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We tackle the quantification of synchrony in globally coupled populations. Further-

more, we treat the problem of incomplete observations when the population mean

field is unavailable, but only a small subset of units is observed. We introduce a

new order parameter based on the integral of the squared autocorrelation function

and demonstrate its efficiency for quantifying synchrony via monitoring general ob-

servables, regardless of whether the oscillations can be characterized in terms of the

phases. Under condition of a significant irregularity in the dynamics of the coupled

units, this order parameter provides a unified description of synchrony in populations

of units of various complexity. The main examples include noise-induced oscillations,

coupled strongly chaotic systems, and noisy periodic oscillations. Furthermore, we

explore how this parameter works for the standard Kuramoto model of coupled regu-

lar phase oscillators. The most significant advantage of our approach is its ability to

infer and quantify synchrony from the observation of a small percentage of the units

and even from a single unit, provided the observations are sufficiently long.
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Coupling many oscillating systems may result in a synchronization transition,

at which macroscopic collective motion appears. Examples include pedestrians

on a bridge, synchronously blinking fireflies, and applause in theater halls. In

many cases, it is not easy to distinguish synchrony and asynchrony. We suggest

a method for quantifying synchrony by measuring the regularity of the observed

fields. Remarkably, not the whole population has to be observed; in many cases,

just observing one unit allows for a reliable identification of the synchronization

transition in the whole ensemble.

I. INTRODUCTION

The emergence of collective activity in large networks of coupled active units has been

known for decades1–5, and yet remains a topic of intensive studies in the physics of com-

plex systems. The relevant applications range from bridge engineering, where pedestrian

synchrony under certain circumstances induces bridge vibration6, to neuroscience, where co-

ordination of neuronal activity forms macroscopic brain rhythms, vital or pathological7–10.

This paper discusses the quantification of the degree of unit activity coordination in glob-

ally coupled ensembles, a popular model for highly interconnected networks. The addressed

problem is pertinent both for theoretical and experimental studies. A well-known solution

applies when all units are accessible, so that a mean field can be obtained. Macroscopic os-

cillations of this mean field indicate for collective synchrony, while in the asynchronous case,

the mean field just fluctuates. This suggest using the variance of the mean field for char-

acterization of synchrony11–14. A better insight is possible if the units possess well-defined

phases, or the phases of all units can be inferred from data. In that case, the Kuramoto order

parameter (KOP) and generalized Kuramoto-Daido order parameters are typically used to

characterize the degree of synchrony.

However, the quantification is not that easy in the two outlined cases.

1. For some systems, the phases are not defined or are difficult to extract; the examples

detailed below include strongly chaotic systems and noise-induced oscillations, for

which the phase description is hardly possible. Further relevant cases are, e.g., bursting

neurons. Though the mean field observation quantifies the collective activity in these
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complicated cases, this measure can be substituted by a more sensitive one, as shown

below.

2. The more challenging case is that of an incomplete observation. Suppose we monitor

only a small subpopulation of units - can we quantify the level of synchrony in the

whole, unobserved ensemble? This paper provides a positive answer for the most

frequent case of a regular collective mode.

We tackle the synchrony quantification problem by introducing a novel order parameter

based on Wiener’s lemma and measuring the intensity of the regular (periodic or quasiperi-

odic) component in a time series. We demonstrate that the Wiener order parameter (WOP)

(i) successfully differentiates synchronous and asynchronous states for coupled units; (ii) in

the cases where the phases are accessible and the Kuramoto-type order parameters can be

calculated, the WOP still provides a better discrimination between these states than KOP

and the variance-based measure for a finite-size ensemble; (iii) yields a proper quantification

from an incomplete observation, even from an observation of a single unit. We illustrate our

approach with examples covering noise-induced, chaotic, noisy, and regular dynamics.

The paper is organized as follows. In Section II we provide theoretical considerations,

assumptions and limitations, define the new order parameter, and discuss the computational

aspects. Sections III-V exemplify the approach by analysis of ensembles of irregular identical

and non-identical units. Section VI extends the consideration to the case of regular non-

identical units. Finally, Section VII concludes and discusses our findings.

II. REGULARITY OF MEAN FIELDS AND ITS CHARACTERIZATION

A. General mean-field coupling

We consider a population of units described by deterministic or noisy equations. We

assume at the beginning that the units are identical, and the noises (terms ~ξk(t) in Eq. (1)),

if present, are independent. Furthermore, we assume that the systems are coupled via mean

fields ~Y , ~Z which are either just global averages of some observables (global variables ~Y )

or obey dynamical equations where only the mean fields are entering (global variables ~Z).
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Then, the equations read

d

dt
~xk = ~f(~xk, ~ξk(t), ~Y , ~Z), k = 1, . . . , N , (1)

d

dt
~Z = ~F (~Z, ~Y ) , (2)

~Y (t) =
1

N

N∑
k=1

~y(~xk(t)) . (3)

Notice that dimensions of the vectors ~x, ~ξ, ~Y , ~Z generally differ. The global coupling in

the population is organized via a summation of an observable ~y defined as a function of

local variables over all the units in the ensemble. Quite often, one assumes an “algebraic”

coupling, where only mean fields ~Y are present, but in many situations, like in coupled clocks

or metronomes on a beam15,16, pedestrians on a bridge6, and electronic oscillators with a

common load17,18 also the global dynamical equations (2) are present.

We start by assuming that individual units are irregular, i.e., their dynamics either possess

noisy forces ~ξk, or the units operate in a chaotic regime. Furthermore, we will assume

the absence of multistability in individual units. Below, we will also discuss the potential

applicability of the approach to regular systems.

In the thermodynamic limit N →∞, it is appropriate to introduce the probability density

of the unit states w(~x, t), which evolves according to some linear operator that follows from

Eq. (1) and is the Liouville operator in the deterministic case, a Fokker-Plank operator

in the case of Gaussian noises, or some generalized operator if the noise is not white and

Gaussian. Then, instead of system (1-3) we can write

d

dt
w = L̂(~Y , ~Z)w , (4)

d

dt
~Z = ~F (~Z, ~Y ) , (5)

~Y (t) =

∫
d~x w(~x, t) ~y(~x) . (6)

Dependence of the operator L̂ on the mean fields, which themselves depend on the density

w via Eqs. (5,6), makes the whole system (4-6) nonlinear.

In this description, we attribute a steady (time-independent) solution of Eqs. (4-6) to

asynchrony and a time-dependent (periodic or more complex) solution to synchrony. Indeed,

if the mean fields are constants, then the individual units can be treated as independent iden-

tical irregular oscillators. Thus, the state of each oscillator admits a statistical description
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with a stationary invariant distribution, which is a stable stationary solution of Eq. (4). On

the contrary, a synchronous state with oscillating mean fields can be interpreted as follows.

Oscillatory mean fields impose a common forcing on all units, and due to this, the dynamics

of each unit contains two components: an irregular one (and these components in different

units are independent) and a forcing-induced one (and this component in different units is

the same). At the calculation of the mean field, the irregular components due to the law of

large numbers sum to a constant, while forcing-induced components sum to a macroscopic

time-varying field.

Below, we concentrate on the most common case of regular (periodic or quasiperiodic)

mean fields; a short discussion of irregular mean fields will be given in Section II E.

B. Complete and partial observations

We will suppose that a scalar observable of a specific system u(~xk) is available, possibly

not for all units (such a situation often occurs in neuroimaging19). Let us define the partial

mean fields as

UM(t) =
1

M

∑
k∈SM

u(~xk(t)) . (7)

Here, 1 ≤M ≤ N is the size of the set SM over which the averaging is performed. The set of

the “observed” units SM can be chosen at random; because we assume identical elements, the

statistical properties of UM should not depend on this choice (here we utilize our assumption

that the dynamics of individual units is irregular; in the case of regular deterministic units,

clusters or chimeras can appear with different dynamics of different units; see also discussion

in Section VI below). The case M = 1 means the observation of just one oscillator from the

population; the case M = N yields the usual mean field to which all the units contribute.

We denote this full observable U(t), dropping the index. Its definition is similar to that of

mean fields ~Y (Eq. (3)), and in fact one can (but this is not necessary) choose U as one of

the components of ~Y .

In the thermodynamic limit,

U(t) =

∫
d~x w(~x, t) u(~x) . (8)

In this limit, U = const in an asynchronous state; while time-dependent U(t) (typically

periodic or quasiperiodic) manifests synchrony in the population. A straightforward way to
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distinguish these cases is to calculate the variance of U(t):

Var(U) = 〈(U(t)− Ū)2〉, Ū = 〈U(t)〉 ,

where the brackets denote statistical averaging20. This quantity vanishes in the asynchronous

regime and is finite in the synchronous one, thus it is widely used as an empirical order

parameter characterizing transition to synchrony11–14.

C. Finite-sample fluctuations and their elimination

Even in the thermodynamic limit, for partial observations of sample size M , one cannot

expect complete regularity of the observations UM . Indeed, a scalar observable of a specific

unit u(~xk(t)) contains a regular part ureg(t) due to a regular forcing of this unit by the regular

mean fields ~Y (t), ~Z(t), and an irregular part uirr,k(t) from the irregular specific dynamics.

Noteworthy is that the regular part is the same for all oscillators (here, the assumption of

global coupling is important!), while irregular parts can be considered independent. The

latter property is related to the possibility of a description of the whole population with

one-unit probability density w(~x, t), so that the full many-unit density is a product of one-

unit densities. In the mathematical literature this property is known as “propagation of

chaos”, it has been proven for many models21,22. In the asynchronous case, ureg(t) = const.

Now, the finite-sample average can be represented as

UM(t) =
1

M

∑
k∈SM

uirr,k(t) + ureg(t) . (9)

In finite-sample observations UM(t), finite-size fluctuations due to the first term on the

r.h.s. of Eq. (9) may be significant for small samples. These fluctuations lead to a non-

vanishing variance Var(UM) in the whole range of parameters, also for parameters where

asynchrony occurs. Here, one generally expects a law of large numbers Var(UM) ∼ M−1 to

be valid (cf. Refs. 11, 12, and 14), although there might be more complex dependencies in

a vicinity of the synchronization transition.

We suggest eliminating the fluctuating term in Eq. (9) by virtue of the autocorrelation

analysis. We will rely on the irregularity of the local dynamics, which ensures that the

autocorrelations of uirr,k(t) decay to zero at large time lags. For the observables UM(t) we

define the standard autocorrelation functions (ACF),

Γ[UM ](τ) = 〈(UM(t)− ŪM)(UM(t+ τ)− ŪM)〉 , (10)
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where ŪM is the time average of the observable UM . Note that Γ[UM ](0) = Var(UM).

Because the irregular and regular components of UM(t) can be considered as independent,

the ACF Eq. (10) decomposes in two parts23:

Γ[UM ](τ) =
1

M
Γirr(τ) + Γreg(τ) , (11)

where

Γirr(τ) = 〈(uirr(t)− ūirr)(uirr(t+ τ)− ūirr), Γreg(τ) = 〈(ureg(t)− ūreg)(ureg(t+ τ)− ūreg)〉 .

Note that in the asynchronous case Γreg(τ) = 0 because ureg(t) ≡ ūreg.

Now we utilize different time lag dependence of two parts of Γ[UM ](τ): while the value

of Γirr(τ) decays at τ →∞, the regular part Γreg(t) is a periodic or quasiperiodic function

of τ . In the power spectrum, the regular component corresponds to delta-peaks, while the

irregular component corresponds to a continuous spectral density. A proper way to quantify

the intensity of the regular component in the autocorrelation function Γ(τ) is delivered by

the Wiener formula24

W (Γ) = lim
Θ→∞

1

Θ

∫ Θ

0

Γ2(τ) dτ . (12)

We will call W the Wiener order parameter (WOP). One can easily see that because the

integral
∫∞

0
Γ2
irr(τ)dτ converges, only the regular component contributes toW . If this regular

component vanishes, as it happens in an asynchronous regime, then the WOP vanishes as

well.

In the modern literature, expression (12) is often referred to as Wiener’s lemma25,26.

The following simple calculation supports its validity. We are interested in the discrete

component of the power spectrum, which can be represented as a sum of delta-functions

Sd(Ω) =
∑
k

Akδ(Ω− Ωk), Γd(τ) =
∑
k

Ak cos(Ωkτ) .

Integrating the square of the ACF, we get the Wiener formula

lim
Θ→∞

1

Θ

∫ Θ

0

Γ2
d(τ) dτ =

1

2

∑
k

A2
k .

Some remarks about practical evaluation of the WOP are in order. First, typically the

ACF Eq. (10) is calculated from a long time series 0 ≤ t ≤ T as an integral

Γ[UM ](τ) =
1

T − τ

∫ T−τ

0

(UM(t)− ŪM)(UM(t+ τ)− ŪM) dt . (13)
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Thus, an additional parameter, the averaging time T becomes relevant. Second, formally

Eq. (12) requires an integration over an infinite interval of time lags, so that the contribution

of the irregular component Γirr(τ) vanishes due to the factor 1/Θ. Practically, we calculate

the WOP by starting integration not at zero, but at a time lag Θ1:

W (Γ) =
1

Θ2 −Θ1

∫ Θ2

Θ1

Γ2(τ) dτ . (14)

One should take Θ1 large enough so that in the interval Θ1 < τ < Θ2, the irregular compo-

nent Γirr is very small. Additionally, one has to take the interval Θ2−Θ1 much larger than

the characteristic period of the ACF (the corresponding error can be reduced by using an

appropriate windowing). We expect finite-observation errors for finite values of T,Θ2 −Θ1,

hampering a perfect disentanglement of regular and irregular components.

Summarizing, by virtue of the ACF calculations, we eliminate (not completely, but sig-

nificantly) the irregular component in the observed field UM(t). Thus, we expect the Wiener

order parameter W value calculated according to the suggested procedure to be small in

the irregular state. Here, only the finite-sample-induced irregular component is present in

UM(t), which leads to an ACF ΓM(τ) that tends to zero at large time lags τ (practically, one

observes a decay to some level which depends on the averaging time T used for calculation

of the ACF). Effectively, via the ACF calculation, we perform an additional averaging of

UM(t) in time, which can be considered an equivalent of enlarging the sample size M .

In fact, dependence of the remnant fluctuations of the ACF on the averaging time T in

Eq. (13) can be used for a better distinguishing of synchrony and asynchrony (cf. Refs 11,

12, and 14, which discuss in a similar spirit exploration of the M -dependence). One can

calculate the ACF for different averaging times T . Because the remnant fluctuations are

expected to be ∼ T−1/2, the corresponding WOP value W will scale as W ∼ T−1. If one

observes such a scaling, then “by extrapolation,” one can attribute W = 0 and conclude

that the observed regime is asynchronous. In contradistinction, if the values of W saturate

starting from some T , this indicates that one has a finite value of W . One thus obtains a

purposeful test for collective synchrony.

We stress here that the case M = 1 can also be included in the consideration. Here, one

does not have any sampling-induced irregularity, and the improvement via the ACF analysis

will be significant only if there is an internal irregularity of the individual oscillators. We

will show below in Sections III,IV,V the examples of noisy and chaotic individual oscilla-
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tors, where even observations from one unit will provide a reasonable characterization of

the synchronization transition. However, observations of a few units deliver a rather poor

performance for regular oscillators in the deterministic Kuramoto model (Section VI).

We conclude this Section by mentioning that we mainly focus on the regular part of

the autocorrelation function, while in the previous, especially in experimental27–29, studies

of chaotic dynamics, the focus was on the irregular part: decaying correlations and the

corresponding continuous power spectrum were used as tools indicating chaos30.

D. Finite-size effects

Above, we assumed that the mean fields are strictly regular, as in the thermodynamic

limit; see Eqs. (4-6). If, instead, a finite ensemble is explored, then the finite-size fluctua-

tions are inevitable31–37, especially in the asynchronous state and close to the synchronization

threshold (a strongly synchronous regime can be perfectly regular even for finite ensembles).

If the fields ~Y , ~Z in Eqs. (1-3) weakly fluctuate, the same can be expected for the complete

observable U(t). These basic fluctuations will be complemented with finite-sample fluctu-

ations for all partial observables UM(t). For us most important is that the regularity of

~Y , ~Z, U is no more perfect: while these fields are perfectly periodic in the thermodynamic

limit, for finite N one expects some diffusion of the collective phase (diffusion constant

∼ N−1), which means existence of a finite coherence time of the mean fields tcor ∼ N . Thus,

the peaks in the spectrum of the mean field fluctuations U(t) are no more delta-peaks but

have finite width ∼ 1/tcor, and the ACF of U(t) will decay at time tcor.

Nevertheless, for large N , one still can separate the spectrum into a broad-band com-

ponent and narrow peaks; in terms of the ACF Γ(τ), one should consider an interval of

time lags [Θ1,Θ2] such that Θ1 is larger than the typical correlation time of the broad-band

component, and Θ2 is smaller than tcor. Then, we can still use the WOP (12), although the

value of W will depend on the choice of Θ1,Θ2. Suppose the main goal is to explore the

transition to synchrony. In that case, we suggest fixing Θ1,Θ2 and changing a parameter

(e.g., coupling strength) to see a difference in WOP between synchronous and asynchronous

regimes. All the arguments above assume large values of N ; for small population sizes N ,

the finite-size effects are rather prominent so that the very notion of synchrony becomes

fuzzy. We will illustrate this in Section III.
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E. Irregular mean fields

The described approach assumes that the mean fields in the thermodynamic limit are

regular (periodic or quasiperiodic) and relies on identifying the corresponding regular com-

ponent in the observation by virtue of the ACF analysis. Here, we discuss the case of irregular

mean fields that occur if a solution of the mean-field equations (4-6) in the thermodynamic

limit is chaotic. Examples from the literature include globally coupled Stuart-Landau oscil-

lators38–43 and coupled neurons44–46.

We argue that the presented technique can still be used if the mean fields are weakly ir-

regular. The idea is basically the same as in the case of finite-size fluctuations (Section II D).

Indeed, the ACF eventually decreases to zero for an irregular process, so its power spectrum

does not contain discrete components, and the WOP (12) vanishes. However, suppose the

process is close to a regular one, with narrow peaks in the power spectrum. In that case,

the ACF decays rather slowly at large times (the characteristic time is the diffusion time

of the phase of the nearly-periodic oscillations). As a result, the calculation of the WOP

according to Eq. (14) provides a finite value. If one chooses Θ1 in Eq. (14) to be larger than

the time of an initial drop of the ACF (due to a possible broadband component of the power

spectrum), and Θ2 in Eq. (14) is smaller than the characteristic decay time of a long-living

component of the ACF, then expression (14) will still provide a reasonable estimate of the

intensity of the nearly regular component of the mean field variations.

If the irregularity of the mean fields is large, and there is no clear time scale separation

between different epochs of the ACF decay, the application of the ACF analysis seemingly

brings no advantage compared to the calculation of the variance of the observed mean field.

F. Non-identical units

Above we concentrated on the case of identical globally coupled oscillators; here we

shortly argue, that the approach can also be applied to non-identical units, provided they

are irregular enough. A typical way to introduce inhomogeneity in the population is to

assume that the dynamics Eq. (1) depends additionally on a parameter bk, and this pa-

rameter is different for different oscillators. In the thermodynamic limit, one describes the

inhomogeneity with a distribution g(b). As a result, the probability density contains b as
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an additional variable, w(~x, t|b) and averaging in Eq. (6) contains additional averaging over

the distribution of b. With such a modification, the basic conclusions of Sections II A-II C

are still valid. Namely, at synchrony the mean fields oscillate regulary, while at asynchrony

they are constants. Each unit has a regular and irregular component, and the former can

be identified via the ACF analysis. The only modification is that now sampled observations

(Section II B) are not sample-independent, because the units are not identical. As a result,

in Eq. (11), both components will depend on the sample SM . Nevertheless, the separation

of time scales will be still valid, and the Wiener’s formula (12) will provide the intensity of

the regular component. This consideration shows that the WOP will now depend on the

sample SM . In particular, we expect to have different values if just one unit is observed.

Nevertheless, the contrast between the asynchronous and synchronous states will be still

present for any sample SM .

Below, we apply the described approach to several examples. One of the main questions

is: how well can we characterize synchrony with an observation of just one unit? We will

start with strongly irregular units in Sections III,IV. In Section V, we will explore identical

noisy limit-cycle oscillators, also in the case of a weak noise. In the last example (Section VI)

we will apply our approach to the Kuramoto model of non-identical phase oscillators. In

all cases, we calculated the autocorrelation function directly according to the definition

(13); there is also another equivalent way to obtain it as a Fourier transform of the power

spectrum47.

III. NOISE-INDUCED OSCILLATIONS

A recent paper48 studied the dynamics of globally coupled active rotators. The equations

for the units described by the phase-like variables φ are formulated as

φ̇k = 1− b sinφk +
ε

N

∑
j

sin(φj − φk) +
√

2σ2ξk(t) . (15)

With the choice b > 1, adopted in Ref. 48, the uncoupled noise-free systems have a stable

steady state and do not oscillate. In the presence of noise, the dynamics of uncoupled units

are purely noise-induced and thus highly irregular. The coupling term ∼ ε is of Kuramoto

type; it can be written in terms of mean fields

C(t) =
1

N

∑
k

cosφk(t), S(t) =
1

N

∑
k

sinφk(t) . (16)

11

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

02
03

64
5



In the thermodynamic limit, the dynamics of the probability density w(φ, t) reduces to a

nonlinear Fokker-Planck equation of type Eq. (4). The regimes in this nonlinear PDE have

been carefully studied in Ref. 48, and a domain of parameters where the density w(φ, t)

varies periodically in time, has been identified (together with other domains, where the

attractor in the nonlinear PDE is a steady state).

Below, we fix the parameters ε = 0.6 and b = 1.025. For these values, the phase diagram

elaborated in Ref. 48 predicts a time-periodic (synchronous) solution for σ2 = 0.04 and a

stationary (asynchronous) solution at σ2 = 0.06.

A. Large number of active rotators

M=1

(a)

C
M

S
M

M=10

(b)

C
M

S
M

M=100

(c)

C
M

S
M

M=1000

(d)

C
M

S
M

M=10000

(e)

C
M

S
M

M=1

(f)

C
M

S
M

M=10

(g)

C
M

S
M

M=100

(h)

C
M

S
M

M=1000

(i)

C
M

S
M

M=10000

(j)

C
M

S
M

FIG. 1. Synchronous and asynchronous states of noise-driven active rotators (Eq. (15)). Presented

are the “phase planes” of observables CM (t), SM (t), see Eq. (16), for different sample sizes M (the

total size of the ensemble is N = 104). Upper row (panels (a-e)): σ2 = 0.06 (asynchrony), bottom

row (panels (f-j)): σ2 = 0.04 (synchrony). The scales in all panels are the same, −1 ≤ CM , SM ≤ 1.

Figure 1 illustrates how these solutions for an ensemble of N = 104 oscillators are repre-

sented by finite samples. Here, we depict mean fields CM , SM calculated following Eqs. (16,7)

over randomly chosen subsets of M units, starting with M = 1 (just one active rotator is

observed) up to M = N = 104, what corresponds to full mean fields Eq. (16). In the pro-

jections on the partial mean field phase planes (CM , SM) shown in Fig. 1, one can see for

M ≥ 100 and σ2 = 0.04 a “topological limit cycle”, where the trajectory rotates with a void
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in the center. In contradistinction, for M = 10 and σ2 = 0.04, and all M and σ2 = 0.06 one

does not see a topological limit cycle (such a cycle is, of course, present for M = 1 because

the observables defined in Eq. (16) fulfill C2
1 + S2

1 = 1). We note here that the existence of

a void in a two-dimensional projection of the mean fields has been suggested in Ref. 18 as

a practical criterion for synchrony in small populations (cf. a more detailed analysis of this

criterion for the Kuramoto model in Ref. 36).
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Γ
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M=10000

-0.001

 0

 0.001

 0  100  200

(f)

time lag τ

M=10000

FIG. 2. Autocorrelation functions of different sampled observables CM (t), calculated using different

time intervals T . Left column (panels (a,c,e)): small noise σ2 = 0.04 (periodic oscillations of the

mean field in the thermodynamic limit); right column (panels (b,d,f)): large noise σ2 = 0.06 (static

mean field in the thermodynamic limit). Notice that the vertical scales are different in all panels.

The autocorrelation functions of observables CM(t) calculated according to Eq. (13) are

shown in Fig. 2. Here we present only small time lags 0 ≤ τ < 200, to illustrate convergence

with the averaging time T . One can see that all the autocorrelation functions ΓM(t) averaged

over T = 105 and T = 106 practically coincide, while some deviations are seen for the short

averaging time T = 104.
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time lag τ

M=1
M=10

M=100
M=1000

M=10000

FIG. 3. The ACFs for the synchronous case σ2 = 0.04, N = 104, for different sample sizes M at

large time lags. The averaging time is T = 106. All the curves with 10 ≤ M ≤ 104 practically

coincide.
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Γ
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time lag τ

M=100
M=1000

M=10000

FIG. 4. The ACFs for the asynchronous case σ2 = 0.06, N = 104, for different sample sizes M at

large time lags. The averaging time is T = 106. Panel (b) shows the ACFs for M ≥ 100 in the

appropriate scale.

Our primary interest is in the behavior of the ACFs at large time lags; we show these data

in Figs. 3,4 for 1500 ≤ τ ≤ 2000. In the synchronous case (Fig. 3), the ACFs for different

sample sizes M practically coincide if the averaging time T is large. This confirms the

concept of section II that the regularity of the mean fields can be extracted from samples

with any M , even with M = 1. Another observation is that the amplitude of the ACF

slowly decreases. The reason for this are finite-size fluctuations for N = 104, as discussed in

Section II D.

The ACFs in the asynchronous case (Fig. 4) have relatively small values and demonstrate
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strong dependence on the sample size M (thus, we show two panels, omitting cases M = 1, 10

in panel (b)). A remarkable observation is that at a presented time interval of averaging

T = 106, the correlations of the fields with M = 1000 and M = N = 104 are rather regular,

although small in amplitude. This issue needs further investigation.

5x10
-5

10
-4

1.5x10
-4

(a)

W

M=1
M=10

M=100
M=1000

M=10000

10
-10

10
-8

10
-6

10
-4

10
4

10
5

10
6

(b)

W

T

FIG. 5. The Wiener order parameter W for different sample sizes M and ACF averaging times T

(other parameters: Θ1 = 750, Θ2 = 2000). Panel (a): synchronous case σ2 = 0.04, N = 104. Note

that the vertical scale is linear. Panel (b): asynchronous case σ = 0.06, N = 104; the verical scale

is logarithmic. The black dashed line shows the scaling W ∼ T−1.

Finally, we compare the WOPs W for the two cases. In Fig. 5, we show W for different

sample sizes M and different averaging time intervals T . As is expected from the discussion

in Section II C, dependence on T is obviously different for the two cases. In the synchronous

case (panel (a)), W saturates at some value for T ≥ 105, so this value can be taken as a

correct estimate of W . Furthermore, this value is practically the same for all M , as the

coincidence of the ACFs in Fig. 3 suggests. On the contrary, for the asynchronous case, the

values of W decay ∼ T−1 at large T . While for purely fluctuating samples one would also

expect W ∼ M−2; such scaling is valid only for M = 1, 10; for M ≥ 100, apparently, this

scaling is not applicable due to the relative regularity of fluctuations of ACFs.
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B. Finite size effects for small ensembles of active rotators

In Section III A above, we considered a rather large ensemble of irregular oscillators

with N = 104. Here, we explore, for the same system, how the discussed methods of

synchrony characterization work for small population sizes. In particular, we explore cases

N = 10, 100, 1000.

First, in Fig. 6 we present the phase portraits (CN(t), SN(t)) for the small populations,

for σ2 = 0.04 (panels (a-c) and σ2 = 0.06 (panels (d-f). One can see a clear difference

between two noise values for N = 1000, while for N = 10, 100 for both noise levels, there is

no void in the phase portraits around the center of rotations. This allows for a preliminary

conclusion that synchrony detection with other methods will possibly work for N = 1000,

but might be hard for N = 10, 100.

(a)

N=10 C
N

S
N

(b)

N=100 C
N

S
N

(c)

N=1000 C
N

S
N

(d)

N=10 C
N

S
N

(e)

N=100 C
N

S
N

(f)

N=1000 C
N

S
N

FIG. 6. Phase portraits of the complete mean fields CN vs SN for small system sizes N =

10, 100, 1000 and two values of the noise level: panels (a-c): σ2 = 0.04; panels (d-f): σ2 = 0.06.

In Fig. 7, we show different autocorrelation functions for N = 1000. First, we notice that

the ACFs for M = 1 and M = 1000 practically coincide except for a region of very small

time lags (one cannot see the red and the green curves in Fig. 7 because these curves are

overlapped with the blue and the cyan ones). Altogether, the different time behavior of the

ACFs delivers a strong contrast between synchrony and asynchrony for N = 1000 (because

the blue curve for σ2 = 0.04 demonstrates a much more ordered oscillatory tail compared

to the cyan curve for σ2 = 0.06). On the other hand, since even in the synchronous case,
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FIG. 7. Characterization of the regimes depicted in Fig. 6 (c,f), N = 1000, with the ACFs. Both

for small noise (synchrony in the thermodynamic limit), σ2 = 0.04, and for large noise (asynchrony

in the thermodynamic limit), σ2 = 0.06, the ACFs from one element and from the complete mean

field coincide after a small initial interval of time lags.
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(b)

W

T

FIG. 8. The same as Fig. 5, but for the case N = 1000. Panel (a): synchronous case; panel (b):

asynchronous case. One can see that the WOP reasonably contrasts synchronous and asynchronous

states despite pronounced finite-size irregularity. Parameters of the WOP calculation: Θ1 = 200,

Θ2 = 600.

the ACF significantly decays after 10 periods, for the calculation of the WOP W we have to
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choose relatively small values Θ1,Θ2. With such a choice, this order parameter allows for a

reasonable synchrony characterization, as illustrated in Fig. 8.

Performing the same ACF analysis for small population sizes, we found that for N = 100

the difference in the correlation lengths for the two values of noise strength is rather small,

and for N = 10 there is practically no difference. These results confirm a general expectation

in Section II that a transition to synchrony for small population sizes becomes fuzzy.

IV. CHAOTIC OSCILLATORS

-3

-2

-1

 0

 1

 2

 3

 4

 0  50  100  150  200

X
(t

)

time

ε=0.01

ε=0.04

ε=0.2

FIG. 9. Time series of the global mean field X = N−1
∑

k xk(t) for coupled chaotic Rössler

oscillators Eq. (17) for different values of the coupling strength ε. The ensemble size is N = 104.

Here we describe synchronous states in coupled Rössler oscillators, first reported in

Ref. 13:

ẋk = −yk − zk +
ε

N

∑
j

xj ,

ẏk = xk + ayk ,

żk = b+ (xk − c)zk .

(17)

We use parameters a = 0.25, b = 0.4, c = 8.5, at which each Rössler system has a funnel-

type attractor, i.e., the oscillators have an ill-defined phase (cf. phase portraits with M = 1

in Fig. 10 below). For this system we use the observables

XM(t) =
1

M

∑
k∈SM

xk(t) , YM =
1

M

∑
k∈SM

yk(t) .
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With the increase of the coupling strength ε, first periodic oscillations of the mean field

appear, then the amplitude of these oscillations grows, and they become modulated. We

illustrate this in Fig 9, where we show the time series of the observable XN(t) for N = 104

and different values of ε. For ε = 0.01, the mean field fluctuates around a constant without

any visible regularity; we attribute the fluctuations to finite-size effects and denote this state

as an asynchronous one. In contrast, we observe regular macroscopic variations of the mean

field for ε = 0.04 and ε = 0.2 and correspondingly denote these states as synchronous.
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FIG. 10. Phase portraits (XM , YM ) for M = 1, 10, 100, 103, 104, for synchronous and asynchronous

regimes (panels (a-e): ε = 0.01, panels (f-j): ε = 0.04, panels (k-o): ε = 0.2).

In Fig. 10 we show trajectories of partial mean fields (XM , YM) forM = 1, 10, 100, 103, 104,

for synchronous and asynchronous regimes. One can clearly see that these observables show

very similar patterns for M = 1 and M = 10 for all ε. At M = 100 one can recognize a

regularity in the partial mean fields for ε = 0.2, while a regularity for ε = 0.04 is only visible

for M ≥ 103.

Finally, we apply the ACF analysis to reveal synchrony from observations with small

sample sizes M . In Fig. 11 we show the ACFs Γ[XM ](t) for the observables XM , for all the

three selected values of the coupling strength ε. For ε = 0.01 (panels (a,d)), the ACFs for all
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FIG. 11. Autocorrelation functions at small time lags (panels (a-c)) and at large time lags (panels

(d-f)) for different M and ε (averaging time T = 106). Panels (a,d): asynchronous state ε = 0.01;

here, all the autocorrelation functions at large time lags fluctuate around zero. Panels (b,e):

ε = 0.04; panels (c,f): ε = 0.2. Here, the ACFs for observables with different M nearly coincide at

large time lags, where they demonstrate periodic behavior.

M fluctuate at a small level for large time lags, confirming the absence of synchrony. For the

synchronous cases ε = 0.04 (panels (b,e)) and ε = 0.2 (panels (c,f)), at large time lags the

autocorrelation functions for all 1 ≤ M ≤ N nearly coincide. This supports the conclusion

that observation of just one unit in a large population allows for revealing synchrony by

virtue of our method.

V. NOISY LIMIT-CYCLE OSCILLATORS

In this section, we present an example where we vary the irregularity level at each unit

to see the impact of this level on the performance of the method. We take the system of

N Stuart-Landau oscillators with global nonlinear coupling and add independent Gaussian

white noise terms ∼ σ to each unit:

ȧk = (1 + 5i)ak − |ak|2ak + εA− εnl|A|2A+ σξk(t) . (18)

Here ak are complex variables, k = 1, 2, . . . , N , and A = N−1
∑N

k=1 ak is the complex

mean field. The terms ξk(t) are real-valued Gaussian white noises with zero mean and unit

intensity49. Analysis of this system performed in Ref. 50 without noisy perturbations shows

that for specific parameter values the ensemble exhibits partial synchronization, such that
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the mean field is periodic, but its frequency differs from that of the oscillators and the latter

are thus quasiperiodic.

A. Linear coupling

Here, we fix εnl = 0, σ = 0.2, and vary real parameter ε to trace the synchronization

transition. For this purpose, we exploit two traditional measures (the mean-field variance

and the Kuramoto order parameter), as well as the WOP. We simulate the ensemble of

N = 104 units and take UM = M−1Re
(∑M

k=1 ak
)
, M ≤ N , as our observable. (We use

106 time points sampled with the step 0.05 to compute the autocorrelation function and fix

the values Θ1 = 1.25 · 104 and Θ2 = 2 · 104 for the computation of W .) The results are

illustrated in Fig. 12. Since W is proportional to the squared variance of the process, we

plot [Var(UM)]2 in the panel (a) and W in the panel (b). (We do not show the KOP since

its variation is, up to a nearly constant factor, very similar to that of the variance measure.)

The main outcome is that the Wiener order parameter successfully traces the synchro-

nization transition from an observation of a single oscillator, while the variance measure

certainly fails here. Furthermore, for partial observations with M > 1, when both measures

work, the WOP is more efficient: the contrast between the asynchronous and synchronous

states is much stronger.

B. Nonlinear coupling

Here, we fix ε = 3 + 0.3i and εnl = 8. With this nonlinear coupling, the noise-free

ensemble in the thermodynamic limit N → ∞ exhibits the harmonic mean-field solution,

while individual units remain not locked to the field and thus dynamics of each unit is

quasiperiodic. This quasiperiodicity will be naturally seen in the one-unit sampling M = 1,

but will be smeared for larger M .

Figure 13 demonstrates the simulation results for N = 104 and different values of the noise

intensity. Here, for a better visibility, we plot the upper envelopes of the autocorrelation

functions; thus, a nearly constant value of Γ̄ at large τ indicates that one has a purely

periodic correlation function with the corresponding amplitude of oscillations.

The main conclusion is that regularity of the oscillators is an obstacle for observations
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FIG. 12. The variance measure of synchrony (a) and the Wiener order parameter (b) of the

ensemble of noisy Stuart-Landau oscillators (18) with global linear coupling as functions of the

coupling strength ε. Different curves in each panel correspond to observation ofM = 1, M = 10, . . .,

M = N = 104 oscillators. Notice that W successfully reveals the synchronization transition even

from an observation of a single oscillator. Next, for the M > 1 cases, the quantification with the

WOP provides an about two orders of magnitude stronger contrast between the states before and

after transition.
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FIG. 13. The upper envelopes of the correlation functions for the nonlinearly coupled ensemble of

Stuart-Landau oscillators (18), for different values of the noise intensity: σ = 0.02 (a), σ = 0.1 (b),

and σ = 0.5 (c) and different values of M .
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with M = 1: for a weak noise, σ = 0.02 (panel (a)), the ACF envelope for M = 1 strongly

oscillates, indicating modulation of the ACF, as expected for a signal that is close to a

quasiperiodic one. Correspondingly, computation of W from one oscillator will provide the

sum of intensities of periodic components on the oscillator’s frequency and that of the mean

field (and their harmonics). For this level of noise, oscillations of the ACF envelope can

be also seen for M = 10, but they are much smaller. So, due to relative regularity, the

correlation decay is very slow; hence, inference of synchrony from observation of one or

several units requires an extremely long observation.

The situation changes for an intermediate noise, σ = 0.1 (panel (b)). Now, we see that

the oscillation of the ACF envelope for M = 10 decays quickly so that the partial mean

field U10(t) suffices for the computation of W . For stronger noise, σ = 0.5 (panel (c)), even

observation of one oscillator (after a short decay time) yields the same ACF as the complete

observation of the mean field. This confirms the overall estimation that the proposed method

should work better for irregular oscillators and might not be optimal when local units are

highly regular.

Two remarks are in order. First, we plotted only the envelopes of the ACFs, but we

checked that when they coincided, the ACFs coincided as well. Second, in panel (c), we see

that the envelope is not constant but slightly decays so that, strictly speaking, the ACFs

are not stationary for the presented range of τ . This decay is because the mean field is not

truly periodic due to the large though finite ensemble size, as discussed in Section II D.

C. Nonidentical noisy oscillators

To illustrate ideas of Section II F about the applicability of the approach to non-identical

units, we take a large ensemble of N = 104 slightly inhomogeneous noisy oscillators. The

model now reads:

ȧk = (1 + iωk)ak − |ak|2ak + εA+ σξk , (19)

where frequencies ωk are taken from a Gaussian distribution with the mean value ω̄ = 5 and

standard deviation 0.02; the noise strength is σ = 0.2, and the coupling strength is varied.

As before, we use UM = M−1Re
(∑M

k=1 ak
)

to compute the WOP W as a function of ε.

Figure 14 demonstrates the synchronization transition revealed from the global mean field,

M = N = 104, and observations of a small subpopulation, M = 20. Since the units are
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non-identical, the results definitely depend on the chosen subset of units. To check that this

dependence is weak, we performed calculations with 50 random samples of M = 20 units

and presented the results for all these samples as red dots. We see that all the samples give

very similar results. Thus, an observation of only 2% of the oscillators reliably reveals the

transition to synchrony.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

"

10-10

10-8

10-6

10-4

10-2

100

W

FIG. 14. The Wiener order parameter W as a function of the coupling parameter ε for the system of

N = 104 inhomegeneous noisy oscillators. Blue line shows the values obtained from the mean field

of the ensemble. Red dots present the results of partial observations, i.e., the partial mean field is

computed from 20 randomly chosen units. For each value of ε, we perform 50 trials which provide

generally different results. Since the units are non-identical, the order parameter computed from a

partial observation depends on the chosen subset of units, what explain the vertical scattering of

the points. Notice that the scattering decreases with ε because of the tendency to synchrony.

VI. KURAMOTO MODEL

Here we apply our approach to the standard Kuramoto model of globally coupled phase

oscillators

ϕ̇k = ωk +
ε

N

N∑
j=1

sin(ϕj − ϕk), k = 1, 2, . . . , N . (20)

The main differences to the cases above are: (i) the specific units, if uncoupled, are not

irregular (chaotic or noisy), but regular periodic oscillators; (ii) the units are not identical but

differ in natural frequencies ωk. The latter property ensures the existence of an asynchrony

state for small coupling strengths ε.

In simulations below we take a Gaussian distribution of frequencies N(ω̄, 1) with unit

variance centered at frequency ω̄ = 2π. The theory36 predicts in the thermodynamic limit
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a transition to periodic global oscillations at εcr = 2
√

2/π ≈ 1.596; the dependence of the

Kuramoto order parameter (KOP) R = |〈eiϕ〉| on ε can be represented in the parametric

form with real-valued parameter p > 0 as

R = e−p
√
πp/2[I0(p) + I1(p)], ε = 2

√
p/R , (21)

where I0, I1 are modified Bessel function of the first kind.

Below, we consider finite ensembles with moderate numbers of units N . We will use

regular sampling of natural frequencies ωk, like in Refs. 36 and 51, calculating them from

the corresponding quantiles of the normal distribution. Because the analytic solution (21)

in the thermodynamic limit is available, we will compare the numerical results with the

theory. For this, we need to relate the KOP to the WOP, see Eqs. (12,14). We will use the

local observable u(ϕ) = cosϕ for the latter. Thus, the fully observed (i.e., calculated for the

full ensemble size N) mean field U(t) = Re(Z(t)) is the real part of the complex Kuramoto

order parameter Z(t) = N−1
∑

k e
iϕk(t). In the thermodynamic limit, the field Z is periodic

Z = R exp[iω̄t+θ0], where R is obtained according to Eq. (21). Thus, U(t) = R cos(ω̄t+θ0).

The ACF function of this periodic process is, according to Eq. (13), Γ(t) = (R2/2) cos ω̄t.

Thus, the WOP calculated according to Eq. (12), is W = R4/8. This value should be

compared with the variance Var(U) = Γ(0) = R2/2 of the process U(t), which is used in the

traditional characterization of the synchronization transition. Therefore, in the plots below,

we use a function of the variance V = [Var(U)]2/2 because, in the thermodynamic limit, it

coincides with WOP W .

We start with full global observables U(t) of a population of Kuramoto oscillators and

report the order parameters close to the synchronization transition in Fig. 15, for system

sizes N = 20, 50, 100. One can see that the “sharpness” of the transition to synchrony is

significantly improved if the WOP is used instead of the variance-based characterization.

Remarkably, the WOP decreases prior to the transition threshold for a small number of

units N = 20 (this effect is also present for N = 50 but not so pronounced). We attribute

this to the chaoticity of the Kuramoto model, studied in Refs. 51–53. In these papers, it

has been shown that at finite coupling strengths prior to the synchronization transition,

the largest Lyapunov exponent in the Kuramoto model is positive ∼ N−1 and reaches a

maximal value close to the transition. Because the chaoticity of the population makes the

observed mean field U(t) irregular, its ACF decreases faster for stronger chaos, and the
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FIG. 15. The variance-based order parameter V (solid curves) and the WOP W (short-dashed

curves with the corresponding colors), both for the complete observable U(t), for the Kuramoto

model (20) with N = 20, 50, 100. The long-dashed black line shows the theoretical prediction in the

thermodynamic limit (expression (21)). One can see that the contrast between the synchronous

and asynchronous states increases, if WOP is used, by several orders for N = 100, and by more

than one order for N = 20. Parameters of the WOP calculation: T = 105, Θ1 = 250, Θ2 = 500.

WOP is smaller. This explains why, for small N , the WOP has a minimum prior to the

transition to synchrony.

Next, we explore in Fig. 16 how the synchronization transition can be characterized with

finite samples from the ensemble of N = 50 units. Because the oscillators are not identical

(they have different natural frequencies), their behavior at the transition is different. The

oscillators with the natural frequencies close to the middle one become locked by the mean

field, while those with frequencies at the tails of the distribution remain nearly quasiperi-

odic (although they possess a periodic component from the mean field driving). Thus, we

considered not just one sample of M units to calculate the observed mean field UM(t) but

performed calculations with a set of 50 randomly chosen samples. The results for all these

50 samples are shown in Fig. 16 with grey lines to illustrate the diversity of the transition

characterizations due to the units’ non-identity. One can see that some, but not all, cases

with M = 2 (panel (d)) show a reasonable contrast between asynchrony and synchrony. On

the contrary, already an observation of M = 5 units (panel (c)) provides a reliable descrip-

tion of the transition. The quality grows with M , and at M = 10 (panel (b)), the quality

of WOP is almost the same as the quality of the variance-based characterization where all

units are used. For M = 20 (panel (a)), the results from partial samplings are close to those
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FIG. 16. Analysis of the synchronization transition for N = 50 Kuramoto oscillators via obser-

vations of M = 20 (a), M = 10 (b), M = 5 (c), and M = 2 (d) units. For each case, together

with the variance-based parameter V (based on the full observation; solid red lines) and the WOP

W (dashed blue lines) calculated from the full mean field, we show WOPs for 50 random samples

of M selected for observation units with grey lines. The black long-dashed line is the theoretical

prediction for the thermodynamic limit. Parameters of the WOP calculation: T = 105, Θ=50,

Θ2 = 100.

with the full observability M = 50.

One remark is in order. Because the Kuramoto model Eq. (20) is invariant with respect

to time-dependent phase shifts ϕ → ϕ + νt, one often performs such a transformation

with ν = ω̄. As a result, in the transformed phases, the mean fields are not periodic but

time-independent. In terms of the original oscillators, Eqs. (1-3), this corresponds to mean

fields in definitions of which (see Eq. (3)) an explicit periodic time dependence is present.

Thus, the example of the Kuramoto system does not contradict the general considerations

of Section II, where we assume that observables are not explicitly time-dependent.

The conclusion from this example is that although the individual oscillators are regular,

the mean fields and the fields from the samples with sufficiently large size M fluctuate in the

asynchronous state and have a strong periodic component in the synchronous regime. This

property allows for a nice separation of synchrony and asynchrony by virtue of the WOP.

However, in contradistinction to the case of local irregular units, the efficacy of the WOP
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approach drops at small sample sizes M .

VII. CONCLUSION

To summarize, we suggested an approach of synchrony quantification based on the char-

acterizing regularity of the mean fields in a population of globally coupled units. The main

difference to previous works is that we do not simply identify the existence of macroscopic

mean field oscillations by following the variance but select the regular part of these oscilla-

tions by virtue of Wiener’s formula applied to the auto-correlation function. We coin the

term “Wiener order parameter” for the corresponding quantity. As we show with different

examples, this approach strongly increases the contrast between the synchronous and asyn-

chronous states. Most successful is the application of this approach to ensembles of highly

irregular units, like excitable systems exhibiting noise-induced oscillation (Section III) and

chaotic oscillators (Section IV). Furthermore, because in our method, we effectively separate

the regularity and irregularity of the observations by means of the ACF calculations, there

is, in fact, no need for ensemble averaging. This allows for working with small samples,

and in most cases, even observing one unit out of the large ensemble allows for a reliable

quantification of the synchronization transition.

In our approach, we operate with a generic local observable that represents the system’s

state. We stress that this observable does not need to be the phase of the oscillations, and

there is no need to extract the phase from this observable. Of course, in the cases where

the phase-dynamics description is adequate, knowing the phases would lead to an enhanced

characterization of the synchronization transition by including properties of frequency en-

trainment, etc. In our approach, the basic requirement for the observable is that it is suitable

for calculations of the ACF. This means that sparse in time observables, like spikes resulting

in a point process, require a special consideration to be reported elsewhere.

While the description of synchrony/asynchrony contrast as that of regularity/irregularity

is valid in many circumstances, there are situations where synchronous states show a large

degree of irregularity (even in the thermodynamic limit). Irregularity of the mean fields

can also result from a common noisy forcing. In such situations, the method should be

significantly modified; this is a work in progress.
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45D. Pazó and E. Montbrió, “From quasiperiodic partial synchronization to collective chaos

in populations of inhibitory neurons with delay,” Physical Review Letters 116, 238101

(2016).

46I. Ratas and K. Pyragas, “Macroscopic oscillations of a quadratic integrate-and-fire neuron

network with global distributed-delay coupling,” Physical Review E 98, 052224 (2018).

47W. H. Press, S. T. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes

in C: the Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge,

England, 1992).

48V. V. Klinshov, S. Y. Kirillov, V. I. Nekorkin, and M. Wolfrum, “Noise-induced dynamical

regimes in a system of globally coupled excitable units,” Chaos: An Interdisciplinary

Journal of Nonlinear Science 31, 083103 (2021).

49Notice that the normalization of the noise strength differs from that used in Eq. (15).

50M. Rosenblum and A. Pikovsky, “Two types of quasiperiodic partial synchrony in oscillator

ensembles,” Phys. Rev. E 92, 012919 (2015).

51M. Carlu, F. Ginelli, and A. Politi, “Origin and scaling of chaos in weakly coupled phase

oscillators,” Physical Review E 97, 012203 (2018).

52O. V. Popovych, Y. L. Maistrenko, and P. A. Tass, “Phase chaos in coupled oscillators,”

Physical Review E 71, 065201 (2005).

53Y. L. Maistrenko, O. V. Popovych, and P. A. Tass, “Chaotic attractor in the Kuramoto

model,” International Journal of Bifurcation and Chaos 15, 3457–3466 (2005).

32

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

02
03

64
5


