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Abstract
We explore the model of a population of nonlocally coupled identical phase oscillators on a ring
(Abrams and Strogatz 2004 Phys. Rev. Lett. 93 174102) and describe traveling patterns. In the
continuous in space formulation, we find families of traveling wave solutions for left-right
symmetric and asymmetric couplings. Only the simplest of these waves are stable, which is
confirmed by numerical simulations for a finite population. We demonstrate that for asymmetric
coupling, a weakly turbulent traveling chimera regime is established, both from an initial standing
chimera or an unstable traveling wave profile. The weakly turbulent chimera is a macroscopically
chaotic state, with a well-defined synchronous domain and partial coherence in the disordered
domain. We characterize it through the correlation function and the Lyapunov spectrum.

1. Introduction

The collective dynamics of oscillator ensembles attracts much interest across different fields of science and
engineering. One of the paradigmatic and universal objects of study is the model of nonlocally coupled phase
oscillators. The theoretical and experimental investigations have shown that such systems possess so-called
chimera states [1]. These symmetry-broken states are characterized by the coexistence of synchronous and
asynchronous groups of oscillators [1–3]. Kuramoto and Battogtokh (KB) [4] observed and explained the
first chimera regime for a ring of interacting phase oscillators with an exponential kernel. Then, Abrams and
Strogatz (AS) [5] proposed an alternative version of the convolution operator kernel, represented as a
combination of zero and first Fourier modes. This assumption allowed them to describe chimeras
semi-analytically using the Ott–Antonsen (OA) approach [6–8]. Note, in the works [9–12], it has been
shown that for the KB model, many theoretical results can be obtained by modifying the exponential kernel
by accounting for periodic boundary conditions. Chimera regimes, discovered by Kuramoto and Battogtokh
almost 20 years ago, continue to be in the focus of theoretical and experimental studies [1–3].

While chimeras are typically standing synchronization patterns, the possibility of localized traveling
synchronization waves in oscillatory media has also been explored and demonstrated. Recently,
Omel’chenko [13, 14] has studied the AS model with asymmetry in the interaction of nonidentical phase
oscillators (with heterogeneous natural frequencies) and observed nontrivial patterns in the form of traveling
waves moving at constant velocities. These traveling waves have been expressed in terms of the
coarse-grained order parameter within the OA approach, but the limiting case of identical oscillators was not
treated. Hence, the possibility of such traveling waves in purely regular oscillatory media remains an open
problem. Our work is aimed at bridging this gap.

Traveling waves on a ring can appear as so-called twisted states [15–19]. In a uniformly twisted state, the
phase difference between adjacent oscillators is a constant, such that the total phase shift around the ring is
an integer multiple of 2π. This type of collective modes, which, because of a linear in space profile of the
phases is sometimes called plane wave solution, is an important yet simple coherent regime of oscillator
population dynamics. In the recent paper [20], nonuniformly twisted states with nonuniform phase profiles
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were reported in a ring of nonlocally symmetrically coupled Stuart–Landau oscillators. They are
characterized by a nonconstant gradient of the ordered phase distribution and an inhomogeneous amplitude
profile that travels along the ring with a fixed shape and a constant speed. However, in the present work, we
show that the spatiotemporal amplitude variations are not necessarily needed to form such collective modes
and they can exist in the phase-reduced model (e.g. in the AS setup).

We mention here other known examples of traveling solutions. In [18], two types of traveling patterns
(regular phase profiles and chimera-like states) in a system of identical units with symmetric in space
coupling have been reported. Synchronization waves (moving patterns of different degrees of local
synchrony) have been reported in systems with local coupling [21] and with a combination of global and
local coupling [22]. In paper [23], the authors considered a ring of identical oscillators with an asymmetric
KB-type coupling. They observed a chimera-like state, although they followed this motion for a relatively
short time interval. This system is close to the KB setup, with an additional advective term in the
coupling [24]. The basic observation is that a relatively ordered phase profile appears in such a system,
which, however, can be well visualized for a large number of oscillators only. This traveling regime is
non-stationary and weakly turbulent. Additionally, in [24], regular traveling wave solutions in a KB-type
setting were constructed, but only some of them are stable.

The present paper is based on the AS setup, with an additional asymmetric term in the coupling. Typical
patterns observed in such a spatially extended system closed in a ring are nonuniformly twisted states and
traveling turbulent (irregularly changing) wave patterns resembling chimera states. Combining numerical
simulations with analytical consideration, we conduct a detailed study of these regimes. We describe and
characterize them both qualitatively and quantitatively, determining their most important properties. The
reported observations in the AS setup significantly extend the previous findings by clarifying what happens
for identical oscillators in the case of asymmetric coupling.

2. Basic model

2.1. Continuous and discrete setups
Our basic model is a generalization of the setup [5] for a population of nonlocally coupled phase oscillators
arranged in a ring. In a continuous formulation, at each position on the ring 0⩽ x< 2π, a phase φ(x, t) is
defined, which is governed by a local driving complex field H(x, t):

∂φ(x, t)

∂t
= Im

(
H(x, t) e−iφ(x,t)−iα

)
. (1)

Without loss of generality, we assumed that the natural frequencies of the oscillators are the same and set this
frequency to zero by choosing the appropriate rotating reference frame. The phase shift α is the essential
parameter of the model. The driving field H(x, t) is a weighted sum of contributions from all the oscillators
with a kernel G(x):

H(x, t) =

π̂

−π

G(x− ζ) eiφ(ζ,t)dζ. (2)

In the presented work, the function G(x) is chosen in the following specific form:

G(x) = (g0 + g1 cosx+ g2 sinx)
/
2π. (3)

In the original AS model, the kernel G(x) is supposed to be symmetric, i.e. g2=0, while, in this work, we also
account for a possible asymmetry∼g2 in the nonlocal coupling of the particle, following [13, 14, 25].
According to [13, 14, 25], such an asymmetry can lead to several interesting effects on the collective behavior
of oscillators. By rescaling time, we can set g0=1, which will be assumed throughout the paper. Thus, the
governing parameters are α, g1 and g2.

In direct numerical simulations, we use a discretization of the continuous setup (1), (2), by consideringN
equidistributed oscillators on the circle. The resulting system of ordinary differential equations (ODEs) reads

dφn

dt
= Im

(
Hn (t) e

−iφn(t)−iα
)
, (4)

where each unit is subject to a driving force from the complex mean field

Hn (t) =
N∑

ñ=1

Gn,ñ e
iφñ(t), (5)
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and the coupling coefficients Gn,ñ are defined by relations

Gn,ñ = 2πG
(
2π (n− ñ)

/
N
)/

N. (6)

2.2. Coarse-grained complex order parameter
In general, φ(x, t) is a measurable, non-continuous function of space. To characterize the distribution of the
phases, it is convenient to introduce a coarse-grained (local) order parameter

Z(x, t) =
〈
eiφ(ζ,t)

〉∣∣∣
ζ∈(x−δ,x+δ)

=
1

2δ

x+δˆ

x−δ

eiφ(ζ,t) dζ, (7)

where the last integral is understood in the Lebesgue sense. The interval δ should be much smaller than all
other characteristic spatial scales. If the local distribution of the phases is a delta-distribution (local
synchrony), then Z(x, t) = eiφ(x,t), where φ(x, t) is a continuous in space local phase. If the local distribution
of the phases is uniform, then Z(x, t)=0. In general, the |Z(x, t)| value characterizes the local synchrony level.

3. Traveling wave solutions

In this section, we describe particular continuous in space solutions. Because of the ring geometry, such
solutions are characterized by a topological integer parameterM (winding number), which is defined
according to

M=
φ(x+ 2π, t)−φ(x, t)

2π
. (8)

We will seek for traveling waves

φ(x, t) = ϕ(ξ)+Ωt, H(x, t) = h(ξ)eiΩt, (9)

with the traveling coordinate ξ = x− vt. Parameters Ω and v determine the wave’s frequency and velocity.
The winding number enters as a periodicity condition

ϕ(ξ) = ϕ(ξ+ 2π)− 2πM. (10)

3.1. Uniformly twisted states
The simplest traveling waves have a linear in space profile. The solution satisfying the boundary
condition (10) has a form

φ(x, t) = ϕ0 +Mx+ΩMt, (11)

where ϕ0 is an arbitrary constant. A substitution in the basic equations yields the following expression for the
frequency ΩM:

ΩM=


− sinα if M = 0,

−(g1 sinα+Mg2 cosα)
/
2 if |M|= 1,

0 if |M|> 2.
(12)

Notably, the caseM=0 corresponds to a fully synchronous state with a constant in space phase.
The stability properties of these solutions, characterized by parameters ΩM andM, can be analytically

studied using a standard linearization procedure near the respective mode. In this way, we arrive at the
eigenvalue problem, analyzing which, we obtain the following results:

(a) the homogeneous synchronous state withM=0 is stable if cosα>0 and 0<g1<2;
(b) the stability condition of uniformly twisted modes withM=±1 consists in the simultaneous fulfillment

of three inequalities g1 cosα+Mg2 sinα>0, g1 cosα+3Mg2 sinα>0, and (g1−1)cosα+Mg2 sinα>0;
(c) the uniformly twisted states with |M|>1 is stable if cosα<0 and g1>0.

Here, in addition, we emphasize that the homogeneous fully asynchronous regime is stable if cosα<0
and g1> |g2 tanα|. Technical details of such a stability analysis can be found in [15, 18]. Note that one can
perform this analysis employing relations presented below for a more general inhomogeneous in space
situation.

3
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Finally, we stress that the uniformly twisted states with spatial rotation number |M|> 1 correspond to
vanishing velocity v in (9). In contradistinction, the uniformly twisted states with the spatial rotation
numberM=±1 can be represented in the form of genuine traveling waves because the frequency ΩM differs
from zero in this case: φ(x, t)=±ξ=±(x−vt) where v=−Ω±1=(g1 sinα±g2 cosα)

/
2.

3.2. Nonuniformly twisted traveling states
Here, we look for generic traveling waves. Substituting (9) in relations (1), (2) and expanding the kernel (3)
with trigonometric identities, we obtain that

dϕ(ξ)

dξ
=

1

v

[
Ω− Im

(
h(ξ)e−iϕ(ξ)−iα

)]
, (13)

h(ξ) =

+πˆ

−π

G(ξ− ζ)eiϕ(ζ)dζ = h0 + h1 cosξ+ h2 sinξ , (14)

where the complex coefficients h0, h1 and h2 are given by

h0 =
1

2π

+πˆ

−π

eiϕ(ζ) dζ , (15a)

h1 =
g1
2π

+πˆ

−π

eiϕ(ζ) cosζ dζ − g2
2π

+πˆ

−π

eiϕ(ζ) sinζ dζ , (15b)

h2 =
g1
2π

+πˆ

−π

eiϕ(ζ) sinζ dζ +
g2
2π

+πˆ

−π

eiϕ(ζ) cosζ dζ . (15c)

Additionally, the boundary condition (10) should be fulfilled.
Next, we briefly describe the procedure for finding traveling waves with different spatial rotation

numbersM. According to equations (13) and (14), at a glance, each phase profile ϕ(ξ) belonging to this class
of nontrivial collective modes depends on eight unknown quantities Ω, v, h0, h1 and h2 (because h0, h1 and
h2 are complex). However, only six conditions (15) of self-consistency are to be fulfilled. On the other hand,
because of the phase shift invariance φ→ φ+φ0 and the space shift invariance x→ x+ x0 (where φ0 and x0
are arbitrary constants), one can set (without loss of generality) the values h0 and h2 to be real. Therefore, we
reduce the number of unknowns by two and arrive at the system of six nonlinear equation (15) for six real
variables Ω, v, h0, Re(h1), Im(h1) and h2, where the trajectory ϕ(ξ) is calculated with the help of
equation (13) and satisfies the condition (10).

For given values Ω, v, h0, h1 and h2, equation (13) can be interpreted as the Adler equation with periodic
coefficients in a nonlinear forcing term, where the structure of the complex function h(ξ) is known explicitly
from expression (14). For such an equation, the solution ϕ(ξ) satisfying the periodicity condition (10) can be
reconstructed by using the related Poincaré map and its fix points (one of them is stable and the other is
unstable). The corresponding Poincaré map coincides with the Möbius transformation that takes the closed
unit disk onto itself [26–30]. According to [24, 30], the parameters of the canonical form of this
transformation can be uniquely determined by employing two solutions of the supporting complex Riccati
equation starting from the specific (specially selected) initial conditions. For fixed quantities Ω, v, h0, h1 and
h2, this approach allows one to obtain a periodic orbit for the phase variable ϕ(ξ) defined on a cylinder,
which automatically meets the periodicity condition (10) and can be associated with the phase profile of the
traveling wave we are looking for (see [24] for details).

As a result, for each set of the significant model parameters α, g1 and g2, the problem of searching for a
nonuniformly twisted state in the form of a continuous pattern with a permanent shape, moving at a
constant velocity, reduces to the problem of detecting roots of equation (15), which can be solved
numerically by a method based on the Newton–Raphson algorithm. A discussion of the details and subtleties
(in particular, an iterative procedure for finding a good initial approximation close to the genuine roots of
the nonlinear equations) of each stage of the developed procedure for constructing similar solutions in the
model of oscillator lattices with advective–diffusive coupling can be found in the paper [24].

The robustness of traveling waves is evaluated as follows. To study the linear stability of the spatially
inhomogeneous solutions obtained as described above, we, as the first step, rewrite the continuous AS
model (1), (2) and (3) in the frame, rotating with frequency Ω and moving at speed v. In this reference
frame, the nonuniformly twisted state is a stationary solution ϕ(ξ). Then, we represent φ(ξ, t) in the form

4
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φ(x, t) = ϕ(ξ)+ψ(ξ, t), where ψ(ξ, t) describes ξ-periodic small deviations from the traveling wave profile
ϕ(ξ). Substituting this expression into the basic equations for the phase variable, linearizing them in the
vicinity of ϕ(ξ) and employing trigonometric identities, we arrive at the following linear integro-differential
equation for ψ(ξ, t) with coefficients independent of t:

∂ψ (ξ, t)

∂t

= v
∂ψ (ξ, t)

∂ξ
+ sin(ϕ(ξ)+α)

1

2π

 +πˆ

−π

ψ(ζ, t) sin(ϕ(ζ))dζ −ψ(ξ, t)

+πˆ

−π

sin(ϕ(ζ))dζ


+ cos(ϕ(ξ)+α)

1

2π

 +πˆ

−π

ψ(ζ, t) cos(ϕ(ζ))dζ −ψ(ξ, t)

+πˆ

−π

cos(ϕ(ζ))dζ


+(g1 sinξ− g2 cosξ) sin(ϕ(ξ)+α)

1

2π

 +πˆ

−π

ψ(ζ, t) sinζ sin(ϕ(ζ))dζ −ψ(ξ, t)

+πˆ

−π

sinζ sin(ϕ(ζ))dζ


+
(
g1 sinξ− g2 cosξ

)
cos(ϕ(ξ)+α)

1

2π

 +πˆ

−π

ψ(ζ, t) sinζ cos(ϕ(ζ))dζ −ψ(ξ, t)

+πˆ

−π

sinζ cos(ϕ(ζ))dζ


+
(
g1 cosξ+ g2 sinξ

)
sin

(
ϕ(ξ)+α

) 1

2π

 +πˆ

−π

ψ(ζ, t) cosζ sin(ϕ(ζ))dζ −ψ(ξ, t)

+πˆ

−π

cosζ sin(ϕ(ζ))dζ


+
(
g1 cosξ+ g2 sinξ

)
cos(ϕ(ξ)+α)

1

2π

 +πˆ

−π

ψ(ζ, t) cosζ cos(ϕ(ζ))dζ −ψ(ξ, t)

+πˆ

−π

cosζ cos(ϕ(ζ))dζ

.
(16)

Further, following the standard procedure of stability analysis, we seek ψ(ξ, t) in factorized form
ψ(ξ, t)=Re

(
Ψ(ξ)eλt

)
. With a spatial discretization, the linear integral operator (16) reduces to a matrix,

eigenvalues λ of which can be found numerically. The reliability of such an approach is confirmed by the
overlap of found eigenvalues for different discretizations (see spectrum examples in a more complicated
situation in [24]).

Here we also mention that our key assumption of the above presented analysis is that the nontrivial
collective modes in the form of traveling waves propagating at constant velocities can be associated with
nonuniformly twisted states having continuous phase profiles. On the other hand, using the OA approach
[6, 7], in the thermodynamics limit (where N→∞), one can reduce the problem to low-dimensional
dynamical systems for coarse-grained complex order parameter Z(x, t). In the corresponding analytical
procedure, the acting field H(x, t) is expressed directly in terms of Z(x, t) with the help of convolution where
the Lebegues integral over the phase distribution φ(x, t) (generally speaking, nonsmooth) is transformed, by
virtue of coarse-graining, to the Cauchy integral over the continuous (relatively smooth) profile Z(x, t). Such
a transition to the averaged description makes it possible to provide a link between the fundamental concepts
of synchronization phenomenon and the theory of nonlinear wave structures. This observation is one of
main findings of the papers [2, 3, 9]. Despite the above advantages and benefits of the OA approach, we do
not employ such a reduction in the presented study. We perform our theoretical analysis and numerical
simulations within the framework of the basic equations of the dynamics of phase oscillator and also use the
self-consistency arguments allowing one to formulate an integro-differential equation for a phase profile of a
nonuniformly twisted state. Because we are looking for traveling wave patterns, it is natural to suppose that
the continuous medium of phase oscillators is in a filly coherent state, i.e. |Z(x, t)|= 1 at each point
x ∈ [−π,π] at any time t. In this case, we assume that the system under consideration possesses regimes of
behaviors where all identical elements rotate synchronously with the frequency Ω and the spatial distribution
of the dynamical variable φ(x, t) is determined by a smooth function ϕ(ξ) of the traveling coordinate
ξ = x− vt. Actually, in terms of the OA manifold, this smooth profile ϕ(ξ) is the inhomogeneous part
of the phase of complex order parameter Z(x, t) which absolute value is identically equal to unity, i.e.
Z(x, t) = eiΩt+iϕ(ξ).

3.3. Traveling wave profiles and their stability
Here, we will present the outcomes of these calculations and examine the properties of the corresponding
modes. If a solution to the problem (13)–(15), or an approximate solution, is already available for certain

5
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Figure 1. (a)–(d) Examples of traveling wave solutions with a spatial rotation numberM=−1 which are found in the case of
symmetric nonlocal interaction (i.e. g2=0) for the phase lag α=1.457 and several values of g1: (a) g1=0.975 (point A on panel
(e)), (b) g1=1.05 (point B on panel (e)), (c) g1=1.2 (point C on panel (e)) and (d) g1=1.5 (point D on panel (e)). The solid red
line represents the phase profile ϕ(ξ)

/
π and the dash-dot green line depicts the real part of the complex mean field h(ξ)

determined by equations (14) and (15) and the dashed blue line is its imaginary part. (e) Regions (on the plane of parameters g1
and α) of existence (area with red hatching) and stability (domain shaded in dark blue) of nonuniformly twisted states with
M=−1 for the original AS model, where the coupling function is taken in the form (3) with g2=0. The inset corresponds to the
enlarged rectangular area outlined by the black dashed line.

values of α, g1 and g2, then it becomes feasible to extend the solution to neighboring parameters. Of course,
such a continuation is not possible for the integer winding numberM. Consequently, for each fixed value of
the phase shift numberM, we obtain a family of traveling solutions with different velocities and rotation
frequencies by continuation in the significant model parameters α, g1 and g2.

3.3.1. Symmetric kernel
Let us begin with the standard symmetric AS setup, where g2=0. Under this symmetric coupling condition,
we have successfully identified traveling waves with spatial rotation numbersM=±1 andM=±2
exclusively. The phase profiles of the nonuniformly twisted states withM=−1 are depicted in panels (a)–(d)
of figure 1. Additionally, figure 1(e) represents the parameter plane with axes g1 and α, where we highlight
the regions of existence and stability for the corresponding traveling wave solutions. It is evident from this
figure that the existence region is quite extensive, whereas the stability domain is relatively small. In the stable
domain, these nonuniformly twisted states can be observed during the long-term evolution of systems
comprising a large number of oscillators. They may play a significant role in the nonequilibrium collective
dynamics of ensembles of nonlocally interacting elements. Furthermore, in the vicinity of the stable domain,

6
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Figure 2. The same as in figure 1 with the model parameters set to the same values, but for the spatial rotation number of
M=−2 characterizing nonuniformly twisted states. In this case, the corresponding traveling wave patterns are unstable.

a region exists where the traveling waves withM=−1 exhibit weak instability. Consequently, these waves
may appear as transient states during the transition to complete phase synchrony or another (more
complicated) collective mode.

Figures 2(a) and (d) display several examples of phase profiles for traveling wave solutions withM=−2
in the case of symmetric coupling. However, our analysis reveals that all of these wave patterns are unstable.
The existence region of these unstable wave solutions is illustrated in figure 2(e).

3.3.2. Asymmetric kernel
Here, we consider asymmetric kernels with g2 ̸= 0. In figures 3 and 4, we present various examples and
branches of solutions obtained for different values of the parametersM, α, g1 and g2. To obtain these results,
we employ a combination of the previously developed iterative procedure, which helps find an initial
approximation for the solutions corresponding to a fixed spatial rotation numberM (see appendix A in
[24]), with the Newton–Raphson method for continuation along the asymmetry parameter g2 of the
coupling function (3) (see section 3.2). The findings demonstrate that this procedure allows exploring
various nontrivial collective modes for integer values of |M| ranging from one to large absolute values. For
each set of α and g1 values, the corresponding branch of traveling wave solutions is confined within certain
limits of the asymmetry parameter g2.

Remarkably, the cases ofM=−1 andM=−2 (and similarlyM=1 andM=2) stand out from the rest.
These cases allow the corresponding continuous phase profiles to exist not only for positive (negative) values
of the asymmetry parameter g2 but also for vanishing and even negative (positive) g2 values. Of particular

7



J. Phys. Complex. 5 (2024) 015019 L A Smirnov et al

Figure 3. (a)–(d) Examples of traveling wave solutions in systems of phase oscillators with asymmetric nonlocal coupling for
α= 1.475, g2 = 0.1 and the following pairs of g1 andM: (a) g1 = 0.8,M=−3, (b) g1 = 0.8,M=−5, (c) g1 = 0.9,M=−8 and
(d) g1 = 0.9,M=−10. The lines of three types (solid red, dash-dot green, dashed blue) depict the same as in figure 1. Panels (e)
and (f) Dependence of the combination v−Ω of the movement velocity v and the rotation frequencyΩ of traveling waves on the
cube root of the asymmetry parameter g2 in the coupling function (3) forM=−1,−2, . . . ,−10. The results shown on panels (e)
and (f) were obtained for the same phase shift α= 1.475, but for two different values of the parameter g1: (e) g1 = 0.8 and (f)
g1 = 0.9. Each solid curve ending with a unique marker corresponds to a particular value of the parameterM (see the graphic
legend on the right). The dashed gray line depicts the frequencyΩ−1 of the uniformly twisted states withM=−1 vs. 3

√
g2 (see

equation (12)). The point indicated by the gray marker on the vertical dotted line represents the frequency of the standing
chimera that exists in the original AS model with g2 = 0 for the corresponding sets of two other parameters α, g1. Here, we also
depicted the stability of the phase profiles under consideration. Unstable solutions are shown with a thin part of the respective
line and stable solutions with a thickened portion of the curve. In these cases, only the uniformly twisted states withM=−1 and
the nonuniformly twisted states withM=−1 andM=−2 can indeed be stable.

interest, we observe that the branch of nonuniformly twisted states withM=−1 (andM=1) intersects with
the branch of uniformly twisted states of type (11) withM=−1 (andM=1) at a certain point (for fixed
values of α and g1). A bifurcation occurs at the parameters corresponding to this junction of the specified
branches. In section 3.1 we have shown that the uniformly twisted states existing in the considered model can
have the winding number, which is equal only to unity in absolute value, i.e. |M|= 1. The states with larger
winding number (|M|> 1) do not exist in the system under study. Therefore, bifurcations curves of
nonuniformly twisted states with |M|> 1 do not intersect with those of uniformly twisted states because of
their absence. In the case |M|= 1 (for fixed values of the phase lag α and the kernel parameter g1), a
bifurcation curve of a nonuniformly twisted state intersects with that of a uniformly twisted state.
Approaching this point, the nonuniformly twisted state continuously transforms into the uniformly twisted
state. The nontrivial traveling wave pattern converts into a trivial one. Such a situation is common and
occurs for a set of pairs with different values of the phase shift α and the coupling kernel parameter g1. Thus,
we have a two-dimensional surface in the three-dimensional space of system parameters corresponding to
the considered bifurcation, so that this picture can be interpreted as a codimension-1 bifurcation.

At higher values of the winding number |M|>3 (figure 4), we observe that the regions where traveling
wave patterns exist shift towards smaller values of g2 as |M| increases. This means that traveling waves with
larger numbers of phase rotations are found for smaller asymmetry parameters g2 and have correspondingly
smaller velocities. Remarkably, it is possible to find traveling waves for extremely small values of g2; however,
this requires considering profiles with a very large number of phase shifts |M| (as seen in figure 4). In the case
of a vanishing asymmetry parameter g2, which corresponds to the original AS model, the nonuniformly
twisted states appear to convert into standard standing chimeras characterized by the coexistence of
synchronous and asynchronous patches of oscillators. In other words, the standing chimera regimes can be
interpreted as nonuniformly twisted states with an infinitely large spatial rotation number |M|. This
interpretation is supported by the observation that the branches shown in figure 4(e) tend to converge to a
point representing the frequency of uniformly rotation of the phase of the complex order parameter in a
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Figure 4. (a)–(d) Examples of traveling wave solutions in systems of phase oscillators with asymmetric nonlocal coupling for
α= 1.475, g1 = 0.8 and the following values of g2 andM: (a) g2 = 0.014,M=−20,Ω=−0.7605, v= 0.0144, (b) g2 = 0.014,
M=−30,Ω=−0.7584, v= 0.0096, (c) g2 = 0.007,M=−40,Ω=−0.7597, v= 0.0071 and (d) g2 = 0.007,M=−50,
Ω=−0.7590, v= 0.0057. The solid red line represents the phase profile ϕ(ξ

/
π) and the dashed blue line depicts the amplitude

of the complex mean field h(ξ). The gray line indicates the value |Ω| and the gray shaded area corresponds to the domain
|h(x)|> |Ω|. (e), (f) Dependence of the combination v−Ω of the movement velocity v and the rotation frequencyΩ of traveling
waves on the asymmetry parameter g2 in the coupling function (3) for larger absolute values of the phase shift numberM than in
figure 3(e):M=−11,−12, . . . ,−80. The point indicated by the gray marker represents the same as in figure 3(e). Three closed
dashed lines nested in each other outline the contour of the regions, inside which the maximum possible value of the real parts of
the eigenvalues of the problem (16) does not exceed 8×10−3, 2×10−3 and 5×10−4, respectively. The traveling wave solutions
corresponding to the points lying inside the smallest of these three regions can be considered as quasi-stable transient states.

standard chimera regime. Note, in the symmetric case when g2 → 0 and |M| →∞, actually, the following
transition takes place. The phase profiles in regions of partial synchrony become more and more steep. The
characteristic spatial scale at which the phase changes by 2π should be compared with the spatial scale,
adopted for the definition of the coarse-grained order parameter Z. In terms the OA manifold, this means
the domains with |Z(x, t)|< 1 appear.

Before we briefly discuss the stability analysis results, it is essential to emphasize that we have not
identified any particularly interesting transformation of traveling waves with each specific value of the spatial
rotation numberM along its corresponding branch. However, it is also worth noting that the phase profiles
of the traveling wave solutions become increasingly sharp towards the ends of their domains of existence.
Regrettably, this sharpness poses challenges when attempting to continue the discovered branches of
solutions beyond the presented ranges.

As is depicted in panels (e) and (f) of figure 3, introducing an asymmetry in the coupling function results
in stabilizing the uniformly twisted states with |M|= 1. Similarly, the nonuniformly twisted states with
|M|=1 and |M|=2, which exist for g2=0, become stable within finite ranges of g2. Throughout the explored
parameter range (0.3π⩽α⩽0.5π, 0⩽ g1 ⩽ 3, |g2|⩽0.5), we have identified stable traveling waves only with
|M|=1 and |M|=2. All traveling waves with larger winding numbers |M| are found to be unstable. However,
it is essential to note that among these states, some are only weakly unstable (with a maximum value of the
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Figure 5. Examples of traveling wave solutions with two smooth flat domains and two steeply sloped patches in phase profile,
possessing in the AS model under consideration for α= 1.475, g1 = 1.5 and g2 = 0.02. Each of these shown spatiotemporal
patterns corresponds to a particular value of the phase shift numberM: (a)M=−7, (b)M=−11, (c)M=−15 and (d)
M=−25. The red and dashed blue lines depict the same as in panels (a)–(d) of figure 4.

real part over the eigenvalue spectrum less than 5× 10−4). Consequently, these weakly unstable waves may
appear as transient states, particularly during intermittency processes, to be described below.

Finally, we mention that the developed procedure enables the discovery of additional traveling wave
solutions with more intricate continuous phase profiles. In particular, in figure 5, we demonstrate several
examples of such traveling waves, each maintaining a fixed shape while moving at a constant velocity along
an oscillatory medium closed in a ring. A distinctive feature of these solutions is the presence of two smooth
flat domains and two steeply sloped patches in their phase profiles. These nontrivial collective modes can be
closely associated with so-called ‘antiphase’ chimera states.

4. Dynamics of ensembles of phase oscillators

4.1. Evolution of traveling waves
Above, we focused on traveling waves within a continuous in space setup. Now, we delve deeper into the
behavior of these modes in a finite population of N oscillators. In direct numerical simulations of a system of
N ODEs (4)–(6), we commence with one of the exact traveling wave solutions found in the continuous limit,
to which we introduce random perturbations ψn within the range−d⩽ψn⩽d.

4.1.1. Evolution of traveling waves with small spatial winding numbers
We start with solutions with small winding numbers |M|⩽ 7 and focus on linearly stable traveling waves. In
figure 6, we present the outcomes of direct numerical simulations within the symmetric coupling case
(g2=0), for a stable solution withM=−1. In each panel, two snapshots of the phase profiles are provided for
two distinct values of the number of units in the system: N=128 and N=1024 (initial profiles have been
additionally shifted for clarity of presentation). Panels (a)–(c) in figure 6 show that the small-amplitude
random perturbations of magnitude d=0.02π added to an exact traveling wave solution at the initial
moment t=0 gradually dissipate over time and ultimately vanish. Consequently, the regular traveling wave
re-emerges (see figures 6(c) and (e)) and persists over a large time interval (specifically T=5× 105). These
simulations confirm the robustness of this traveling wave in the discrete setting. However, if the strength d of
the random perturbation exceeds a critical threshold value d∗ (δ∗≈0.025π for the case depicted in figure 6),
the traveling wave pattern undergoes disruption. This leads to its transition into a standing chimera state or,
in some cases, to a homogeneous synchronous state. On the other hand, it is worth mentioning that, under
certain conditions, unstable uniformly twisted states with |M|= 1 evolve into stable traveling wave solutions,
which appear as unevenly twisted states with |M|= 1 can be essentially interpreted as quasiperiodic coherent
states [31].
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Figure 6. Evolution of a ‘slightly’ perturbed numerically found traveling wave solution withM=−1 in simulations of the lattice
equations (4), (6) and (3) for the phase lag α= 1.457 and parameters g1 = 1.05 and g2 = 0. The perturbations ψn added to the
exact traveling wave solution ϕn = ϕ(xn) obey a uniformly distribution in the interval [−d,d) where d= 0.02π. The dotted
violet lines merging into a solid curve represent the phase profiles φn(t) = φ(t,xn) for the case N= 1024. The green unshaded
circles depict the instantaneous phases φn(t) for the number of elements N= 128 at the following time moments: (a) t= 5,
(b) t= 25, (c) t= 4500, (d) t= 7000 and (e) t= 10 000. The oscillators are placed at equidistant points xn=π(2n−N)

/
N in the

spacial domain of length ℓ= 2π. All snapshots of phase distributions are shown in the reference frame rotating with the
frequencyΩ of the corresponding exact traveling wave solution.

In cases involving asymmetric coupling (g2 ̸=0), the persistence of nontrivial traveling waves endures
across a wide range of noise strengths d. This phenomenon is prominently displayed in figure 7, where we
conduct direct numerical simulations to illustrate the propagation of a perturbed traveling wave solution
withM=−2. Here, the initial random perturbation is d= 0.08π. The key findings and primary conclusions
align with those expounded above: an ordered profile emerges and the discrete phase distribution repeatedly
runs over the system without altering its shape when viewed from the appropriately chosen reference frame.
It is worth noting that, for the sake of clarity of presentation, the phase profiles showcased in both figures 6
and 7 are depicted in the reference frame that rotates at the frequency Ω corresponding to the exact traveling
wave solution for each respective situation. Panels (c)–(e) in these figures unequivocally demonstrate that, in
both cases, the phase profiles exhibit uniformly rotation at the frequency Ω, thereby conforming the
establishment of the exact traveling wave solution in the form of an unevenly twisted synchronized state.

Numerical simulations starting with an unstable traveling wave solution characterized by relatively small
(in magnitude) winding numbers |M|⩽7 (not shown) demonstrate disruption through a cascade of
transformations. As a result, in the case of symmetric coupling (g2=0), such modes evolve into standing
standard chimeras or into fully synchronous states. Alternatively, under certain conditions, they may also
evolve into uniformly twisted states with |M|=1 when g1>1. In contrast, in scenarios involving asymmetric
coupling (g2 ̸=0), the potential outcomes are restricted to the emergence of regular modes, such as fully
synchronous regimes or twisted states.

4.1.2. Evolution of traveling waves with large winding numbers into weakly turbulent traveling chimeras
Here, we describe a typical scenario observed when employing direct numerical simulations involving a
slightly asymmetric coupling function from an initial perturbed profile of one of the exact traveling wave
solutions with multiple continuous branches (characterized by large winding numbersM). The main
observation, illustrated in figure 8, is that on a long time scale, the profile becomes disordered, albeit not
completely and thus will be termed ‘traveling chimera.’
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Figure 7. The same as in figure 6, but for a ‘strongly’ perturbed traveling wave solution withM=−2. The determined AS model
parameters are set to the following values: α= 1.475, g1 = 0.8 and g2 = 0.042. The initial perturbations are randomly distributed
in the [−d,d) where d= 0.08π. The panels show the phase profiles at the following time moments: (a) t= 5, (b) t= 25,
(c) t= 4000, (d) t= 7017 and (e) t= 9997.

Figures 8(a) and (b) illustrate that during the initial transient phase of the evolution process (roughly one
rotation around the ring), the noise within the initially randomly disturbed phase profile is substantially
suppressed. While some slight deviations from an ordered phase profile are still discernible in figure 8(b), the
random perturbations introduced to the exact traveling wave solution at the initial time moment t=0 almost
entirely vanish and become nearly imperceptible (at least through visual inspection of figures 8(c) and (d)).
At the intermediate time range (several rotations of the wave around the circle), the evolution is similar to
the stable cases presented in figures 6 and 7. Figures 8(c) and (d) depict phase distributions that closely
resemble each other but are shifted along the circle. Nonetheless, this phase profile exhibits weak instability,
eventually leading to the development of modulations. Distances between certain branches decrease while
others increase (as seen in figures 8(e) and (f)). This irregular modulation process promotes the merging and
disappearance of some branches. Consequently, in the later stages, the once-regular structure of the traveling
wave pattern undergoes partial disruption and, following a prolonged transient, evolves into a turbulent
state. We term this regime ‘weak turbulence’ due to its inherently irregular nature, which, nevertheless,
largely retains the appearance of a locally continuous phase profile, at least in most regions (particularly in
dense systems with a substantial number of elements N). Thus, this term aptly describes the evolving
collective dynamics depicted in figures 8(e) and (f). It is worth noting that for a fixed set of determining
parameters α, g1 and g2 of the generalized AS model, this particular collective mode emerges across various
values of the strength d governing the random perturbations ψn introduced at the initial time moment. This
parameter primarily influences the characteristic transition times: a larger d results in a longer time interval
for the formation of a profile closely resembling the traveling wave solution discussed in section 3.3, but it
becomes unstable more rapidly compared to scenarios when a smaller noise strength δ is employed.

The images presented in figures 8(e) and (f) possess a strong inhomogeneity: at each snapshot, there is a
domain where the neighbors are synchronized (smooth profile of phases) and a domain where this
smoothness is lost. In the latter disordered domain, one can still see at some places nearly continuous steep
profiles if the density of oscillators is large (large N). Still, such domains appear nearly fully disordered for
small densities (we will quantitatively characterize this in section 5). Hence, we classify this evolving
nontrivial collective mode as a ‘traveling chimera’. It is worth highlighting that this term has previously
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Figure 8. Evolution of a perturbed traveling wave solution withM=−30 in simulations of the AS lattice equations (4), (6) and (3)
for N=1024, α=1.457, g1=0.9 and g2=0.01. The perturbations ψn added to the exact traveling wave solution ϕn = ϕ(xn) are
taken according to a uniformly distribution in the interval [−d,d) where d=0.05π. The violet dots depict the instantaneous
phases φn(t)=φ(t,xn) and the green dashed line presents the smooth profile of the amplitude of the complex driven field
Hn(t)=H(t,xn) at the different time moments: (a) t= 0, (b) t= 200, (c) t= 1000, (d) t= 1800, (e) t= 5000 and (f) t= 10 000.
The oscillators are placed at equidistant points xn=π(2n−N)

/
N in the spacial domain of length ℓ=2π. All snapshots of phase

distributions are shown in the reference frame rotating with the frequencyΩ of the corresponding exact traveling wave solution.

appeared in the literature [23, 24], describing regimes closely related to the modes discussed in
this section.

Within all the snapshots of phases φn(t)=φ(t,xn) presented in figure 8, we also provide profiles of the
absolute value of the driving field |Hn(t)|= |H(t,xn)|. These profiles appear notably smooth across all
instances due to coarse-grained averaging. Remarkably, the maximum of the driving field |H(t,xn)| resides
within the mostly synchronous domain, where phases exhibit proximity to one another, forming an almost
horizontal bar. This characteristic aligns with one of the distinctive features of chimera states. In particular,
for the classical standing chimeras, the complex field H(t,xn) amplitude reaches maximums within the
synchronous regions and minimums within the disordered domains. Furthermore, within the AS system of
nonidentical phase oscillators with nonlocal asymmetric coupling, previous studies [13, 14, 25] have
demonstrated that synchronization wave patterns moving at constant velocities, termed ‘traveling chimeras’
in these papers, represent the prevalent nontrivial collective modes. In this context, the phase profile
consistently remains disordered, but the driving field H(x, t) displays inhomogeneity, featuring both a
maximum and a minimum while moving along the system closed in a ring. The regimes described in our
current work are typified by a moving inhomogeneous profile of the complex mean field H(x, t), akin to the
concept of ‘traveling chimeras’ introduced in [13, 14, 25]. Hence, the modes we elucidate notably resemble
classical chimera states, particularly in discrete systems with a relatively small number of elements. Thus, the
term ‘traveling chimera’ proves apt in the present context. However, we emphasize once more that the key
distinction lies in the mobility of domains along the lattice. The primary contrast with symmetric chimera
states emerges in the partially synchronous domains surrounding the principal synchronous zone. In the case
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Figure 9. (a) Standing chimera with one synchronous cluster existing and observing in the original AS mode with symmetric
nonlocal interaction (g2=0). The violet dots depict the instantaneous phases φn(t)=φ(t,xn) and the green dashed line presents
the smooth profile of the amplitude of the complex driven field Hn(t)=H(t,xn). Such a phase distribution is taken as an initial
condition for the numerical simulations performed within the framework of the generalized AS setup with asymmetric coupling
(g2 ̸=0). (b–e) Snapshots of the phase profile of the chimera evolution process in a lattice of N= 1024 units at times: (b) t=500,
(c) t=1000, (d) t=2000 and (e) t=5000. (c), (d) A regular traveling wave pattern occurs from a standing chimera state and then
it propagates without visible changes in structure in finite time intervals. (e) An ordered structure of the corresponding traveling
wave pattern disturbs due to the instability development. Parameters: α=1.475, g1=0.8 and g2=0.008.

of identical elements with nonlocal asymmetric coupling, these domains exhibit a significant level of
coherence among oscillators, although they do not reach perfect synchronization.

4.2. Evolution of initial standing chimera states
Here, we explore evolution in a finite ensemble, starting with standard standing chimera states with one or
two synchronous domains [3, 32] existing at vanishing asymmetry g2=0. We prepare these initial conditions
and demonstrate their evolution at g2 ̸=0 in figures 9 and 10. Panels (a) at these figures show the initial states.
Panels (b)–(e) demonstrate a transformation of standing chimeras into traveling chimeras.

At the first stage, after switching on the asymmetry in the coupling, the initial phase distribution starts to
move (figures 9(b) and 10(b)). Behind the moving coherent domain, the phases become more correlated;
they form steep, relatively smooth profiles. After one revolution of the coherent domain, the overall pattern
resembles the exact traveling wave profiles constructed above. However, the same instability as has been
discussed in section 4.1.2 leads to weakly turbulent regimes (panels (e)). This illustrates that the weakly
turbulent moving chimera appears both from an initial exact traveling wave and from an initial standing
chimera.

Numerical simulations on a long time interval T=5× 105 show that the traveling chimera regime
emerging from the classical standing chimera always survives only for small values of the asymmetry
parameter g2. (The inferences given here assume that g2 is positive, but it is also easy to generalize to negative
values of the parameter g2.) For a fixed set of other determining parameters α and g1 the AS model, there is a
specific range of values g2 for which only for a part of all runs the moving weakly turbulent state is also
preserved at the time moment when simulations stopped and for another part of all runs the traveling
chimeras decay and transform to the homogeneous synchronous mode. For g2 values lying in a subsequent
bounded range, the traveling chimera state is a long transient, after which a regular state arises.

Noteworthy, the observed situations where traveling chimera states are long transients should be
juxtaposed with similar observations for standard chimeras (at g2 = 0). This regular state can be either a fully
synchronous state where all the phases are equal or a uniformly twisted wave with |M|=1 where all the
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Figure 10. The same as in figure 9, but for the case where the numerical simulations start from a standing chimera with two
antiphase synchronous clusters (panel (a) t=0) as an initial condition. (b–e) Chimera states at different moments of time in a
lattice of N=1024 units: (b) t=500, (c) t=1000, (d) t=2000 and (e) t=5000. Parameters: α=1.475, g1=1.5 and g2=0.001.

phases form a linear spatial profile or a nontrivial regular traveling wave with |M|=1 or |M|=2. In the
second range, the dominant asymptotic regime is a uniformly twisted wave with |M|=1. As values of the
asymmetry parameter g2 increase, a synchronous state is more likely to emerge after a relatively short
characteristic transient time. Here, we restrict ourselves to such a qualitative description of the results.
However, the more detailed analysis and quantitative study of a similar evolution process can be found in the
paper [24] where were reported a statistical evaluation of the fate of an initial standing classical chimera in
the KB model of a phase oscillator lattice with advective-diffusive coupling. We additionally mention that, in
the case of the AS setup, as in the generalized KB model, we have not found any significant dependence of the
characteristic lifetimes of traveling turbulent chimeras on the number of units N.

5. Characterization of traveling chimera

This section presents several quantitative characterizations of the traveling weakly turbulent chimeras.

5.1. Number of phase slips
We have seen that at some stages of the evolution, the spatial phase profile can be considered as continuous
(although we have a discrete lattice), see figures 8(c) and (d), while at other stages this continuity is at least
partially broken, see figures 8(e) and (f). Continuous profiles have a definite winding numberM, while this
number is not well-defined for broken profiles. Nevertheless, we introduce an ‘empirical number of phase
slips’M according to

M(t) =
1

2π

N−1∑
n=1

arg
[
ei(φn+1−φn)

]
. (17)

For relatively smooth profiles, where
∣∣arg[ei(φn+1−φn)

]∣∣≪1, the phase shiftM(t) is reliably determined and
coincides with the winding number (8). Importantly, we will also apply expression (17) to erratic profiles
even though the phase shift along the spatial domain cannot be unambiguously defined in such cases.

Figure 11 showcases the temporal evolution of the phase shiftM(t) obtained through direct numerical
simulations. These simulations start from initial conditions represented by randomly perturbed traveling
wave solutions, featuring two different values of the parameterM:M=−25 (panel (a)) andM=−30
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Figure 11. Time evolution of the spatial phase shiftM(t) defined according to (17). Here, we depict 101 trajectories obtained from
101 independent runs of direct numerical simulations starting from initial conditions in the form of perturbed traveling wave
solutions with two values of the parameterM: (a)M=−25 and (b)M=−30. The light background ((a) red color and (b) orange
color) is formed by 100 trajectoriesM(t). The dark curve ((a) blue color and (b) green color) is an example of a dependenceM(t)
we get in a single run. Parameters: N= 1024, α=1.475, g1=0.9 and g2=0.001.

(panel (b)). Noteworthy, at the initial time t=0, the phase shiftM(t=0) is not precisely defined, primarily
due to the influence of added random perturbations ψn with a strength of d=0.05π. Evidently, during the
initial phase, while the ordered discrete phase profile is still forming, the phase shiftM(t) fluctuates over
time. This behavior directly reflects the inherent non-smoothness within the phase profile. Subsequently, as
the relatively regular profile emerges (similar to the depiction in figures 8(b)–(d)), the value ofM(t) stabilizes
and becomes well-defined, exhibiting no further fluctuations. Over an extended duration, the phase shift
M(t) remains nearly constant, with values ofM(t)≈−25 (top panel) andM(t)≈−30 (bottom panel),
respectively. However, this state is weakly unstable, ultimately leading to the development of a weakly
turbulent state. In the later stages, the collective dynamics is characterized by the coexistence of synchronous
macroscopic groups of oscillators featuring approximately identical phases alongside localized regions of
spatiotemporal intermittency. Thus, the phase shiftM(t) loses its well-defined nature, undergoing
substantial changes during its evolution. The discernible fluctuations observed within the dependenceM(t)
on a small timescale indicate the presence of non-smooth phase variations, with such small non-smooth
domains readily visible in figures 8(e) and (f). Notably, for a fixed set of AS model parameters, this chaotic
collective mode remains statistically consistent across initial conditions characterized by perturbed traveling
wave solutions with different values ofM (|M|>7). Furthermore, these small-scale fluctuations coexist in
each trajectory with more pronounced long-scale variations. In figure 11, the observed long time scale
fluctuations are not particularly large, but their magnitude grows with the increasing asymmetry parameter
g2. It is conceivable that, at higher values of g2, these expanded fluctuations could potentially lead to the
eventual demise of the traveling chimera state, which can be interpreted as the ‘traveling chimera death’.

5.2. Mean velocity
Here and in the following subsections, we discuss properties of weakly turbulent states (in particular, using
statistical methods). To illustrate our findings, we use the results of direct numerical simulations within the
AS model (4), (6) and (3) for α=1.521, g0=1, g1=0.75 and various values of g2 and different number of
units N.

In figure 12, we show the mean velocity v of the traveling chimera states in dependence on the asymmetry
parameter g2 of the AS coupling function (3) for different number of units N. This quantity was determined
numerically according to the position of the maximum of the acting field |H(t,xn)|, which is rather smooth
and, at each moment of time, has a spatial profile with only several extremes. Remarkably, the velocity v is
proportional to the asymmetry parameter g2 for its small values: v∼ g2. Large statistical fluctuations at
g2 ≳ 0.015 reflect the fact that macroscopic fluctuations of the weak turbulence become larger at large
asymmetry, leading to rather short lifetimes of chimeras.

5.3. Cross-correlations
As discussed above, in a weakly turbulent regime, there is a certain degree of continuity in the phase profiles,
even in the disordered domain (in the ordered domain, the profile is evidently continuous). Thus, contrary
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Figure 12. Dependence of the mean velocity of the traveling chimera state on the asymmetry parameter g2 of the AS coupling
function (3) for different number of units N. Other determining parameters of the AS lattice model: α= 1.521 and g1 = 0.75.

Figure 13. Correlation functions for different number of ensemble elements: N= 64 (magenta up-facing triangles), N= 128 (red
circles), N= 512 (green down-facing triangles) and N= 1024 (blue diamonds). Determining parameters of the lattice AS system:
α= 1.521, g1 = 0.75 and g2 = 0.02.

to the standard standing chimera, where neighboring phases in the disordered domain are statistically
independent (see figure 9(a)), here, there is a certain correlation between neighboring phases.

To characterize it quantitatively, we calculated the cross-correlation function of the phases. Because the
phases are distributed nonuniformly, it is appropriate to use a transformation to nearly uniformly
distributed phases φn → ϑn. For this, the global Kuramoto order parameter Z(t) is evaluated by the applying
integration of the local order parameter Z(x, t) over the entire medium (see section 2.2) and a Möbious
transform is performed: eiϑn =

(
eiφn−Z

)/(
1−Z∗eiφn

)
. After this, the quantity γ(n)=

〈
ei(ϑñ−ϑñ+n)

〉
, where

the brackets denote averaging in time and space, is calculated. The correlation function shown in figure 13 is
|γ(n)| versus normalized distance n/N for several values of the number N of elements. For large N, the
correlation function tends to one at small distances, indicating local coherence and continuity of the phase
profiles. In other words, the more dense the elements, the more visible the coherence between them. This
reflects an average of significant correlations both in regular and in turbulent domains. However, we stress
here again that the regimes which we describe for a relatively small number of oscillators indeed share almost
all properties with chimera states in the classical sense, e.g. as one can see from figure 13, correlation of
neighbors for N = 64 is close to 0.2.

5.4. Lyapunov exponents
Because the system’s dynamics is purely deterministic, weak turbulence should be classified as spatiotemporal
chaos in the system. Thus, it is natural to characterize it with the Lyapunov exponents [33]. The Lyapunov
exponents calculated for a standard standing chimera and for a traveling weakly turbulent chimera state are
presented in figure 14. The protocol of the calculations was as follows. First, an initial chimera-like profile of
phases was created and integrated during the transient time 103 to achieve a statistically stationary state.
Then, for calculation of the Lyapunov exponents, the time interval 5·105 was used, preceded by an additional
transient time 5·104, during which the Lyapunov vectors are expected to be adjusted.

In figure 14(a), one can see the Lyapunov spectrum for a standard standing chimera (symmetric coupling
g2=0). A significant negative part corresponds to synchronous oscillators locked by the acting field Hn(t).
Then, there is a large number of nearly zero Lyapunov exponents, respectively, corresponding to oscillators in
the disorder domain where their dynamics is nearly quasiperiodic. Additionally, there are a few positive
Lyapunov exponents. Hence, in the case of symmetric coupling, a chimera state is weakly chaotic, as has been
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Figure 14. (a) Spectra of Lyapunov exponents λ for the standard standing chimera (g2=0) for different numbers N of elements
in the system. (b) Spectra of Lyapunov exponents λ for the traveling chimera state (g2=0.02) for different numbers N of
elements in the system. (c) The same as in the panel (b) but not in scaled coordinates. (d) Largest Lyapunov exponents for the
standard standing chimera (g2=0, red circles) and for traveling turbulent chimera (g2=0.02, blue squares) depending on the

number of units N. The dashed line is the power law∼N−1/2. Other determining parameters of the AS lattice model: α=1.521
and g1=0.75.

discussed in [34–36]. However, in the thermodynamic limit (i.e. N→∞), the field H(x, t) acting on
oscillators is stationary (in the corresponding rotating reference frame). The Lyapunov exponents of
particular oscillators are either negative (in the synchronous domain) or precisely zero (in the asynchronous
domain). In figure 14(c), one can see that the largest (positive) Lyapunov exponent decays as∼N−1/2 with
the number of elements in the system and tends to zero for N→∞. This indicates the absence of chaos in the
thermodynamic limit N→∞.

The spectrum of Lyapunov exponents for traveling chimera with localized weakly turbulent domains
(symmetric coupling g2 ̸=0) is less trivial, see figure 14(b). First, because the pattern travels along the lattice,
we cannot attribute particular Lyapunov exponents to particular oscillators. The next observation is that the
profile of the Lyapunov spectrum changes quite significantly in the range 64⩽ N⩽ 256 and even for
512⩽ N⩽ 2048, we do not see an overlap, although qualitative features of the spectrum are quite similar.
This absence of an overlap indicates that the spatio-temporal chaos is not extensive, at least with regard to
parameter N at a fixed length of the system. To better visualize this, we show in figure 14(c) the same data vs.
non-scaled index n. Here, one observes a good overlap (cf the N-dependence of the maximal Lyapunov
exponent on N, shown in Figure 14(c); in contradistinction to the symmetric case g2=0 it saturates at large
values of N). This means that macroscopic chaos can be characterized by≈25 positive Lyapunov exponents,
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independent of the total number of oscillators N. The third distinctive feature is that a large number of
Lyapunov exponents are concentrated around value≈− 0.0253 (dashed line in panel (b)). This is the value
of the transversal Lyapunov exponent, calculated from a perturbation of a single oscillator in a given
fluctuating field H(xn, t). Because of ergodicity (due to the motion of the chimera), this value is the same for
all oscillators. This negative value can be attributed to the observed correlations between the neighbors:
because the dynamics of an oscillator in the driving field H is on average stable, close oscillators that feel
close external fields have close states.

Altogether, exploring the Lyapunov exponents allows for a conclusion that the weakly turbulent chimera
is a macroscopic spatiotemporal chaotic state. It is non-extensive in dependence on the parameter N: the
largest Lyapunov exponent and the number of positive exponents (as well as other quantities like
Kaplan-Yorke dimension) remain finite in the limit N→∞.

6. Conclusion

Summarizing, we have studied a one-dimensional medium of identical phase oscillators with asymmetric in
space nonlocal coupling. The considered setup generalizes the Abrams–Strogatz chimera model. We have
found exact traveling wave solutions moving at constant velocities with permanent shapes in the continuous
limit and studied their stability. Such regular nontrivial traveling wave solutions appear as unevenly
(nonuniformly) twisted synchronized states. Only in specific ranges of parameters some of these waves are
linearly stable. For the corresponding parameters, such traveling wave patterns appear as attractors in finite
populations despite the finite-size deviations from the continuous limit. In other parameter domains, no
stable traveling waves exist and although such a wave can be temporarily observed, in particular, during
initial evolution starting from the standing chimera, it is destroyed and a weakly turbulent traveling chimera
is established due to instability. We have checked that this turbulence is not a finite-size effect (like chaos in a
standing chimera) by calculating the Lyapunov spectrum and showing that the largest Lyapunov exponent of
the system remains size-independent, starting from a certain number of units. The weak turbulent chimera
exists for long time intervals. Still, in some regions of parameters, we observed a transition to a fully
synchronous state or to a regular (uniformly or nonuniformly) twisted wave. We have shown that the
traveling wave solutions play an essential role in the emerging process of the turbulent regime because of
their time-intermittent appearance. Using direct numerical simulations, we have also shown that the
traveling chaotic chimera states are at least transient with a very long lifetime.
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