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Abstract
Piecewise-deterministic Markov processes combine continuous in time dynamics with jump events, the rates of which gen-
erally depend on the continuous variables and thus are not constants. This leads to a problem in a Monte-Carlo simulation of
such a system, where, at each step, one must find the time instant of the next event. The latter is determined by an integral
equation and usually is rather slow in numerical implementation. We suggest a reformulation of the next event problem as
an ordinary differential equation where the independent variable is not the time but the cumulative rate. This reformulation
is similar to the Hénon approach to efficiently constructing the Poincaré map in deterministic dynamics. The problem is then
reduced to a standard numerical task of solving a system of ordinary differential equations with given initial conditions on
a prescribed interval. We illustrate the method with a stochastic Morris–Lecar model of neuron spiking with stochasticity in
the opening and closing of voltage-gated ion channels.

Keywords Hybrid stochastic systems · Gillespie method · Hénon method

1 Introduction

Piecewise-deterministic Markov processes (PDMPs) are a
broad class of stochastic processes with many applications.
Mathematical foundations and properties can be found in
books (Davis 2018; Jacobsen 2006). Sometimes, PDMPs are
called hybrid stochastic systems (Li et al. 2017; Bressloff
and Maclaurin 2018; Hespanha et al. 2018). Roughly speak-
ing, PDMP is a generalization of a standard Markov process,
which consists of jumps at random instants of time, to
a situation where there is also deterministic evolution of
some variables between the jumps. The classic example of a
PMDP is stochastic neuron dynamics (Hille 2001). Here, the
membrane voltage is a continuous variable that varies deter-
ministically according to the capacitance discharge equation.
The conductances of the ion channels are random because
these channels can spontaneously open and close, and this
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is modeled with Markov processes. The random and the
deterministic dynamics depend mutually on each other: the
voltage discharge depends on random conductances, and
the rates according to which the channels open and close
depend on the voltage. Another example is a gene regula-
tory network (Kurasov et al. 2018). Here, concentrations of
the proteins are continuously varying variables, while the
activation state of the genes follows theMarkovian jump pro-
cess. PDMPs also appear in the description of intracellular
transport, where motor cargos can randomly switch between
motility states (Bressloff andMaclaurin 2018).We alsomen-
tion applications in insurance risk modeling (Embrechts and
Schmidli 1994), communication networks (Hespanha 2005),
DNA replication (Lygeros et al. 2008), and the individual
human behavior models (Hawker and Siekmann 2024).

The essential property of PDMPs is that the determinis-
tic and stochastic parts are interdependent. The states that
vary at the Markov discrete jumps influence the determin-
istic dynamics, and the latter influences the Markov jumps
via the variation of the jump rates. Of course, there are sim-
pler situations where the influence is only in one direction.
For example, if the rates do not depend on the continuously
varying states, one has a model of Markovian noise driving;
in the simplest case, it reduces to a dichotomic noise (Hors-
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themke and Lefever 1984). Close to the PDMPs are Markov
processes with prescribed time-dependent rates. This case
will also be included below.

As it is already apparent from the description above, the
main challenge in the numerical simulation of a PDMP
is finding the jump event times; all other ingredients are
straightforward. Thanks to Gillespie (1977), there is an exact
algorithm for simulation of the Markov process trajectories;
see also recent advances in Wilkinson (2018) and Masuda
and Vestergaard (2022). However, a numerical difficulty
appears if the rates are not constant. While for continuous
rates, one defines the interval between jumps from an eas-
ily generated random number with exponential distribution,
in the case of non-stationary rates, one must solve an inte-
gral equation–precisely this difficulty we address here below.
We will demonstrate how to reformulate the problem so that
finding the inter-jump interval reduces to a standard initial-
value problem for a system of ordinary differential equations
(ODEs).

The paper is organized as follows. In Sect. 2, we formulate
the basic model. Section3 describes the efficient approach
for stochastic simulations. In Sect. 4, we demonstrate it for
the Morris–Lecar model of neuron dynamics. For this exam-
ple, we elaborate on the accuracy and the performance of
the method compared to the other approaches in Sect. 5. We
conclude in Sect. 6.

2 Formulation of themodel and its
simulation with the Gillespie direct
method

Here, we formulate a rather generic PDMP. The dynamics
consists of purely deterministic evolution epochs interrupted
by discrete jump events. There is a set of variables �X(t) that
evolve during deterministic epochs according to ODEs

d �X
dt

= �F( �X , �Y , t) . (1)

Theremay exist another set of variables �Y , which vary only at
jump events and remain constant during deterministic evo-
lution (1). Variables �X can also vary at jump events. The
variables �X are continuous, while the variables �Y can be con-
tinuous or discrete. For simplicity,we call below the variables
�X “continuous”, and the variables �Y “discrete”.
There are generally M different types of discrete events,

which are assumed all to be independent Markovian pro-
cesses with the rates

λi ( �X , �Y , t), i = 1, . . . , M . (2)

Namely, an event i occurs within a small time interval
(t, t + dt) with probability λi ( �X(t), �Y (t), t) dt . If an event
happens, generally, all dynamical variables �X , �Y are trans-
formed according to deterministic or probabilistic rules.
However, in some applications, only discrete variables vary
at the jumps. We will assume that these transformations can
be easily implemented in numerical simulations. Also, the
evolution problem (1) is a standard numerical task of solv-
ing a system of ODEs, provided the r.h.s. is smooth enough.
Usually, it is accomplishedwith a variant of the Runge–Kutta
method.

The main challenge in the numerical simulations is mod-
eling the discrete jump times. Among different methods, the
Gillespie Direct Method (GDM) is one of the most pop-
ular (also, the first process method and the next process
method are discussed in the literature; a generalization of our
approach to these variants is straightforward). We present it
for the problem formulated above, following Refs. Alfonsi
et al. (2005); Anderson et al. (2015), see also Anderson
(2007); Riedler (2013).

In GDM, one uses the independence of different event
types and defines the total rate as

�( �X(t), �Y (t), t) =
M∑

i=1

λi ( �X(t), �Y (t), t) . (3)

According to this rate, if the last eventwas at time instant t last ,
then the probability of having no event in the time interval
t last < t < T is

1 − exp

(
−

∫ T

tlast
�( �X(s), �Y (s), s) ds

)
. (4)

Note that here the discrete variables �Y are constants, so that
�Y (s) = �Y (t last ). The way to sample the time instant tnext

of the next event is first to generate r1 as a random number
distributed on the unit interval 0 < r1 ≤ 1, and then to
calculate � = − ln(r1). Then, the sampled time of the next
event is found from the condition

∫ tnext

tlast
�( �X(s), �Y (s), s) ds = � . (5)

Because �X(t) is a solution of the ODE (1), it is convenient
to reformulate (5) as an ODE

d�

dt
= �( �X(t), �Y (t), t) (6)

with initial condition�(t last ) = 0. The time of the next event
is found from the condition �(tnext ) = �. Finding tnext is
most challenging. As the author of Anderson (2007) formu-
lated, “solving equation (5) either analytically or numerically
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will be extremely difficult and time-consuming in all, but the
simplest of cases”.

After the time instant tnext is found, the next standard
step in the GDM is performing a jump. Which of possible M
jumps is performed requires a further random choice, now
from a discrete distribution with probabilities

pi = λi ( �X(tnext ), �Y (t last ), tnext )

�( �X(tnext ), �Y (t last ), tnext )
. (7)

This choice is accomplished by generating another random
number r2, uniformly distributed on the unit interval 0 ≤
r2 ≤ 1, and finding such integer j that

j−1∑

i=1

pi < r2 ≤
j∑

i=1

pi . (8)

Then, the jumpof type j is performed, duringwhich variables
�X , �Y are transformed according to the jump rules. Then, the
simulation step is accomplished, and one proceeds to the next
step.

3 Stochastic simulationmethod

Here, we present an efficient solution to the task of finding
the next event from the system (1,6). This method is analo-
gous to the M. Hénon technique for numerical computation
of Poincaré map in deterministic dynamics (Hénon (1982)).
In the context of hybrid non-stochastic systems, the Hénon
technique was discussed in Körner (2015).

Let us first consider the case where the total instantaneous
rate � is bounded from below with a positive constant. This
means that, according to (6), the variable� is a strictlymono-
tonically growing function of time. This allows for replacing
in the system of ODEs (1,6) the independent variable t by�.
The resulting equations read

d �X
d�

= �F( �X(t), �Y (t), t)

�( �X(t), �Y (t), t)
, (9)

dt

d�
= 1

�( �X(t), �Y (t), t)
. (10)

For the system (9,10) the initial condition at � = 0 is
�X = �X(t last ), t = t last . The integration of (9,10) should
be performed on the prescribed interval of the independent
variable 0 ≤ � ≤ �. This is a standard task for ODEs
and is usually accomplished with a Runge–Kutta method (or
some other standard method for solving an initial problem
for ODEs, see, e.g., Butcher (2016)). At the end of the inte-
gration interval 0 ≤ � ≤ �, one obtains tnext ≡ t(�)

and �X(tnext ) ≡ �X(�). Then, the simulation is continued as
described in Sect. 2 above.

Let us now consider a situation where the total rate � can
vanish at some time intervals. In this case, a global replace-
ment of independent variables like in (9,10) is not possible.
In such a situation, we suggest a procedure that basically
mimics the construction of the Poincaré map according to
the Hénon method (Hénon (1982)). One first integrates the
system (1,6) using time t as the independent variable and
checks the condition � = � at a sequence of small time
intervals (say, at time instants ti ). When the interval (ti−1, ti )
is found on which the variable � crosses the level � (i.e.,
�(ti−1) < � < �(ti )), then one makes an adjustment step.
Namely, one integrates the system (9,10) from the initial
condition ( �X(ti ), ti ) at � = �(ti ) up to the desired value
of the independent variable � = �. In most cases, it is
sufficient to perform just one numerical integration step of
length � − �(ti ) (notice that this step is negative because
at time ti one overshoots the level � = �). Equivalently,
one can integrate from the initial condition ( �X(ti−1), ti−1) at
� = �(ti−1) with a positive time step � − �(ti−1). Still,
this latter variant is slightly more complex in implementa-
tion because one must remember the states at the two last
time steps. Because between the time instants ti−1 and ti the
variable � grows, it means that on this interval � > 0 and
one can safely use equations (9,10); here also the smallness
of intervals ti − ti−1 is important.

Several remarks are in order.

(1) The method suggested is not exact because it is based
on a numerical solution of a system of ODEs. However,
for such a problem, one can quite easily control accu-
racy. We mention that in typical cases, the evolution of
the deterministic equations (1) can be anyhow performed
only numerically.

(2) The approach can also be applied to Markov processes
without deterministic dynamics but with explicit time
dependence of the rates. In this case, the equations for
�X are absent, but the problem (6) still has to be solved.
We suggest using Eq. (10) instead.

(3) In our approach, we assumed sufficient smoothness of
functions �F, λi on their arguments. This is also needed
for an efficient application of numerical integration,
where accuracy depends on the smoothness of the r.h.s. In
particular, to have a well-defined system of ODEs (9,10),
it is required that the time-dependence of rates can be
explicitly calculated at any t . This does not allow for a
stochastic dependence of the rates on time.

(4) The rates may be so small that the variable t as a function
of � in (10) rapidly grows. In such cases, one should
define an upper bound tmax so that if in the course of
integration t > tmax , the integration stops: there are no
further jump events in the Markov process.
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4 Example: theMorris–Lecar system

In this section, we illustrate the method by stochastic simula-
tions of the Morris–Lecar model of neuron activity (Morris
and Lecar (1981)). We have chosen this example because
it has been studied with other methods in Refs. Anderson
et al. (2015) and Lemaire et al. (2020). The Morris–Lecar
model contains an equation for the membrane voltage and,
generally, takes into account two types of conducting chan-
nels: calcium and potassium. In the simplest formulation,
calcium channels are treated in themean-field approximation
with corresponding nonlinear terms in the voltage equation,
while potassium channels are treated stochastically. We will
explore this version below.

The equation for the time-dependent voltage V (t) (this
corresponds to the general continuous variable �X above)
reads

dV

dt
= F(V , Nopen)

= 1

C

(
Iext − gCam∞(V )(V − VCa)

− gL(V − VL) − gK
Nopen

NK
(V − VK )

)
.

(11)

Here Nopen is a discrete variable counting the number of
open potassium channels 0 ≤ Nopen ≤ NK (this vari-
able corresponds to the discrete variables �Y above). The
jump events are openings and closings of a channel. The
rates for opening and closing of a single channel are α(V )

and β(V ), respectively. The total rate for opening at least
one channel is λ1 = α(V )(NK − Nopen), at this event
Nopen → Nopen + 1. The corresponding rate for closing
is λ2 = β(V )Nopen , at this event Nopen → Nopen − 1. The
total rate for an opening/closing to occur is �(V , Nopen) =
α(V )(NK − Nopen) + β(V )Nopen . The functions and con-
stants in (11) are (we take the parameters fromRef. Anderson
et al. (2015))

m∞(V ) = 1

2

(
1 + tanh

(
V − Va

Vb

))
,

α(V ) = φ
cosh(ξ/2)

1 + e−2ξ , β(V ) = φ
cosh(ξ/2)

1 + e2ξ
,

ξ = V − Vc
Vd

,

C = 20, VK = −84, VL = −60, VCa = 120,

Iext = 100, gK = 8, gL = 2, gCa = 4.4,

Va = −1.2, Vb = 18, Vc = 2, Vd = 30,

φ = 0.04.

At each step of the simulation, we used the following algo-
rithm as described in Sect. 3:

1. Define a random number � = − ln r1, where r1 is uni-
form in (0, 1].

2. Integrate equations

dV

d�
= F(V , Nopen)

�(V , Nopen)
,

dt

d�
= 1

�(V , Nopen)

(12)

on the interval 0 ≤ � ≤ � starting with V last , t last to
find V next , tnext at the end of the integration.

3. Generate a uniformly distributed random number r2.

4. If r2 <
α(V next )(N − Nopen)

�(V next , Nopen)
then Nopen → Nopen +1,

otherwise Nopen → Nopen − 1.
5. Replace V next → V last and tnext → t last and repeat

from step 1.

We integrated the system (12) using the Dormand–Prince–
Runge–Kuttamethod (Butcher (2016))with a fixed time step.
First, we fixed, for each value of the total number of potas-
sium channels NK , a maximal integration step h. Then, the
number of integration steps L for each interval 0 ≤ � ≤ �

was determined as L = ��/h� + 1 where �·� is the integer
part of a real number. The constant integration step is then
�/L .

We present the obtained trajectories V (t), n(t)
= Nopen(t)/NK in Fig. 1. Here, we also show projections
on the plane (V , n). One can see that with an increase in the
number of channels NK , the stochasticity of channel open-
ings and closings becomes less pronounced, and the time
dependencies become effectively smooth.

For the purpose of this paper, the most important thing
is to analyze errors. In the Dormand–Prince method, one
can evaluate an error in every variable at every step. If sev-
eral steps were needed for integration from t last to tnext , we
summed up the absolute values of the errors at each small
step to estimate the error of finding the next instant of time
and the next voltage. Furthermore, we calculated the max-
imal values of these errors in the long run. The results are
presented in Fig 2. Because in Eq. (12) the r.h.s. are inversely
proportional to the number of channels NK , we adopted the
following rule: The maximal integration step was chosen as
h = NKh0. We present the results for three values of the
constant h0: h0 = 10−2, 10−3, 10−4. Of course, smaller
h0 provides better accuracy, but even with h0 = 0.001, good
results can be obtained in the whole range of explored num-
bers of the channels NK .

Finally, we compare the simulations using the method
described in Sect. 3 with approximate simulations (com-
monly adopted in the literature) where the time dependence
of the rates within a step is neglected. Namely, in the integral
in expression (5) one sets � ≈ �( �X(t last ), �Y (t last ), t last ).
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Fig. 1 Time series V (t), n(t) of
stochastic simulations of the
Morris–Lecar model with
different numbers of channels: a
NK = 20; b NK = 40; c
NK = 100; d NK = 1000.
Right column shows the
trajectories on the plane (V , n)

Fig. 2 Maximal errors for
different values of h0 in
dependence on the number of
channels NK . Squares: errors for
variable V ; circles: errors for the
times t . Red color: h0 = 0.01;
green color: h0 = 0.001; blue
color: h0 = 0.0001
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Fig. 3 Comparison of
trajectories created with the
same sequences of random
numbers r1, r2 with the method
described in Sect. 3 (red curves)
and with the approximate
method where variations of the
rates are neglected on the
interval between the events
(blue curves). Numbers of
channels are given on the
panels. Notice the different time
ranges of the panels. Integration
was performed with the
Dormand–Prince method with a
fixed step 10−3 · NK

Then the integral can be trivially calculated, and the time of
thenext event is tnext ≈ t last+�/�( �X(t last ), �Y (t last ), t last ).
One expects that such an approximationworkswell if the rate
� is large, so the time interval between the events is small
(much smaller than the characteristic timescale of the rate
variation). In the context of the Morris–Lecar system, this
corresponds to a large number of channels NK . To compare
the two methods, we performed simulations of the Morris–
Lecar systemusing the twomethods described,with the same
initial conditions and the same sequence of random numbers
r1, r2. As a result, the initial stages of the trajectories pre-
sented in Fig. 3 coincide, but after some time interval (which,
as expected, is longer for larger values of NK ), they diverge.

5 Accuracy and performance

In the suggested method, the only approximative numeri-
cal technique is approximation of the solution of the system
of ODEs (9, 10) by means of one of the standard methods

(Butcher 2016). Thus, its convergence is assured by the con-
vergence of the corresponding methods. To illustrate this, we
calculated errors in simulations of the Morris–Lecar system
for two values Nk = 20 and Nk = 100 (cf. Fig. 3) for the
Dormand–Prince method of numerical solution of the ODEs.
First, we calculated a “reference” trajectory V̂k , {t̂k} (here {t̂k}
are instants of time at which random openings/closing hap-
pen, and V̂k are voltages at these times) using very small
time steps (10−4 for NK = 20 and 10−3 for NK = 100), at
these steps the accuracy is limited by roundoff errors. The
length of trajectory was set to L = 104 random events of
channel opening/closing. Next, we calculated, for the same
initial conditions and for the same sequence of pseudo-
random numbers, trajectories with larger integration steps.
Because the dynamics is not chaotic (in fact, in the deter-
ministic limit the dynamics is periodic), the trajectories do
not differ much on the finite time interval. We evaluated the
accuracy using two quantities. First, we calculated the error
in the voltages as Err(V ) = L−1 ∑L

k=1 log10 |Vk − V̂k |.
Next, we calculated the error in the inter-event time intervals
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Fig. 4 Accuracies in voltages (filled markers) and time differences
(open markers) for NK = 20 (circles) and NK = 100 (squares). The
slope of the dashed line is 5.6, the slope of the dotted line is 4.9

as Err(t) = (L−1)−1 ∑L
k=2 log10 |(tk−tk−1)−(t̂k− t̂k−1)|.

Additionally, we averaged over 100 different realizations
of sequences of generated pseudo-random numbers. Both
errors are depicted vs the integration step in Fig. 4. We note
that larger ranges for these dependencies are hardly possi-
ble, because the errors are practically bounded from below
at ≈ 10−12 due to roundoffs. In both cases the approximate
scaling Err ∼ hκ holds, with κ ≈ 5.6 for NK = 20 and
κ ≈ 4.9 for NK = 100.

Next, we discuss other numerical methods for PDMP
models. An alternative approach for exact simulation of
Markov processes with time-dependent rates is the thinning
method (Lewis and Shedler 1979; Lemaire et al. 2018). It
requires explicit knowledge of the time-dependent total rate
�(t) and its upper bound � > �(t). Then, first two random
numbers (t̃, �̃) are generated, and then it is checked whether
�̃ < �(t̃). If the condition is not fulfilled, the generated pair
is rejected, and a new attempt is performed. This method can
also be applied in cases where the ODE for the continuous
variables �X(t) can be solved explicitly, providing an explicit
expression for the rates as functions of time. This is the
case for the Hodgkin-Huxley model of neuron activity (Hille
2001), where the equation for the time-dependent voltage
is linear (contrary to nonlinear equation (11) in the Morris–
Lecar model). One can express its solution analytically and
correspondingly apply the thinning method (Lemaire et al.
2018). The only remaining problem is to find a good estimate
for the upper bound � to reduce the number of rejections. If
the equations for the continuous variable �X(t) are nonlinear
and not exactly solvable, the exact time-dependence of the
rates is unavailable. In Ref. Lemaire et al. (2020), it was sug-
gested to use Euler-type numerical integration to obtain an
approximate time-dependence of the rates and to explore dif-
ferent integration steps to converge to a correct value of the
time interval. In the same spirit is the approach of Ref. Ding

et al. (2016), where a piecewise-exponential approximation
of the solution of the ODE is suggested. We believe that our
method is more straightforward in implementation.

Belowwecompare the performance of our approach based
on the solution of Eqs. (9, 10) with the methods based on
the solution of Eqs. (1), (6) and finding the time instant
where � = �. Such simulations have been performed in
Refs. Riedler (2013), Anderson et al. (2015) and Ding et al.
(2016). The authors of Riedler (2013) and Anderson et al.
(2015) used MATLAB®’s ode45 routine with a built-in
event detection feature. In Ding et al. (2016) it is suggested to
solve Eqs. (1, 6) with some time step h up to the time instant
tnext at which the threshold is overshooted �(tnext ) > �.
Then, the event time should be found from a linear interpo-
lation of �(t) on the last interval (tnext − h, tnext ). A more
accurate event detection can be achieved if the linear interpo-
lation is successively applied m > 1 times. The accuracy for
such amethod depends both on the accuracy of the numerical
integration of the ODEs and on the accuracy of the numerical
solution of the condition �(t) = �, thus it makes no sense
to use largem because then the total accuracy will be limited
by the ODE solver.

To compare different methods, we used in all cases the
Dormand–Prince solver of the ODEs, and implemented the
event detection using successive linear approximations with
1 ≤ m ≤ 5 as described above. The results for the case
NK = 20 are presented in Fig. 5. Here we used the same
definition of the averaged errors as described above in this
section, additionally we averaged the decimal logarithms of
the elapsed CPU times. First, one can see that the accuracy
and performance of event-location methods does increase
significantly with m for m > 4. In all cases our method
overperforms the event-location methods by a factor ≈ 2.
Additionally, it is easier in implementation.

6 Conclusion

In summary,wehave suggested an approach that significantly
accelerates stochastic modeling of piecewise-deterministic
Markov process. The main idea is to solve the continuous-
time ordinary differential equations between the jump events
using the cumulative total rate as an independent variable. In
this formulation, the integration interval is fixed (to a random
number having exponential distribution). Thus, a numerical
implementation of such integration is straightforward and
does not require additional steps. Furthermore, accuracy can
be easily controlled because standard numericalmethods like
the Dormand–Prince version of the Runge–Kutta method
can be used. We have illustrated our approach by simulating
the stochastic version of the Morris–Lecar model of neuron
activity, where potassium channels are randomly closed and
opened.
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Fig. 5 Average CPU times vs accuracies Err(V ) (left panel) and
Err(t) (right panel) for our method and the methods based on the solu-
tion of ODEs Eqs. (1, 6), for different numbers of iteration steps m.

The errors are defined as the averaged decimal logarithms, eo, e.g., the
value Err = −8 corresponds to the absolute error ≈ 10−8

Finally, wemention that together with the Gillespie Direct
Method explored in this paper, there are its variants called
first-event and next-event methods (see Masuda and Vester-
gaard (2022) for a recent review). There, the same numerical
bottleneck is finding the time instant of the next event from
a time- and variable-dependent rate, and our approach also
works for these variants.
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