of particles vs time for three values of parameter a: panel
(a) a = 0; panel (b) a = 0.25; panel (¢c) a = 0.5.

dynamics is nonintegrable, we set random masses according
to a uniform distribution 0.5 < m; < 1.5.

In the case @ = 0, the double-well potential becomes a
hard-core potential, and the model reduces to a famous one-
dimensional hard-particle gas (HPG) model [27-29], where
only elastic collisions at x;y; = x; happen. Remarkably, the
HPC model is symmetric with respect to the change of the
parameter a — 1 — a [26]. The value a = 1/2 is special be-
cause here, the two types of collisions at x;;; = x; and at
Xiy1 = x; + a~! become equally probable in equilibrium, and
the pressure vanishes. Therefore, we restrict our attention
below to the interval 0 < a < 1/2.

The HPC (1) conserves energy and momentum, and in the
heat transfer setup has demonstrated anomalous heat conduc-
tivity [24-26]. Below in this paper, we study energy-spreading
properties at zero temperature. We start with a configuration
where positions are equidistant x;(0) = i, and the momenta p;
of the particles are randomly set in a small domain (ten sites)
around i = 0, other particles are at rest p;(0) = 0. Due to the
possibility of time rescaling, without loss of generality, the
total energy can be set to unity. Furthermore, we set the total
initial momentum to zero.

III. ENERGY SPREADING AND ITS CHARACTERIZATION

In numerical simulations, we followed the straightforward
approach described in [24,28]. After each collision, we know
the positions and velocities of all particles, and can explicitly
express, by solving equations of the free motion of particles,
the time intervals to all possible future collisions according to
conditions x;;; = X;, Xip1 = X; +a "\ Finding the minimum
over these intervals allows us to calculate all trajectories and
find all positions and velocities just prior to the next collision.
After that, we apply simple expressions from Ref. [24] to
express the velocities of colliding particles after the collision
through their velocities before the collision. We also note that
statistical fluctuations due to initial conditions and random
particle masses are negligible, so that additional averaging
over samples of these random parameters was not necessary.

The phenomenology of the dynamics is simple (Fig. 1):
more and more particles are involved in the nontrivial dynam-
ics via collisions, and a spreading “active domain” consisting
of particles having nonzero energy is formed. At each time
instant, only a finite number of particles belong to the ac-
tive domain, and this number L(¢) is a natural measure of
the domain width. However, this number is only one of
the possible definitions of the domain width. Because we
normalize the total energy to one, and the energies of the
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FIG. 2. Power law growth rates in dependence on the indices and
parameter a. Panel (a): exponents I'; for indices ¢ indicated in the
marker descriptions; panel (b): exponents y, for indices p indicated
in the marker descriptions. The dotted black lines show values 2/3
and 1/2.

particles are non-negative, the set of local energies E; =
plz /(2m;) can be interpreted as a probability distribution. Ac-
cordingly, we can characterize the distribution width using the
moments or entropies of this distribution.

In the former approach, we define the “center of energy”
(x), the moments M,,, and the corresponding moment-based
sizes of the domain £, according to relations

W)=Y xE. M=) |x— @IE. £,=M)". (2

Here, the indices p > 0 need not be integers.

Another way to characterize distributions is to calculate
their Renyi entropies I, depending on the index ¢ > 0, and
to use them to define the widths £,:

I = IOg Zi Eiq

q 1— q
Note that for ¢ = 0, the entropy is the logarithm of the support
of the distribution Iy = log L, thus L = £L,. Another widely
used case is g = 2, which corresponds to the participation
number, a concept commonly applied in the context of wave
packet spreading.

Plots of the lengths £, £, reveal that these quantities grow
as power laws: £, ~ 17, L, ~ tTs (cf. observation of index-
dependent growth powers of the moments for dynamically
generated diffusion processes in Refs. [30,31]). We present
these powers as functions of the parameter a in Fig. 2.

The main conclusion from the data of Fig. 2 is that the pow-
ers for all the indices coincide if a = 0 (pure HPG) ora = 1/2
(HPC with zero pressure in equilibrium), so that one can speak
of monoscale spreading in these cases. In contradistinction, in
between, there is a strong dependence of exponents y,, I'; on
indices p, g, manifesting multiscale spreading (in the context
of diffusion processes, one speaks in this case of “strong
anomalous diffusion” [32]). We illustrate these dependencies
in a larger range of indices for a = 1/4 in Fig. 3.

We stress that in all cases, the diffusive spreading of
the energy is nontrivial: it is superdiffusive for small a and

. L4 =expll,]. 3)
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FIG. 3. Power law exponents in dependence of indices for
a=0.25. Red squares: entropies-based exponents I';; blue circles:
moments-based exponents y,,.

subdiffusive for a close to 1/2. However, for 0.2 < a < 0.4,
some exponents are larger than 1/2 and some smaller than
1/2, as illustrated in Fig. 3. In particular, for a = 0 (HPG
case), one observes y, ~ I', ~ 2/3. This power can be ob-
tained from the following simple scaling arguments. Suppose
that the energy is nearly uniformly distributed among L active
particles. Then, the energy of the boundary particle is ~L™!,
and its velocity is ~L~!/2. The time to hit the next resting par-
ticle outside the active domain is inversely proportional to the
velocity, and after this happens, the active domain increases
by 1. Thus, dt/dL ~ L'/? and solving this equation we get
t ~ L3?. This yields the scaling law for the domain spreading
L ~ t*/3, The same scaling has been observed in [33] for a
similar setup with nonrandom, but alternating masses of the
particles; in this paper, connections of the problem to the
hydrodynamic Euler equations are also discussed (cf. [34]).

IV. SCALING PROPERTIES OF THE DISTRIBUTIONS

Next, we describe the scaling properties of the distribu-
tions of the active particles. We introduce the coarse-grained
density of the particles and two coarse-grained distributions
of energy: the energy per particle distribution and the energy
density. To scale these distributions, we note that L(¢) repre-
sents the length of the active domain and the number of active
particles, as the spacing in our setup is 1. So we introduce
the normalized particle index v = (i — i) L™, 0< v < 1,
and the normalized particle position & = (x; — x;,, )L~' — 0.5,
—0.5 < & < 0.5. Here, i is the index of the left-most active
particle (left border of the active domain). Thus, plotting i vs
Xx; we obtain a cumulative distribution of particles in scaling
coordinates v(£€), and its derivative yields the particle density
p) = Z—;. Similarly, we introduce the cumulative energy as

€ = ZZ:M Ey, so that 0 < € < 1. By plotting ¢; vs i we
obtain a curve €(v) which yields the density of energy per
particle W (v) = Z—i. The density of energy w(§) = Z—g can be
obtained from the obvious relation w(&) = W(v)p(§).

To distinguish monoscale and multiscale regimes, we must
compare densities occurring at different sizes L of the active
domain. If these densities coincide, then the length L delivers
a complete characterization of the distributions, and all the
powers y,,, I', are equal. Multiscaling occurs if the densities
at different values of length L have different shapes.

The first observation from the numerics is that the renor-
malized particle density p(&) does not depend on length L,
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FIG. 4. Densities p(&) for different values of parameter a.

for sufficiently large L. The profiles at different parameter
values a are shown in Fig. 4. Notice that the density outside
the active domain is p = 1. For a close to zero, two steps
of size ~0.8 are formed at the borders of the active domain,
and these “shocks” propagate superdiffusively. For larger a,
the distribution in the bulk becomes nearly flat, and the dense
shock regions become thinner. Finally, at a = 0.5, the shocks
disappear, and the density over the active domain is uniform
p =1

Next, we discuss the energy distributions W (v) and w(§).
In Fig. 5, we show the coarse-grained energy-per-particle
distribution densities at several values of parameter a at two
different instants of time: one at which the total width of
the active domain is L = 10* and another one at which L =
4 - 10*. One can see that for a = 0, these densities practically
coincide, while for other values of a, they are significantly
different. This corresponds well with multiscaling at these
values of a. The energy-per-particle distributions possess a
“hot core” of locally highly energetic particles at the center of
the active domain. This is accompanied by tails of particles
with relatively low energy; in these tails, however, energy
grows toward the edges of the active domain.

At the value of parameter a = 1/2, the monoscaling prop-
erty is restored, and the spatial densities of energy W (&)
presented in Fig. 6 at two sizes of the active domain practically
coincide. We note that here the profiles W (v) and w(§) are
the same because the density p(£) is constant (cf. Fig. 4). We

FIG. 5. Densities of energy per particle W (v) for different values
of parameter a. Full lines at L = 4 - 10*, dashed lines at L = 10*,
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FIG. 6. Density of energy w(§) for a = 1/2, in the linear and
in the logarithmic formats. Full lines at L = 4 - 10*, red circles at
L =2 -10*. Black dashed line is the fit discussed in the text.

discuss the profile at a = 1/2 in more detail because of its
simple one-hump form. The spreading of energy at a = 1/2
is subdiffusive, with the exponent ~0.47 (see Fig. 2). This al-
lows a tempting attempt at a simple phenomenological model
for such a spreading. Indeed, the nonlinear diffusion equation,

du(x,t) = dut', >0, )

describes a subdiffusive spreading of the quantity u, the in-
tegral of which is conserved. The self-similar solution has
the scaling form u ~ t=#(1 — 4(x/L(¢))*)®. This solution has
finite support |x| < L/2 with L(t) ~ t#, where the power
B < 1/2 is the single exponent of the subdiffusive spread-
ing. The exponents «, 8 are determined by the nonlinearity
parameter c: B = 1/(c + 2), « = 1/c. Remarkably, the shape
of the energy density profile observed numerically ata = 1/2
is very well fitted by the form predicted by the solution of
the nonlinear diffusion equation [see the black dashed curve
in Fig. 6 which is the function w; (&) = A(1 —4£?)% with
A~ 1.94 and B ~ 2.2]. The powers, however, do not satisfy
the relation o' = B~! — 2 predicted by the nonlinear diffu-
sion equation. Indeed, the observed value for the spreading
exponent B = 0.47 corresponds to ¢ ~ 0.128, but for this
value of ¢, the power of the profile shape of Eq. (4) should
be o ~ 7.8, which is very far from the fitted value 2.2.

V. DISCUSSION

Here, we compare the properties of the HPC and the
HPG models with other cases, where multiscaling anomalous
spreading has been observed. A typical situation of multiscal-
ing in anomalous diffusion, explored in Refs. [31,32], is that
of a combination of a diffusive process with ballistic modes.
The latter modes describe the spreading of the support of the
distribution with constant speed, so that the moment-based ex-
ponent tends to 1 for high-order moments: y, — 1as p — oo.
Furthermore, typical for such situations is a piecewise-linear
shape of the dependence py,, on p [31,32]. This type of energy
spreading has been observed in Refs. [24,35,36]. However,
in these studies, one considered the spreading of an energy

hump on top of an equilibrium state with finite energy density.
Correspondingly, the ballistic mode can be associated with
sound waves [24]. In contradistinction, in our case of spread-
ing of energy on top of zero-temperature equilibrium, the
leading “modes” defining propagation of the active domain
are not ballistic but super- or subdiffusive. Correspondingly,
the shape of the dependence of py, on p is a smooth curve
(Fig. 3) rather than a piecewise-linear line conjectured in [32].
One possible theoretical approach to explaining multiscaling
could be considering separately the core and the tails of the
energy density presented in Fig. 5, similar to what has been
done for the HPG case in [33].

VI. CONCLUSIONS

In summary, we have demonstrated multiscaled energy
spreading from a local in space disturbance in the simple
model of a hard-particle chain (1). Different effective lengths
of the spreading domain, defined via moments of differ-
ent orders or different Rényi entropies of the distribution
of energies, depend on time via power laws with different,
index-dependent exponents. Correspondingly, the shapes of
the energy distributions at different times are not self-similar
but show a clear separation in the central peak and tails,
obeying different scalings. Contrary to previous cases where
ballistically spreading tails have been reported, here, the tails
spread superdiffusively.

In two remarkable limits, monoscaling is observed, with a
self-similar behavior of the energy profile. For a hard-particle
gas, which corresponds to a single-well coupling potential, we
observe superdiffusive spreading with exponent ~2/3 follow-
ing simple scaling arguments. Here, however, the profile is
nontrivial: the particle density has a minimum at the center of
the domain and maxima at the edges, thus building superdif-
fusively spreading shocks. The energy per particle density
exhibits a weak maximum in the middle of the domain, and
at the borders, the energy density also reaches its maximum.

Another special case is a symmetric hard-particle chain
with the mean distance between the particles being exactly
half the potential’s width. Here, in equilibrium, the pressure
of the gas vanishes. We observe here a constant density of
the subdiffusively (exponent 20.47) spreading domain. The
distribution of energies is a one-hump profile that very much
resembles a profile of a self-similar solution to a nonlinear dif-
fusion equation. However, the profile shape and the spreading
exponent do not follow the relation predicted by the solution
to the diffusion equation.

An intriguing question is whether the multiscaling ob-
served can also occur in smooth or continuous potentials.
For example, in the hard-particle gas limit a = 0, one can
replace hard particles with a more realistic model of colliding
elastic spheres, interacting via Hertz law [20,21,23]. Another
extension of the present study could be the consideration
of momentum-conserving variants of the ding-a-ling model
[37,38] which combine hard-wall and continuous interaction
potentials.
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