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We consider a population of globally coupled oscillators in which phase shifts in the coupling are
random. We show that in the maximally disordered case, where the pairwise shifts are independent
identically distributed random variables, the dynamics of a large population reduces to one without
randomness in the shifts but with an effective coupling function, which is a convolution of the original
coupling function with the distribution of the phase shifts. This result is valid for noisy oscillators and/or in
the presence of a distribution of natural frequencies. We argue also, using the property of global asymptotic
stability, that this reduction is valid in a partially disordered case, where random phase shifts are attributed
to the forced units only. However, the reduction to an effective coupling in the partially disordered
noise-free situation may fail if the coupling function is complex enough to ensure the multistability of
locked states.
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Globally coupled populations of oscillators serve, since
works of Winfree [1] and Kuramoto [2], as paradigmatic
models for collective synchronization. They describe, in
particular, arrays of Josephson junctions [3], coupled spin-
torque, micromechanical, and electrochemical oscillators
[4–6], and Belousov-Zhabotinsky chemical oscillators in
droplets [7]. In many cases, the global nature of coupling is
determined by the setup: a common load for Josephson
junction, spin-torque, or electrochemical oscillators natu-
rally ensures that a common oscillatory current flows
through these units. Also, mechanical oscillators (metro-
nomes or pedestrians) on a common platform experience
the same field. However, the oscillators may have different
properties and possess intrinsic noise so that, despite a
global force, the equations for them are not identical.
The most common source of diversity is a spread of

natural frequencies of oscillators; this feature has been
incorporated already in the original Kuramoto model [2].
Later, this was generalized for a disorder in other para-
meters of the oscillators [8–11]. In this Letter, we focus on
the effect of a disorder in the phase shifts in the coupling.
The phase shift was absent in the original Kuramoto setup
[2], but was introduced in a subsequent paper by Sakaguchi
and Kuramoto [12]. A constant (the same for all units)
phase shift in the coupling, taken into account by
Sakaguchi and Kuramoto, naturally appears when collec-
tive modes which are responsible for the interaction (e.g.,
macroscopic oscillations of a common load for the
Josephson junction [3] or of a platform for the metronomes
[13]) are phase shifted with respect to the forcing of the
oscillators.

We study here a situation where the phase shifts α for the
oscillators in the population are different. We start with a
situation of maximal disorder, where all the phase shifts αjk
between interacting units j, k are independent random
variables [14] obeying a distribution with density

gðαÞ ¼ 1

2π

X
m

ηmeimα; ηm ¼
Z

2π

0

dα e−imαgðαÞ: ð1Þ

We consider a rather general setup that includes noise and
possible heterogeneity of oscillators,

φ̇k ¼ FkðφkÞ þ σξkðtÞ þ ε
1

N

X
j

Γðφj − φk − αjkÞ: ð2Þ

Here the term Fk describes local dynamics of uncoupled
phases; for oscillators, it is usually just the natural
frequency Fk ¼ ωk, but it can take more complex form
for active rotators [12,15] or theta-neurons [16]. Further-
more, we include independent white Gaussian noise terms
σξkðtÞ, hξkðtÞξmðt0Þ ¼ 2δkmδðt − t0Þi. The general Daido-
Kuramoto coupling term [17] εΓ is defined by a 2π-
periodic coupling function ΓðxÞ ¼ P

m fmeimx. We keep
a small parameter ε to stress that this model is valid for
weakly coupled oscillators in the first order in this
parameter.
The nature in the disorder in phase shifts αjk can be

manifold, because to these phase shifts contribute the
forcing unit, the transmission from the driving to the driven
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unit, and the phase sensitivity property of the forced unit.
For example, a transmission of a signal from the driving
unit to the driven one can possess time delays [11],
resulting in a spread of the phase shifts (such delays are
crucial for the brain dynamics [18]). The equivalence of
time delays to phase shifts for weakly coupled oscillators
has been established in [19]: αjk ¼ ω0τjk, where ω0 is the
characteristic frequency of the oscillators and τjk are the
delays. This equivalence heavily relies on the existence of
the small parameter ε. First, although the characteristic
frequencies of the oscillators and of the mean field may
differ from ω0 in order ε, these effects can be neglected if
we keep only the order ∼ε in the coupling term. The second
condition is that the delays should be smaller than the slow
timescale, i.e., ετjk ≪ 1. Because parameter ε is small, the
phase shifts ω0τjk can be still of order 2π or larger.
Fourier representation of the coupling function Γ allows

for rewriting the coupling term as

1

N

X
j

Γðφj−φk−αjkÞ¼
X
m

fme−imφk
1

N

X
j

eimφj−imαjk : ð3Þ

We identify the last sum over index j as an average over the
ensemble, and to calculate it, we make a crucial assumption
on the statistical independence of the phases and the phase
shifts. This assumption appears reasonable in the thermo-
dynamic limit N → ∞, where an oscillator is subject to a
sum of many random forces. A similar assumption about
independence of the order parameters and random time
delays has been made in [11]. Thus,

1

N

X
j

eimφj−imαjk ¼ heimφihe−imαi ¼ Zmηm; ð4Þ

where we introduce the standard Kuramoto-Daido order
parameters Zm ¼ heimφi. Substituting back in (3) we obtain
a new effective coupling that does not contain random
phase shifts,

1

N

X
j

X
m

fmηmeimðφj−φkÞ ¼ 1

N

X
j

Γ̃ðφj − φkÞ; ð5Þ

Γ̃ðxÞ ¼
Z

2π

0

dαΓðx − αÞgðαÞ: ð6Þ

The effective coupling is just the convolution of the original
one with the distribution density of the phase shifts. This
effective coupling then can be used in Eq. (2). This
reduction for the case of maximal disorder is the main
result of the first part of this Letter. Expression (6) and the
equivalent expression for the Fourier modes f̃m ¼ fmηm
shows that the coupling becomes weaker and, more
important, its form changes. The “simplification” of the
coupling is mostly pronounced if the distribution of the

phase shifts has only one harmonic, e.g., the first harmonic
η1 ≠ 0, ηn>1 ¼ 0,

gðαÞ ¼ ð2πÞ−1�1þ 2jη1j cosðα − argðη1Þ
�
: ð7Þ

(The case of a Gamma-distribution of the time delays
considered in [11] is less instructive, because there ηm ≠ 0
for all m.) For such a distribution of phase shifts, the
effective coupling is just a sin coupling, independent of the
form of the original function Γ (provided it contains a
nonvanishing first harmonic). Remarkably, for a pure sin
coupling, many analytical results are available: for noise-
less oscillators with a Cauchy distribution of natural
frequencies ωk, the Ott-Antonsen (OA) ansatz [20] is valid;
for oscillators with identical natural frequencies and with
Gaussian noise, there is an analytical solution for Z1 with
dependence on the coupling strength and noise in terms of
modified Bessel functions [21]. We have checked in
numerical simulations that, indeed, these relations become
valid if one considers ensembles with complex coupling
functions Γ but with a maximally simplifying distribution
of phase shifts (7).
The reduction above is quite general, but it relies on the

assumption of independence of the phases and the phase
shifts, for which we have only plausible arguments. Below
we consider the case of partial disorder, where in some
situations the arguments supporting the reduction [(5) and
(6)] can be made rather accurate, but the reduction will be
valid not in all cases. By partial disorder, we denote
situations where the phase shifts in the coupling depend
on one index only: αjk ¼ αj or αjk ¼ αk. The interpretation
of these cases is straightforward: in the former situation, the
phase shift is the property of the driving unit (see examples
in [22]); in the latter case, the phase shift is attributed to the
receiver, like in Refs. [10,23,24]. For example, in [23] the
authors consider two types of oscillators: conformists and
contrarians. In terms of the phase shifts, conformists adjust
to the driving field and have αk ¼ 0, while contrarians
prefer to be out of phase and have αk ¼ π. Another
situation considered in [10,25] is when a global driving
field is “broadcast” from one source, and a unit φk receives
this forcing with delay τk proportional to the distance to the
“loudspeaker.” According to the equivalence discussed
above, the distribution of positions of the units results in
a distribution of the phase shifts according to αk ¼ ω0τk.
Remarkably, the two cases (dependence on index j or on
index k) can be transformed to each other by a simple shift
of the variables [10,24]. Thus, we consider the latter
case only.
Now the statistical independence assumption can be

hardly justified; therefore, we apply other methods, for two
particular situations: oscillators with an arbitrary distribu-
tion of natural frequencies ωk and external noise ∼σ, and
noise-free oscillators with sin coupling and Lorentzian
distribution of frequencies, where we can apply the OA
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theory. We write the equations of the first model using (2)
with Fk ¼ ωk and the mode representation of Γ,

φ̇k ¼ ωk þ
X
m

fmZme−imðφkþαkÞ þ σξkðtÞ: ð8Þ

In the thermodynamic limit, we describe the evolution of
the probability density Pðφ; tjω; αÞ of the phases φ,
conditioned by the phase shifts α and frequencies ω, with
the Fokker-Planck equation

∂tPþ ∂φ

��
ωþ

X
m

fmZme−imðφþαÞ
�
P
�
¼ σ2∂φφP: ð9Þ

The complex order parameters are represented as ZmðtÞ¼R
dωwðωÞR 2π

0 dφ
R
2π
0 dαgðαÞeimφPðφ;tjω;αÞ, where wðωÞ

is a probability density function of frequencies. We now
change the variable θ ¼ φþ α and for Pðθ; tjω; αÞ obtain

∂tPþ ∂θ

��
ωþ

X
m

fmZme−imθ

�
P
�
¼ σ2∂θθP: ð10Þ

This change of the variable effectively “moves”
the phase shifts from the dynamical equations to the
definition of the complex order parameters: Zm¼R
dωwðωÞR 2π

0 dθ
R
2π
0 dαgðαÞeimθ−imαPðθ;tjω;αÞ. The cru-

cial observation is that although the density Pðθ; tjω; αÞ
generally depends on the phase shifts, Eq. (10) does not.
We now argue that any initial dependence of P on the
parameter α will eventually disappear, so that asymptoti-
cally at large times Pðθ; tjω; αÞ → Pðθ; tjωÞ. This property
is well established for a time-independent Fokker-Planck
equation [26]. In terms of the theory of partial differential
equations, this property means global asymptotic stability
(GAS) of solutions of the parabolic Fokker-Planck equa-
tion (10), cf. [27]. In the context of general Markov
processes, this property is nothing else as ergodicity, often
formulated as “loss of memory” [28]. Although GAS is
expected to be valid for (10) [29], we have not found a
proof in the mathematical literature. A proof of GAS for the
time-dependent master equation, which is a closest finite-
dimensional analog of the Fokker-Planck equation, has
been given in Ref. [30]. From the physical viewpoint, GAS
of Eq. (10) appears rather evident, particularly because the
equation is defined on a finite domain 0 ≤ θ < 2π, and one
does not face difficulties in defining a convergence of
probability distributions on an infinite domain.
With the GAS property, for large times, the order para-

meters Zm can be expressed via the density Pðθ; tjωÞ as

ZmðtÞ ¼ ηm

Z
dωwðωÞ

Z
2π

0

dθ eimθPðθ; tjωÞ: ð11Þ

As a result of substituting this in (10), we obtain the same
reduction [(5) and (6)] as for the maximal disorder above:

one reduces the system to one without phase shifts, but the
order parameters of this auxiliary population have to be
multiplied, according to (11), with the circular moments ηm
of the distribution of the phase shifts gðαÞ. Or, equivalently,
one can say that the phases θ obey the dynamics of the
globally coupled ensemble with the effective coupling
function (6).
We stress here that, while the full problem (9) as a

nonlinear Fokker-Planck equation can demonstrate multi-
stability and hysteresis, this does not contradict GAS
because, for the latter property, one considers Eq. (10)
with predetermined values of the moments ZmðtÞ (in other
words, GAS corresponds to a transversal stability of a
solution for a particular time course of the global force).
The property of a unique asymptotic solution of the

auxiliary problem heavily relies on the loss of memory
(dissipativity due to noise-induced diffusion) of the kinetic
equation (10). We next demonstrate that this dissipativity
also may occur in a noise-free setup due to a distribution of
natural frequencies in the population. For this, we have to
assume additionally that a distribution of natural frequencies
wðωÞ is independent of the distribution of phase shifts gðαÞ.
Furthermore, to be able to apply the OA approach [20], we
assume that the coupling is due to the first harmonic only,
i.e., fm ¼ 0 for jmj > 1. Under these assumptions, the
kinetic equation for the density Pðθ; tjω; αÞ [which is the
same as (10) but with σ ¼ 0] can be represented through an
infinite set of equations for the ω, α-dependent order
parameters qmðtjω; αÞ ¼

R
2π
0 dθ eimθPðθ; tjω; αÞ. The main

order parameters are integrals of these quantities
ZmðtÞ ¼

R
dα gðαÞ R dωwðωÞqmðtjω; αÞ. In the OA theory,

one first assumes analyticity in the upper half plane of
these order parameters as functions of the frequency.
This allows, provided the distribution wðωÞ is a Cauchy
one wcðωÞ ¼ γ

�
π
�ðω − ω0Þ2 þ γ2

�	−1, for integration
over frequencies by virtue of the residue theoremR
dωwcðωÞqmðtjω;αÞ¼qmðtjω0þ iγ;αÞ. The second con-

stituent of the OA theory is the observation that the infinite
system of equations for qm possesses an invariant manifold
qm ¼ Qm, corresponding to a wrapped Cauchy distribution
of the phases θ. Thus, the whole hierarchy of equations
reduces just to one equation (where α is still a parameter, and
we denote H ¼ f1Z1),

Q̇ðtjαÞ ¼ ðiω0 − γÞQðtjαÞ þH −H�Q2ðtjαÞ; ð12Þ

ZmðtÞ ¼
Z

2π

0

dαQmðtjαÞe−imαgðαÞ: ð13Þ

Note that in Eq. (12) the order parameterQðtjαÞ depends
on the phase shifts α only through initial conditions, but its
dynamics is α independent. The GAS property above
means that, in the course of the dynamics, the memory
about the initial state gets lost and QðtjαÞ → QðtÞ. We
derive this stability in the linear approximation. Let us
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assume that QðtjαÞ ¼ Q̄ðtÞ þ βðtjαÞ, where βðtjαÞ is a
small transversal perturbation. Then the equation for Q̄ðtÞ
is (12), and the equation for βðtjαÞ reads β̇ ¼ ðiω0 − γÞβ−
2H�Q̄β. Let us introduce still another variable Y according
to β ¼ ð1 − jQ̄j2ÞY. Then the dynamical equation for this
new variable reads Ẏ¼ �

iωþHQ̄�−H�Q̄−γð1þjQ̄j2Þð1−
jQ̄j2Þ−1�Y. Because ReðHQ̄� −H�Q̄Þ ¼ 0, for the absolute
value of Y we obtain ðd=dtÞjYj ¼ −γð1þ jQ̄j2Þð1−
jQ̄j2Þ−1jYj. Because according to (12) 0 ≤ jQ̄j2 < 1, var-
iable jYj decays to zero exponentially, and thus Y → 0. This
means that also β → 0, which proves linear asymptotic
stability. One can see that a spread of natural frequency is
essential; for γ ¼ 0, we have jYj ¼ const, and the memory
about initial conditions is not lost (this is another mani-
festation of the Watanabe-Strogatz integrability of a pop-
ulation of identical oscillators [31,32]).
After the convergence QðtjαÞ → QðtÞ, the dynamics of

the population with a distribution of phase shifts reduces to
a single dynamical equation for the auxiliary order para-
meter QðtÞ, the original order parameters are related to it
via circular moments of the distribution of α,

Q̇ðtÞ ¼ ðiω0 − γÞQðtÞ þH −H�Q2ðtÞ; ð14Þ

ZmðtÞ ¼ ηmQmðtÞ: ð15Þ

This completes a closed description for a population of
oscillators with a first-harmonic coupling, Cauchy distri-
bution of the natural frequencies, and an arbitrary distri-
bution of the phase shifts. We note that an expression for Z1

similar to (15) has been obtained in [24] for a steady-state
regime of the dynamics.
Above, we have argued for the GAS property for noisy

oscillators with arbitrary coupling and derived linear
asymptotic stability for oscillators fulfilling the OA ansatz
(i.e., with the first-harmonic coupling and the Cauchy
distribution of natural frequencies). In both cases, the
dissipativeness leading to GAS is due to disorder, either
in the form of noise or in the form of a continuous
distribution of natural frequencies. The necessity of dis-
order is rather obvious because, in particular, for a first-
harmonic coupling without disorder (i.e., for a population
of identical oscillators), the Watanabe-Strogatz integrability
holds, which prevents asymptotic stability. However, the
presence of disorder in the form of a continuous distribu-
tion of natural frequencies is generally not sufficient for
GAS. On the one hand, a continuous distribution of natural
frequencies leads to an effective (nonchaotic) mixing in a
population due to the mechanism of Landau damping
[33–35] (for explicit finite-dimensional dissipative reduc-
tions for distributions with nice analytic properties, see
Refs. [36–38]). On the other hand, this damping occurs
only for differentially rotating oscillators and not for the
locked ones. The latter do not mix but form a coherent

cluster. One can expect GAS for the whole system if there
can be just one cluster, i.e., if the coupling function ΓðxÞ in
(2) allows for one stable synchronous state for coupled
units. This is the case if this coupling function is just sinðxÞ,
like in the case where the OA ansatz is applicable. Thus, we
expect that GAS will be valid for coupling functions
possessing only one stable synchronous state, but will be
violated for multistable couplings [39–41]. Note that with
an unbounded noise (e.g., with a Gaussian white noise
assumed in the discussion of the Fokker-Planck equation
above) the multistability disappears, because now transi-
tions between different stable clusters become possible;
however, for a bounded noise, multistability can survive.
There is still an interesting possibility for GAS to be

valid, at least for some initial states, for continuous
distributions of natural frequencies even if the coupling
ΓðxÞ is so complex to beget multistability. This relies on the
observation above that, in the presence of GAS, the
effective coupling function Γ̃ðxÞ appears, which is a
convolution of the original coupling function and the
distribution of the phase shifts. Suppose that the distribu-
tion density of the phase shifts has the form (7), i.e., it has
only one Fourier harmonic. Then the effective coupling
function Γ̃ðxÞ will also have only one Fourier harmonic,
fulfilling conditions for the OA ansatz. Thus, this system
will possess the state described by Eqs. (14) and (15) above
(provided the distribution of frequencies is a Cauchy one).
This regime is expected to be robust, so it has a finite basin
of attraction even if the initial conditional distribution of the
auxiliary phases θ ¼ φþ α does depend on α. However,
this state may coexist with other states, not fulfilling GAS.
We illustrate this by considering a population of oscillators
with a Cauchy distribution of natural frequencies, one-
harmonic distribution of the phase shifts (7), and a rather
complex original coupling function ΓðxÞ [see inset in
Fig. 1(a)]. We show two runs from different initial phase
distributions; in one [Figs. 1(a) and 1(d)], the system
converges to a state where the distribution of θ does not
depend on α; while in another run [Figs. 1(a) and 1(c)] this
dependence does not disappear. In the former state, the
theory developed above can be applied. Because the
effective coupling function Γ̃ðxÞ possesses only one har-
monic, the final state lies on the OA manifold. To
demonstrate this, we, together with circular moments
Zm, m ¼ 1, 2, 3, show the two circular cumulants κ2 ¼
Z2 − Z2

1 and κ3 ¼ 1
2
ðZ3 − 3Z2Z1 þ 2Z3

1Þ, which character-
ize deviations from the OA manifold [42]. One can see that,
over time, the magnitudes of these cumulants decrease (and
saturate at the level of the finite-size fluctuations). In
contradistinction, for other initial conditions, a regime with
a clear dependence of the distribution on α establishes
[Fig. 1(c)], in which the effective coupling function cannot
be introduced, and the state is far from the OA manifold.
Summarizing, we have demonstrated that, in many

situations, the dynamics of an ensemble of globally coupled
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oscillators with random distributed phase shifts can be
reduced to an effective ensemble without phase shifts, with
a proper reduction of the effective coupling function (the
convolution of the original one and the distribution of the
phase shifts). This reduction heavily relies on a possibility to
average over the phase shifts. For systems with maximal
disorder where the phase shifts constitute a random matrix,
this property appears to be justified in the thermodynamic
limit. For a partial disorder, where the matrix of phase shifts
has constant rows or columns, we rely on the GAS property,
ensuring convergence to the same asymptotic state (poten-
tially nonstationary) from arbitrary initial distributions,
provided that the time evolution of driving forces on the
oscillators is fixed. This property of independence of the
final state on the initial distribution can be recast as
ergodicity. The GAS property can be naturally expected
for ensembles with unbounded independent noises (e.g.,
Gaussian or Cauchy noise) and any coupling function.
The situation is more subtle if there is no noise, but a

disorder is due to a continuous distribution of natural
frequencies. Here one can expect GAS only for simple
enough coupling functions, possessing no multistability.
For example, for a single-harmonic coupling function and a
Cauchy distribution of natural frequencies, we have explic-
itly demonstrated asymptotic stability by virtue of the OA
approach. Furthermore, we showed numerically that the
GAS property might be violated for cases where the
coupling function possesses multistability.
In our setup, we assumed that the phase shifts are

random parameters of oscillators, independent of the

natural frequencies and other parameters that can poten-
tially be distributed (e.g., noise strengths). Another ideali-
zation adopted in the present study is that the magnitude of
the coupling is the same for all units. The latter assumption
might be violated if the propagating global field decays on
the way to remote units. Our theory is only valid if this
effect is much smaller than the spread of the phase shifts.
This happens if the wavelength of the signal-transmitting
wave is small enough.
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