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Abstract
We tackle a quantification of synchrony in a large ensemble of interacting neurons from the observation of spiking events. In
a simulation study, we efficiently infer the synchrony level in a neuronal population from a point process reflecting spiking
of a small number of units and even from a single neuron. We introduce a synchrony measure (order parameter) based on
the Bartlett covariance density; this quantity can be easily computed from the recorded point process. This measure is robust
concerning missed spikes and, if computed from observing several neurons, does not require spike sorting. We illustrate the
approach by modeling populations of spiking or bursting neurons, including the case of sparse synchrony.

Keywords Synchrony measure · Point process · Neuronal population · Covariance density

1 Introduction

The investigation of neuronal rhythms is a crucial issue in
neuroscience, and numerous publications supply evidence
of the role of such rhythms in normal and pathological
brain functioning (Singer, 1993;Buzsáki andDraguhn, 2004;
Buzsáki, 2006). The emergence of macroscopic rhythmical
activity implies a certain level of coordination within a large
population of spiking and/or bursting neurons. In terms of
nonlinear dynamics, this activity is the collective oscillatory
mode arising in a network of active units due to their syn-
chronization. Hence, efficient techniques for quantifying the
synchrony level can be helpful in experimental and theoret-
ical studies; this paper aims at developing such a tool for
a challenging case when only a few neurons from a large
population can be monitored.

Quantifying collective synchrony is a common task in the
physics of complex systems in general, not only in neuro-
science. In many situations, the solution is well-known and
straightforward. So, if the phases of all interacting units are
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known, the Kuramoto order parameter - a quantity between
zero (asynchrony) and one (complete synchrony) - gives the
desired answer. An alternative approach is to compute the
collective mode’s standard deviation; unlike the Kuramoto
order parameter, this is not a dimensionless quantity. Thus,
one cannot estimate the synchrony level when computing it
for a certain network’s state. However, this quantity allows
one to trace the synchronization transition if onemonitors the
collective mode’s standard deviation and observes its essen-
tial increase while varying the degree of interaction between
the units.1

The problem becomesmuch less trivial if we observe only
a small fraction of the population, possibly even one unit. In
our recent publication (Pikovsky and Rosenblum, 2024), we
suggested a solution to this problem, demonstrating quan-
tification of synchrony from a partial observation under
certain conditions. However, the approach of Pikovsky and
Rosenblum (2024) works with oscillators generating smooth
signals, while in neuroscience applications, one often deals
with spike trains that can be considered as point processes.
This paper tackles this problem and develops a technique for
quantifying synchrony in a large highly interconnected neu-
ronal network from the recordings of spiking events of one
or several units. It is known that such networks can be treated

1 For supplementary information, one can compare the standard devia-
tion of the collective mode with that of the individual unit’s oscillation:
in the case of synchrony, these quantities are of the sameorder.However,
this comparison requires additional measurements.
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in the mean-field approximation, i.e., for simplicity, one can
assume the global (all-to-all) coupling.

The main idea of synchrony quantification is as follows.
In a large globally coupled population, an asynchronous
state corresponds to a constant (up to small noise due to
finite-size effects) mean field acting on the neurons, while
a synchronous state corresponds to a regularly (up to small
finite-size effects) oscillating mean field. Let us observe one
neuron out of such a population. We assume that there is an
internal source of noise or chaos, and thus, one uncoupled
neuron fires irregularly. The same holds if the population
is asynchronous because the force from the mean field on
the neuron is constant (possibly with small fluctuations). As
a result, the spiking of the neuron is purely irregular. Sup-
pose now that the network synchronizes; then, the neuron is
driven by the regular collective mode. 2 This nearly periodic
forcing evokes a nearly periodic component in the firing of
the observed neuron, and the problem boils down to reveal-
ing and quantifying this component from the observation of
a noisy process. A natural approach is averaging: for the
case of smooth oscillations, we computed the time average
of the squared covariance function, as suggested by Wiener
(1930), see Pikovsky and Rosenblum (2024). Certainly, the
performance is increased if the ensemble averaging com-
plements the time averaging, i.e., the covariance function
is computed for the collective mode. However, the tech-
nique works with partial observation if a record from one
or several units is sufficiently long. This paper extends this
idea and suggests a technique appropriate for quantifying
periodic components from spike trains, where calculating
the usual covariance function is impossible. We will show
that instead of the covariance function one can quantify the
regular component via the covariance density of the point
process (Bartlett, 1963).

2 Materials andmethods

2.1 Ensemblemodels demonstrating
synchronization transition

In this section, we introduce two models of neuronal ensem-
bles demonstrating the transition to collective synchronywith
the growth of the coupling strength. In both cases, we assume
the interaction of the mean-field type; such coupling is a
reasonable model for highly interconnected networks. We
exploit both models to generate data sets to illustrate and
test the technique developed in Section 2.2. These data sets
contain the instants of spikes occurrence, i.e., they are point
processes.

2 In terms of neuroscience, the collective mode (mean field) can be
associated with the local field potential.

2.1.1 Noisy spiking and bursting Hindmarsh-Rose neurons

The Hindmarsh-Rose (HR) model (Hindmarsh and Rose,
1984) is a simplified conceptual version of the Hodgkin-
Huxley equations (Hodgkin and Huxley, 1952). We will
exploit its noisy version with global coupling via the mean
field X :

ẋn = yn − x3n + 3x2n − zn + In + σξn(t) + εX ,

ẏn = 1 − 5x2n − yn ,

żn = 0.006[r(xn + 1.56) − zn] .

(1)

Here n = 1, 2, . . . , N is the unit’s index; X = N−1 ∑N
k=1 xk

is themeanfield; ξn(t) are independentGaussianwhite noises
with zero mean and unit intensity. Parameters r and In define
the type of the dynamics; below, we consider two sets of
parameters:

1. r = 1, In = 6, and σ = 0.4 yield an ensemble of noisy
identical spiking neurons;

2. r = 4, In = 2.95+0.1 n−1
N−1 , andσ = 0 yield an ensemble

of non-identical chaotically bursting units.

In both cases, the time-continuousmodel is used to generate a
sequence of instantaneous spikes, or point process, to mimic
the observed data. For the instants of spike occurrence, we
take the moments of threshold xn = 1 crossing from below,
see Fig. 1 that illustrates the time dynamics of uncoupled
neurons; the height of spikes is ignored.

A single neuron (ε = 0) is producing an irregular, due
to noise in the setup 1 or due to chaos in the setup 2,
sequence of spikes or bursts, as illustrated in Fig. 1. A pop-
ulation of neurons, with increase of the coupling strength
ε, experiences a transition to collective synchrony, as illus-
trated in Fig. 2 for noisy identical spiking neurons and in
Fig. 3 for nonidentical chaotic bursting neurons. The tran-
sition can be determined by following the variance of the
mean field X(t). In the thermodynamic limit N → ∞, in
the asynchronous regime this mean field is constant, and it is
oscillatory beyond the synchronization transition. Using the
variance of the mean field as an indicator for synchroniza-
tion transition has been suggested already in early studies
of coupled disordered (noisy or chaotic) systems (Ginzburg
and Sompolinsky, 1994; Hansel and Sompolinsky, 1996;
Pikovsky et al., 1996; Golomb et al., 2001). Moreover, one
can use the partialmeanfield XM averaged not over thewhole
population, but over a subset of M < N units (Ginzburg
and Sompolinsky, 1994; Hansel and Sompolinsky, 1996;
Golomb et al., 2001). One expects that in the asynchronous
case the variance is ∼ M−1 due to finite-size effects, so for
sufficiently large M the transition should be visible. Indeed,
as can be seen in Fig. 2, the variance of a partial field observed
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Fig. 1 The panel (a) illustrates the spiking of a noisy Hindmarsh-Rose
neuron, while the panel (b) depicts the bursting of HR neurons for
In = 2.95, In = 3, and In = 3.05. (The second and third curves are
shifted upwards for better visibility.) From each trace, the point process

is generated by taking the instants of the threshold crossing from below,
the dotted line x = 1 marks the threshold. Notice the difference in time
scales in (a) and (b)

from M = 100 neurons is almost as good an indicator of
synchrony as the variance computed for M = N = 20000.
Obviously, the variance of X1, i.e., of the trace of an indi-
vidual unit, is practically constant and does not provide
information about the transition. However, we demonstrate
below that we can reveal synchrony by observing only one
unit.

We emphasize that though the raster plots in Fig. 2 clearly
indicate the emergence of order in neuronal firing, revealing
this order by observing a single unit is nontrivial. For exam-
ple, the coefficient of variation of interspike intervals barely
varies and even increases with coupling.

2.1.2 Brunel-Hakimmodel for sparse synchrony

In a series of papers (Brunel and Hakim, 1999, 2008; Osto-
jic et al., 2009), Brunel and Hakim suggested and explored
a simple model exhibiting nontrivial dynamics where the
mean-field frequency is much higher than the firing fre-
quency of individual units; they picked the term sparse
synchrony to emphasize this property. The model comprises
noisy leaky integrate-and-fire neurons (LIF) vn(t) coupled

via global fields X ,Y :

τm v̇n = −vn + I0 − εX + σ
√

τmξn(t) ,

τd Ẋ = −X + Y ,

τr Ẏ = −Y + τm

N

∑
δ
(
t − t (n)

k

)
.

(2)

Here ξn(t) are independent Gaussian white noises with zero
mean and unit intensity; τm is the membrane time constant,
and τr and τd are the decay and rise time of the postsynaptic
current. As it is typical for the integrate-and-fire models, a
hybrid system Eq. (2) describes the evolution of the voltage
vn of the neuron n until the voltage achieves a threshold vu ;
at this moment denoted as t (n)

k , the neuron n fires an action
potential and is instantaneously reset to the level vd . The pro-
duced spike contributes to the instantaneous change of the
global field Y (t). As in the case of HR neurons, we denote
the coupling strength ε. The equations for global fields X , Y
represent synaptic filtering.

Due to noise, uncoupled noisy LIF neurons produce irreg-
ular spike trains. With the increase of ε, one observes
a transition from the disordered state, where fields X , Y
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Fig. 2 The top panel illustrates the synchronization transition in a sys-
tem of N = 20000 coupled identical noisy Hindmarsh-Rose neurons,
see Eq. (1); here, we plot the mean field variance as a function of the
coupling strength ε. The mean field XM is computed from M ≤ N
neurons. (Notice the logarithmic scale of the vertical axis.) The plot
demonstrates that observation of only 100 units out of N provides a

reliable indication of synchrony. The middle panels present the raster
plots; here, the instants of spiking are marked by a dot (spikes from only
500 neurons are shown for better visibility). The raster plots are given
for four values of the coupling strength εmarked by dotted vertical lines
in the top panel (0.25, 0.35, 0.5, 0.7). The bottom panels exhibit the
corresponding time traces of the mean field X = XN

are constants (in the thermodynamic limit), to collective
synchrony, where the fields X ,Y oscillate, see Fig. 4. 3

Remarkably, the period of these oscillations is much smaller
than the characteristic interspike interval of a single neu-
ron. Thus, this regime was termed “sparsely synchronized
neuronal oscillations” by Brunel and Hakim (2008). In the
simulation, we use the following parameter values: vu = 5,
vd = 14, τm = 5, τd = 6, τr = 1, σ = 0.5, and I0 = 50.

To get more insight into the synchronous dynamics of the
Brunel-Hakim system, we depict in Fig. 5 the voltage trace
of one randomly chosen neuron and the mean field X for
ε = 84. Within the shown time interval, the unit fires six
times, and one can see that these events occur at approxi-
mately the same phase of the mean field X , which is quite
regular. Correspondingly, the interspike intervals (ISI) are
approximately multiples of the mean-field period TX . (In the
shown realization, they are approximately 3TX , 2TX , 2TX ,
3TX , 3TX .) This explains the staircase-like cumulative distri-

3 A detailed study shows that the system exhibits bistability and hys-
teresis in the transition; however, these properties are irrelevant for our
study. To avoid ambiguity in the results, in the simulations we always
use the nearly-asynchronous initial conditions.

bution shown in Fig. 4. This observation means that, though
the system is noisy, the neuronal firing is determined mainly
by the regular mean field; we denote this regime as strong
synchrony. For aweaker coupling, e.g., for ε = 81, themean-
field amplitude is small, and, correspondingly, the effect of
noise is stronger. As a result, the ISI attains different values,
not only multiples of TX , and the corresponding distribution
is smooth; we denote this regime as weak synchrony.

2.2 Methods for collective dynamics
characterization

This study aims to characterize collective synchrony in an
ensemble of spiking or bursting neurons. It assumes that only
firing-time measurements are available so that each moni-
tored unit generates a spike train, or a point process.

2.2.1 Observation of many neurons

First, wemention a relatively simple casewhere one observes
all or many neurons from the ensemble. The standard
approach presents all observations as a raster plot,where each
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Fig. 3 Similar to Fig. 2 but for bursting nonidentical Hindmarsh-Rose
neurons. Raster plots and mean fields are given for ε = 0.015, 0.016,
and 0.017 (these values are marked by vertical dotted lines in the upper

panel); in the raster plots, every 40th neuron is shown. Notice that the
mean field is irregular in the synchronous state (for ε = 0.017) but
exhibits a strong periodic component

spike is represented with a dot marker and all available spike
trains are superimposed, cf. Fig. 2. Collective synchrony in
such a representation appears as a pronounced modulation of
the time-dependent density of markers, while in the absence
of synchrony, this density is constant. Thus, the collective
synchrony can be inferred by calculating the time-dependent
density (instantaneous population firing rate) from the raster
plots; a measure of the macroscopic density variation char-
acterizes the synchrony level (Singer, 1999; Ostojic et al.,
2009; Ciba et al., 2018).

2.2.2 Observation of one or a few neurons

Theproblembecomes challenging if spike trains are available
from only a few units or even from one neuron. A simi-
lar problem has been recently addressed by Pikovsky and
Rosenblum (2024) for situations where a continuous observ-
able from a unit is available. For the HR system Eq. (1),
such an observable could be a continuous function of vari-
ables x, y, z. The method of Ref. (Pikovsky and Rosenblum,
2024) relies on the coherence properties of the collective
dynamics in the presence of synchrony. The mean field in
the synchronous regime is nearly regular, typically peri-
odic (or has a pronounced regular component). Thus, each
unit’s dynamics contain an internal irregular and a regular

component caused by the mean-field driving. So, the prob-
lem of synchrony detection is reduced to the extraction and
characterization of this regular component. For continuous
observables, the proper approach is to calculate the autoco-
variance function (ACF). The autocovariance tends to zero
at a large time lag for a purely irregular signal. On the other
hand, if the signal contains a regular (periodic or quasiperi-
odic) component, the autocovariance function tends to be a
regular, periodic or quasiperiodic, function of the lag at large
time lags. According to the Wiener (1930), the average of
the squared autocovariance yields a proper quantification of
the regular component in the process. Pikovsky and Rosen-
blum (2024) tested this approach with examples of coupled
noisy or chaotic oscillators. In particular, for calculating
the autocovariance, an observation of only one unit is suf-
ficient (although one can improve the “signal-to-noise” ratio
if observations from several units are available). Figure 6
illustrates this idea by exploiting the Hindmarsh-Rose model
Eq. (1) for the case of identical noisy neurons. Here, we show
the standard ACFs

�(τ) = 1

T − τ

∫ T−τ

0
(x1(t) − x̄1)(x1(t + τ) − x̄1)dt , (3)

estimated from the observation of the x-variable of one unit
(since they are identical, we choose the first one) for two dif-
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Fig. 4 The top panel illustrates the synchronization transition for the
Brunnel - Hakim model Eq. (2); dotted vertical lines mark the coupling
strength values ε = 79, 81, 82, 84 forwhich the raster plots,mean fields
X , and cumulative distributions of interspike intervals (ISI) are shown

in the second, third, and bottom rows, respectively. Population size is
N = 105 neurons. Notice that the coefficient of ISI variation remains
practically constant and does not reflect the transition
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Fig. 5 Voltage traces of one leaky integrate-and-fire neuron (bold
line, left vertical axis) from a population of N = 105 units and
of the mean field (dotted line, right axis) for ε = 84. We see that
within the shown time interval, the neuron fires six times. On the

one hand, the firing is highly irregular, with the inter-spike intervals
≈ 17.3, 12.24, 11.58, 17.82, 17.33. On the other hand, these ISIs are
close to the multiples of the mean-field period ≈ 5.87
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ferent values of the coupling strength ε; T is the averaging
time, and x̄1 denotes time average of the process. Further-
more, we present the Wiener order parameter W , which we
estimate as

W (�) = 1

�2 − �1

∫ �2

�1

�2(τ )dτ , (4)

as a function of ε. (Since W is proportional to the squared
variance of the process, we plot

√
W for a better comparison

with Fig. 2.) We choose the time lags �1,2 in such a way
that the irregular component due to internal noise can be
neglected for τ > �1 so that �(τ) can be considered as
stationary. Additionally, �2 − �1 must be larger than the
characteristic period of �(τ). Parameters used in Fig. 6 are:
T = 105, �1 = 0.03T , �2 = 0.05T .

2.2.3 Covariance density for a point process

Themethod of Pikovsky and Rosenblum (2024) illustrated in
Section 2.2.2workswith continuous-time signals and, hence,
cannot be directly applied to spike trains which are point
processes. Here, we present a novel technique, similar to the

Wiener’s approach, that is suitable for identifying regular
components in a point process.

Dealing with a continuous process, one frequently com-
putes the power spectrum and the autocovariance function,
which are known to be interrelated by the Fourier trans-
form. The proper corresponding characterizations for point
processes are the Bartlett spectrum and the covariance den-
sity (Bartlett, 1963). Because we apply these concepts to an
empirical analysis of particular time series, wewrite them for
a finite observed series of K events t1, t2, . . . , tK . For cal-
culation of the Bartlett spectrum, one formally considers a
series of delta-functions at event times, x(t) = ∑

k δ(t − tk),
and takes its Fourier transform

S(ω) = K−1/2
K∑

k=1

exp (iωtk) . (5)

The power spectrum is the average squared absolute value
of S(ω). This latter quantity, which is an analog of a peri-

Fig. 6 Quantification of the ensemble synchrony from observation of
only one neuron. Autocovariance function �(τ) computed from the x-
variable of a Hindmarsh-Rose neuron for ε = 0.2 (a) and ε = 0.6
(b). Panel (c) presents the square root of the Wiener order parame-

ter W computed from the ACF of one unit vs. the coupling strength
ε; this dependence reveals the synchronization transition, cf. Fig. 2,
where many units are used for synchrony quantification via mean-field
variance (recall that

√
W ∝ variance of the process)
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odogram, reads

|S(ω)|2 = K−1
K∑

k,l=1

exp(iω(tk−tl)) = K−1
K 2
∑

m=1

exp(iωτm) ,

(6)

where we introduced time differences

τm = tk − tl , m = 1, 2, . . . , K 2 . (7)

These differences are intervals between any pair of spikes;
thus, generally they can be also negative. Because of the sym-
metry τ → −τ , below we restrict our attention to positive
differences only; furthermore we exclude zero differences by
imposing k > l. Equations (5), (6) show that the power spec-
trum is the Fourier transform of the averaged effective “point
process” of the time differences

∑
m δ(τ − τm), or, in other

words, the Fourier transform of the density of the set of points
τm on the τ -axis; Bartlett denoted the density of differences
τm between the events tk as the covariance density (Bartlett,
1963). (Strictly speaking, one also has to subtract the square
of the rate of the point process; in our method below, this
step, however, is not required.)

Using the analogy with the standard spectral analysis of
continuous processes, we conclude that if the Bartlett spec-
trum contains discrete and continuous components, the same
components are present in the covariance density: the con-
tinuous component tends for large time lags τ to a constant,
while each discrete component results in the oscillations of
the covariance density at large time lags τ .We see that finding
regular components in the point process reduces to estimating
oscillating components of the covariance density for suffi-
ciently large time lags τ . Here, we suggest a simple, practical
algorithm for quantification of these regular components.

2.2.4 Quantification of a regular component
in the covariance density

The first issue is obtaining a non-biased sample of time dif-
ferences. Sincewe deal with a finite-span spike train, the time
differences are bounded, τm ≤ T = tK − t1, and the number
of pairs of data points (tk , tl) having difference≈ τ decreases
for large τ as ∼ (T − τ). Correspondingly, large time lags τ

are under-represented in the sample if one includes all avail-
able pairs (tk, tl). A similar issue appears in estimating the
autocovariance function; the standard solution there is renor-
malization by a factor (T − |τ |), which yields an unbiased
estimation, cf. Eq. (3). We solve the problem of the proper
unbiased covariance density estimation by suitably choosing
the subset of pairs (tk, tl) used to calculate the differences.

We illustrate the approach in Fig. 7. Suppose we want to
estimate the covariance density in the interval of time differ-

ences θ1 < τ < θ2. Then, selecting pairs of events (tk, tl)
from the rectangular gray domain determined by the condi-
tions

θ1 < tk − tl < θ2, θ2 < tk + tl < 2T − θ2 , (8)

delivers an unbiased sampling, because all the slices of the
rectangle with tk − tl = const have the same length. Notice
that we can also choose θ1 = 0. Thus, starting with the origi-
nal point process {tk} and picking up all the events according
to Eq. (8), we obtain a subset of length L of time differences
τm , m = 1 . . . , L . The size of the sample can be estimated
as L ≈ K (K − 1)(θ2 − θ1)(T − θ2)T−2.

Next, we need to check whether the density of the sam-
pled points τm is uniform. As usual in the testing of sampled
distributions, it is convenient to work not with the covariance
density itself but with the corresponding cumulative distri-
bution, which is the integral of the density. For a similar
approach to characterizing a distribution of interspike inter-
vals see Ref. (Pu and Thomas, 2020). Thus, we define the
empirical cumulative covariance distribution function as

F(τ ) = 1

L

L∑

m=1

H(τ − τ(m)) , (9)

where H(x) is the Heaviside step function. Here τ(m) is the
order statistics of the set of time differences, i.e., the m-th
smallest value of τ ; one obtains it by sorting the array in
ascending order. The inverse of the distribution function is the
quantile function τ(1) ≤ Q(p) ≤ τ(L), 0 ≤ p ≤ 1. For this
quantile function,we can define theKantorovich-Rubinstein-
Wasserstein (KRW) distance (Kantorovich and Rubinshtein,
1958; Vaserstein, 1969) (see Bobkov and Ledoux (2019) for
a general introduction of the application of the KRW dis-
tance to empirical measures) to the uniform quantile function
Qu(p) as

ρ1(Q, Qu) =
∫ 1

0
|Q(p) − Qu(p)|dp . (10)

One possible choice for Qu would be Qu(p)=τ(1)+p(τ(L)−
τ(1)). However, such a choice is sensitive to boundary effects.
Thus, we suggest to apply a linear fit to the set τ(m), i.e., to
approximate it as τ(m) ≈ a + bm (for a standard proce-
dure for the linear fit computation, see, e.g., in Press et al.
(1992)). Fitting corresponds to taking the uniform quantile
function as Qu(p) = a + bLp. Substitution of this function
and the empirical cumulative covariance distribution func-
tion Eqs. (9), (10) leads, after representing the integral as a
sum, to the following simple formula for the KRW distance

ρ1(Q, Qu) ≈ L−1
L∑

m=1

|τ(m) − a − bm| . (11)
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Fig. 7 Choosing spiking events tk , tl from the rectangular gray domain
yields an unbiased covariance density estimation for time differences
θ1 < tk − tl < θ2. These differences correspond to points in the trape-

zoidal domain between two blue lines; however, if we use all the points
from this domain, the small values tk − tl will be overrepresented

For the visualization of the covariance density, it is con-
venient to introduce an additional notation for the function
under the sum in Eq. (11):

C(τ(m)) = τ(m) − a − bm . (12)

In fact, this is not an empirical covariance density but rather
an integral of it, with the linear trend subtracted. Neverthe-
less, it has the same properties as the covariance density: for a
purely random set of point events, it vanishes for large τ , but
if there is a regular component in the point process, function
C(τ ) will for large τ demonstrate the corresponding regu-
larity. We will call it the Empirical Cumulative Covariance
Distribution Function (ECCDF). Note that subtraction of the
squared rate of the point process is not required because the
linear fit automatically eliminates it.

Summarizing, we suggest to characterize the level of reg-
ularity in a time series of the point process by calculating the
KRW distance according to

D = L−1
L∑

m=1

|C(τ(m))| . (13)

To illustrate this measure of regularity in a point pro-
cess, we applied it to a synthetic data set generated as a
Poisson process with independent time intervals between
the points and time-dependent instantaneous rate λ(t) =

(1 + A sin(2π t)). Thus, the regular component has a unit
period, and its amplitude is∼ A.We calculated theKRWdis-
tance according to Eq. (13) for L = 2 · 107 with parameter
values θ1 = 0, θ2 = 20 (see Eq. (8)). The results presented
in Fig. 8 show that the regular component for the parameters
chosen can be reliably estimated for A � 0.1. Notably, as
one expects for a covariance measure, D ∝ A2.

Since D quantifies a regular component in the dynamics, it
serves as an order parameter for the transition to synchrony. 4

Of course, this parameter does not vanish in the asynchronous
case for finite samples, but for large L its value can be rel-
atively small (Del Barrio et al., 1999). We emphasize the
similarity between the order parameters D (Eq. (13)) and
W (Eq. (4)): both calculations involve two constants. How-
ever, while in the case of continuous signals, constants �1,2

explicitly enter Eq. (4), for the point processes, constants θ1,2
appear implicitly in the selection of the time differences τm
according to the condition Eq. (8).

Finally, we discuss the choice of constants in the sug-
gested technique. We assume that the sequence of times {tk}
is given; indeed, the approach works better if the time series
is longer. The only two constants to choose are θ1, θ2 in
Eq. (8). Constant θ1 should be larger than the characteristic
time of correlations’ decay in the process’s irregular com-
ponent. Thus, it is advisable to start with θ1 = 0 and plot
the values C(τ ) in some interval 0 < τ < θ2. This graph
looks roughly like an autocovariance function for a contin-
uous process: it decays initially, and from some values of
τ it either fluctuates around zero or has a regular (typically
periodic) tail. According to this picture, for calculating the
KRWorder parameter D, θ1 should be chosen larger than the
initial correlation decay time. The value of θ2 should not be
too large because the statistics will be poor according to the
restriction Eq. (8). On the other hand, the interval θ2 − θ1
should include at least several periods of the characteristic
variations of the covariance density in the regular tail.

4 One can also consider generalized KRW distances by changing the
definition of the norm in Eq. (13); in general, one could calculate a
q-norm as (

∑
m |C(τ(m))|q )1/q . However, only for q = 1 the simple

representation Eq. (11) is valid.
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Fig. 8 KRW distance D, see Eq. (13), vs. parameter A of the periodically modulated Poisson process, for different values of 
. The dashed line
has slope 2

For synchronization detection, the finite size N of the orig-
inal ensemble also plays a role. Indeed, the mean fields are
purely regular only in the thermodynamic limit of an infinite
number of elements (N → ∞ in Eqs. (1), (2)). For large but
finite populations, there are finite-size fluctuations that lead
to a slow loss of coherence of the mean-field dynamics. As a
result, periodic variations of the covariance density discussed
above decay on a large time scale Tcor . This decay does not
allow for very large values of the constant θ2, which bounds
the range of time lags; one should preferably take θ2 	 Tcor ,
or, if the time scale Tcor is relatively small, to take θ2 � Tcor .

There is also a technical reason to keep the value θ2 rela-
tively small.Weworkwith afinite number of events, resulting
in a statistical noise in the empirical covariance density. The
cumulative distribution function Eq. (12) that we analyze
contains the integral of this noise. Thus, the finite-size (in
the sense of finite length of time series) noise results in a
slow diffusion-like behavior at large intervals of the time
lag τ . This diffusion-like trend is superposed with a regular
component, as is illustrated in Fig. 9. On very large time lag
intervals, the contribution of the diffusion part to the KRW

distance D (see Eq. (13)) can be significant. Thus, it is advis-
able to take the time span θ2 − θ1 less than the characteristic
diffusion time. For example, for the data in Fig. 9, one can
use 0 ≤ τ ≤ 20. Another way is to eliminate the effect of
diffusion by virtue of a detrending procedure, but this will
bring extra parameters to the method.

Finally, we mention that although we focused above on
a time series from one neuron, the same method works if
we include contributions from several or many units in the
point process under consideration. The reason is that under
the assumption of global coupling, the same regular mean
field acts on different ensemble units, and they share the
same regularity in the spiking events. The covariance density,
in this case, is, in fact, a mixture of self-covariance (if the
difference of spike instants from one unit is taken) and cross-
covariance (if one takes the difference of spike instants from
two different units). Both the self-covariance and the cross-
covariance at large time lags reveal the same regular mean
field; thus, “mixing” of entries from different units does not
prevent detection of this mean field. We provide examples of
quantification of such “mixed” point processes below.

Fig. 9 The ECCDF for the modulated Poisson process plotted over a large interval of time lags exhibits a slow diffusion-like behavior due to
finite-size noise
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Fig. 10 ECCDFs for the sub-threshold ε = 0.2 (panel a) and super-threshold coupling ε = 0.6 (panel b)

3 Results

Wefirst illustrate themain idea of our approach by exploiting
the simple model of spiking HR neurons, and then proceed
with the more complicated cases of bursting and sparse syn-
chrony.

3.1 Hindmarsh-Rose neurons

3.1.1 Identical noisy spiking neurons

In the first test, we consider an ensemble of noisy identical
neurons as illustrated in Fig. 2, and present the results in
Fig. 10. Here, we show the ECCDFs for weak, ε = 0.2,
panel (a), and strong, ε = 0.6, panel (b), coupling. The
main message here is that for weak coupling, ECCDF decays
and fluctuates around zero, while in the second case, the
ECCDF’s envelope tends to be constant due to the decay
of the continuous spectral component, while the discrete
component remains. 5 The latter can be used for synchrony
quantification using Eq. (13). We compute the KRW order
parameter D for different values of the coupling strength ε;
for each ε we do it for two point processes. The first pro-
cess contains spikes from one neuron within an observation
interval of length T (since the neurons are identical, we take
the first one). The second point process is constructed from
the spikes of hundred neurons observed within the interval

5 To eliminate the diffusion-like behavior due to the finite-size effect,
we remove the linear fit separately for each shown interval.

T /100. By construction, the number of spikes in both pro-
cesses is approximately the same (about 35000 spikes; the
exact number depends on ε). The results in Fig. 11(a) demon-
strate that the order parameter values computed from these
two processes practically coincide in the synchronous state,
though the contrast between asynchronous and synchronous
states is higher if 100 neurons are observed. The dependen-
cies D(ε) shall be compared with the similar curve

√
W (ε)

in Fig. 6c. We see that synchrony quantification from point
processes works as successfully as quantification from a con-
tinuous signal, though much less information is used in the
former case.

Furthermore, Fig. 11(a) shows the results of a simple sur-
rogate test. In this test, starting with the process {tk}, we
construct new point processes {t (s)k }. For this purpose, we
compute the interspike intervals dk = tk+1 − tk , obtain a
sequence of new intervals d(s)

k by a random permutation

(reshuffling) of dk , and take t (s)1 = t1, t
(s)
k = t (s)k−1 + d(s)

k−1
for k > 1. Finally, we compute the KRW order parameter
from {t (s)k } and show the obtained value by a red dot. For
each value of the coupling strength, we perform 25 surrogate
tests (we use observations of a single unit). We see, that for
ε ≥ 0.35 the values obtained from the “true” point process
clearly exceed the surrogate values and thus reliably indicate
the presence of synchrony.

Next, we illustrate the precision and robustness of our
algorithmby choosing observations of different units. Specif-
ically, we compute D a hundred times for a fixed coupling
value, each time from a different single unit. The results in
Fig. 11(b) show that the precision increases with the cou-
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Fig. 11 Panel (a) presents the order parameter D, see Eq. (13), com-
puted for θ1 = 2000, θ2 = 3000. Blue circles show the values
obtained from observing a single neuron, while black pluses correspond
to observing a hundred of units. Red dots show the order parameter
obtained from surrogate point processes; see text for details. Panel (b):

here, the blue pluses depict D values computed from different single
neurons; for each value of the coupling, Dwas computed hundred times.
Surrogates obtained from each of used point processes are shown by
red dots. We see, that in the synchronous state the D value is almost
independent of the chosen neuron

pling: beyond the synchronization transition, different units
provide nearly coinciding results.

Finally, we check the technique’s robustness concerning
missed spikes. With this test, we imitate the situation when
the measurement is imperfect and does not record some
spikes. We start with the point process tk , compute the order
parameter D, eliminate some randomly chosen events, and
repeat the computation of D. Figure 12 presents the depen-
dence of the estimated order parameter on the percentage of
missed spikes for four values of the coupling strength. We
see that the synchrony quantification is not robust only for
weak coupling when the periodic component is also weak.
However, even in this case, the omission of 15% of spikes
yields nearly constant results.

0 5 10 15 20
% of missed spikes

0

0.2

0.4

Fig. 12 Robustness of the synchrony quantification in case of imperfect
measurement missing some spikes, for ε = 0.2 (circles), ε = 0.4
(diamonds), ε = 0.6 (squares), and ε = 0.8 (pluses)

3.1.2 Non-identical chaotic bursting neurons

In the next test, we take the nonidentical bursting HR units.
The challenge here is that the mean field of this ensemble
is obviously irregular (see Fig. 3), though has a pronounced
periodic component. We choose two values of the coupling,
ε = 0.015 and ε = 0.017, i.e., below and above the synchro-
nization threshold. Figure 13 demonstrates that our approach
works for the bursting data. Here, we show the results for
three neurons, with parameter values In = 2.95 (bottom
panels), In = 3 (middle panels), and In = 3.05 (top panels),
cf. Fig. 1. The corresponding values of the order parameter
are:

1. Sub-threshold coupling, ε = 0.015: D = 0.11, 0.10,
0.09.

2. Super-threshold coupling, ε = 0.017: D = 9.39, 8.83,
7.35.

3.2 Brunel-Hakimmodel

In Fig. 14, we report on applying the method to the Brunel-
Hakim model Eq. (2). Empirical Cumulative Covariance
DistributionFunctions are shown for several coupling param-
eter values ε, for an ensemble of N = 100000 neurons. A
time series of K = 105 spikes from a single unit was used
in all cases. One can see that the calculations of the ECCDF
for a single neuron reliably reveal the synchronization tran-
sition. The initial decay of correlations due to irregularity
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Fig. 13 ECCDFs for sub-threshold coupling ε = 0.015 (left column) and for super-threshold coupling, ε = 0.017, for three neurons (see text)

Fig. 14 Estimations of the ECCDFs for the BH system Eq. (2) for dif-
ferent values of the coupling strength ε = 80 (asynchrony), ε = 82
(weak synchrony), and ε = 84 (strong synchrony). Together with the
data with a maximal time series length of K = 105 spikes (top row),

we show the results for shorter time series K = 5000 and K = 1000
spikes. The latter ECCDFs are much more noisy, except for the regime
of strong synchrony
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Fig. 15 Order parameter D vs. coupling strength ε for the BH model. Here the time series of K = 105 spikes was used. Red circles: data for 50
different neurons. Blue pluses: the same time series but randomly reshuffled. For comparison, we also show the variance of the mean field X(t)
with green squares

of a single neuron happens within time interval τ � 60.
On the other hand, the decay of correlations of the regu-
lar component happens on a much longer time scale. In this
example, an appropriate choice of the values θ1,2 could be
θ1 = 60, θ2 = 120. Furthermore, in Fig. 14,we showhow the
quality of the covariance density estimation depends on the
length of the sample. One can see that although the transition
can be traced also for short time series with K = 5000 and
K = 1000, the quality of the covariance density estimation
becomes really poor at this length of the point process.

We report the calculations of the order parameter D in
dependence on the coupling constant ε in Fig. 15. Here, for
comparison, also the variance of the field X(t) is depicted.
For each value of ε we calculated D from spike trains pro-
duced by 50 different neurons, all these data are plotted with
red circles. While in the asynchronous state ε � 80.5 there
is a large diversity of the values of D, in the synchronous
states these values nearly coincide so that the markers over-
lap. Additionally, we report the calculations of D for the
randomly shuffled time series (blue pluses). In the regime of
weak synchrony (ε ≤ 82.5), the values of D for the shuffled
data are much less than for the original time series, thus this
method of verification works well. However, in the regime
of strong synchrony (ε ≥ 83) also reshuffled data beget large
vaues of the order parameter D. This is related to a highly
peaked distribution of the interspike intervals (see Fig. 4):
almost all the ISI are multiples of the period of the mean

field, and this property leads to a large ECCDF even after
reshuffling. Hence, in this case, the surrogate test is not really
required: a simple analysis of the interspike intervals distri-
bution complements our analysis and supports the conclusion
about the presence of synchrony.

Above, we discussed the construction of the covariance
density from the point process from one unit or a combi-
nation of observations from several units. With Fig. 16, we
illustrate the construction of the ECCDF from randomized
many-unit observations. Namely, we first recorded point pro-
cesses from 50 units, totaling 5 · 106 events (≈ 105 for each
unit). Then, we have chosen randomly (using uniform dis-
tribution) 105 events from this set. This means that there are
≈ 2000 events from each unit. We constructed the ECCDF
from the time differences of the selected events as described
above in Section 2.2. Because the data include events from
many units, it is better to speak on “cross-covariance den-
sity” in this case, which is analogous to cross-correlations.
As the results presented in Fig. 16 show, the contrast between
the synchronous regime with a large periodic component and
the asynchronous state with a small irregular component is
evident.

We emphasize the practical advantage of a multi-unit
observation. For simplicity, we used global coupling in our
test examples. In reality, the neurons are coupled to the local
field potential with a different strength. Thus, the one-unit
analysis generally depends on the unit. Multi-unit measure-

Fig. 16 Estimations of ECCDFs for a randomized subset of events for the BH model
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ment is equivalent to averaging over a (small) subpopulation
and, therefore, provides a more reliable estimation of the
population synchrony level.

4 Discussion and conclusion

We demonstrated that an appropriate processing of one or
several units’ activity reveals a macroscopic rhythm in a neu-
ronal population. This result aligns with the findings that a
small subset of neuronal populations is involved in the visual
perception of complex images (QuianQuiroga et al., 2005) or
conveys information sufficient for neuroprosthetics purposes
(Willett et al., 2023). The developed technique quantifies
the level of synchrony in the neuronal population from the
observed spiking events obtained via threshold-crossing. The
height of the spikes is not accounted for, so the input data
are point processes. The analysis of the covariance density is
mathematically equivalent to the analysis of theBartlett spec-
tral measure. Indeed, the transition to synchrony is reflected
by the appearance of a discrete spectral component (in the
limit N → ∞) what corresponds to non-decaying C(τ ).
Thus, the measure D quantifies the discrete spectral compo-
nent, and this computation is analogous to Wiener’s lemma,
which yields a similar quantity for continuous processes from
the autocovariance function.

The simple and computationally inexpensive algorithm
provides a single number, which we denote as the KRW
distance D. This order parameter successfully distinguishes
synchronous and asynchronous states. The drawback of this
measure is that it is not normalized; hence, a single com-
putation does not say whether D is large (synchrony) or
small (asynchrony). In this case, one has to plot the empir-
ical cumulative covariance distribution function C(τ ) and
inspect it visually. Another ad hoc solution is to rely on
the surrogate test. However, if observations of synchronous
and asynchronous states are given, the corresponding values
of D differ by more than one order of magnitude. A clear
advantage of the approach is its stability regarding imper-
fect measurement – missing about 10 or 15 percent of spikes
do not affect the result. Another beneficial feature is that
the number of neurons contributing to the observed point
process is irrelevant, and spike sorting is not needed. The
suggested technique works equally well with the data from
one neuron and amixed point process containing spikes from
many neurons. Actually, in the last case, the performance is
even better (though the number of these neurons remains
much smaller than the population size). These features make
the developed approach an efficient tool for experimental
and model studies. This paper presented examples where we

considered statistically stationary situations only. Stationar-
ity allowed for analyzing a rather long time series, for which
regularity detection in spike trains works reliably. In a non-
stationary case, one has to perform the analysis within a finite
time window, i.e. with a rather small time series. As we have
demonstrated in Fig. 14, for a short sequence of spikes the
ECCDF C(τ ) becomes rather noisy. The data of Fig. 14 sug-
gest that at least several hundred spikes are necessary for
regularity detection. A more detailed statistical analysis is a
subject of future studies.

This paper focuses on characterizing regularity in the
observed point process or several point processes. In some
cases, continuous-time measurements of the Local Field
Potentials (LFP) can be performed simultaneously with the
registration of the spiking activity. If LFP observations are
available, one can use them to characterize the regularity
of the neuronal population using well-established methods
for continuous processes. The correspondence between the
information provided by the LFP analysis and our technique
needs further clarification. It is known that the variation
of the LFP reflects spiking multi-unit activity, but their
interrelationship is complicated and depends on the fre-
quency range (Telenczuk and Destexhe, 2022). Since the
LFP-spike interrelation is very sensitive to neuronal cor-
relations (Telenczuk and Destexhe, 2022), we expect that
for strong synchrony, the LFP analysis and point process
processing provide similar conclusions, while for low and
intermediate synchrony levels, our technique may be more
informative. Additionally, the LFP is a broad-band signal,
and the results of its spectral-based quantification depend on
the choice of the frequencies of interest and preprocessing
techniques, such as filtration.We alsomention that point pro-
cess analysis admits a simple surrogate test for significance
(reshuffling of inter-spike intervals), while the corresponding
tests for continuous-time processes are problematic.

Finally, while the regularity of spiking is usually asso-
ciated with synchrony, the sources of the synchrony can
potentially be different. In the examples explored in this
paper, synchrony appears due to the interaction of the neurons
within the population. However, a similar state can appear
due to regular external action on the neurons from other brain
regions or external fields. Clearly, the method of regularity
detection proposed in this paper cannot resolve the source of
regularity; however, it can be a part of a more comprehensive
analysis of larger brain areas.
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