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We study in detail a one-dimensional lattice model of a continuum, conserved field (mass) that is transferred
deterministically between neighboring random sites. The model belongs to a wider class of lattice models captur-
ing the joint effect of random advection and diffusion and encompassing as specific cases some models studied in
the literature, such as those of Kang-Redner, Kipnis-Marchioro-Presutti, Takayasu-Taguchi, etc. The motivation
for our setup comes from a straightforward interpretation of the advection of particles in one-dimensional
turbulence, but it is also related to a problem of synchronization of dynamical systems driven by common noise.
For finite lattices, we study both the coalescence of an initially spread field (interpreted as roughening), and the
statistical steady-state properties. We distinguish two main size-dependent regimes, depending on the strength of
the diffusion term and on the lattice size. Using numerical simulations and a mean-field approach, we study the
statistics of the field. For weak diffusion, we unveil a characteristic hierarchical structure of the field. We also
connect the model and the iterated function systems concept.
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I. INTRODUCTION

Advection and diffusion are two basic transport phe-
nomena occurring in diverse physical contexts. The former
amounts to the motion of, for instance, small tracer particles
(such as a pollutant) transported by the movement of a sur-
rounding fluid. On the other hand, diffusion is caused by the
familiar mechanism of a Brownian random walk that causes a
stochastic spreading of tracer particles due to the interaction
with a solvent.

A particularly interesting case is one in which advection
is a random process. In the applications to turbulence, there
is a vast literature on the matter [1]. A celebrated example
is the Kraichnan model for the advection of a passive scalar
by a random flow [2]. In this case, one usually assumes an
incompressible (solenoidal) velocity field [2] or a weakly
compressible fluid [3]. As is known, the former case is related
to Hamiltonian dynamical systems theory, as exemplified by
Lagrangian chaos [4]. On the other hand, the issue of com-
pressible fluids is less studied and corresponds to dissipative
phase-space flows.

In addition to the problem of passive scalar transport in
fluids, the concept of advection is more general and applies
in a more abstract sense to the spreading of an ensemble of
trajectories in phase space of a dynamical system subject to
a common regular or irregular phase velocity field. Exam-
ples of this setup occur in neurosciences and other fields.
Another interesting application concerns transport in active
media [5] as it occurs for light in disordered and amplifying
systems [5,6].

Mathematically, a description of the problem in the contin-
uum limit requires dealing with a stochastic partial differential
equation, but such equations are notoriously hard to deal with.
From a more statistical-mechanics point of view, it is thus

helpful to consider simple discrete microscopic or mesoscopic
models of the dynamics that possess some fundamental fea-
tures of the problem. Such an approach is insightful as it
allows us to simulate the process straightforwardly. In this
work, we follow this strategy to take a fresh look at the prob-
lem when random advection and diffusion are both present.
We introduce a general class of stochastic lattice models in
which microscopic moves mimic the two basic mechanisms,
namely the collective random motion of particles induced by
the common advecting field, and the spreading caused by
microscopic diffusion (this distinction will be made clear in
the following). For simplicity, we deal with a one-dimensional
lattice. Discrete dynamics is easily generalized to higher di-
mensions or graphs, although in these cases a relation to the
original continuous advection setup becomes nontrivial (see
the discussion in Sec. VIII). We anticipate that this class
will encompass various models considered previously in the
literature as particular cases.

The primary model we are going to study depends on
a single parameter ε confined to the unitary interval [0, 1]
and allowing for tuning the relative importance of advection
and diffusion. This parameter quantifies the fraction of mass
which is transferred from a random site to a random neighbor.
In one limit (ε = 0), there is a whole transfer of mass and
the process is characterized by macrodiffusion (or random
advection). In the opposite limit (ε → 1), a vanishing piece
of matter is transferred and the process is characterized by
microdiffusion. For general ε, both processes are present.

We are interested in both the time dependence of the field
evolving from an initial uniform state and in the properties of
the statistically stationary state that emerges at large times. In
the former case, the typical phenomena are coarsening and
roughening, namely how clusters merge and how the field
variance grows in time. Also, the steady-state statistics of the
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field is of great interest. We will report cases in which the
statistics is strongly non-Gaussian, and we will be able to give
a scaling description of the asymptotic state for any ε and any
size L of the system.

This paper is organized as follows. In Sec. II we de-
scribe the basic phenomenology of advection and diffusion
in a smooth, random field, and we introduce the basic dis-
tinction between macroscopic (collective) and microscopic
diffusion. The general class of models with stochastic micro-
scopic dynamics is defined in Sec. III, and particular cases
corresponding to various systems studied in the literature are
examined. Our analysis starts by considering the case of no
microscopic diffusion for a finite lattice (Sec. IV) and its
roughening properties. We then focus on various steady-state
properties in Secs. V, VI, and VII. Conclusions are given in
Sec. VIII, along with a brief comparison of our results with
those given in the literature for other models with similar
conservation laws. Some more technical aspects are relegated
to the Appendixes.

II. PHENOMENOLOGY OF RANDOM
ONE-DIMENSIONAL ADVECTION AND DIFFUSION

Let us start by discussing general qualitative concepts
about one-dimensional random passive scalar advection. The
starting point is an ensemble of “particles” with coordinates
xi(t ) in a velocity field v(x, t ), so that the dynamics is simple,

dxi

dt
= v(xi, t ). (1)

We assume that the velocity field v(x, t ) is a random
function of time so that each particle displays a random one-
dimensional motion. For the differential equation (1) to be
well-posed, the field v(x, t ) should be smooth enough in x (at
least Lipschitz continuous).

One typically associates advection with a transport by
moving fluid, and fluids are in most cases nearly incom-
pressible, so that in one dimension the velocity is constant.
However, the velocity field on the surface of incompressible
fluid can be any function of coordinate and time. Thus, the
one-dimensional setup directly applies to particles floating on
the surface of a two-dimensional turbulent flow. This flow
can be random surface waves (see Ref. [7] for experiments
involving particles’ advection in two-dimensional surface
waves, and Ref. [8] for the recent realization of turbulent
one-dimensional surface waves). Another possible source of
one-dimensional random advection is two-dimensional turbu-
lent convection (e.g., in a Hele-Show cell) with an open upper
surface, on which the floating particles move.

The main macroscopic effect is the
merging/clustering/coalescence (we use these terms as
synonyms below) of particles. Indeed, if the coordinates
of two particles coincide at t = 0, xi(0) = x j (0), then
their trajectories are identical at any later time, i.e.,
xi(t ) ≡ x j (t ) = X (t ) ∀t > 0, with Ẋ = v(X, t ) and
X (0) = xi, j (0). A cluster of particles with identical positions
is, therefore, a solution of Eq. (1). A second and equally
important remark is that such a solution is stable in the sense
that neighboring particles get effectively “attracted” to each
other to form a cluster. To see this, suppose that the field

v(x, t ) is a smooth enough function of x, so that one can
linearize (1) around a reference trajectory of a cluster X (t ), to
obtain for a small perturbation �x

d

dt
�x = �x

∂

∂x
v(X (t ), t ). (2)

This linear equation with a random function of time v(X (t ), t )
defines the Lyapunov exponent

λ =
〈

∂

∂x
v(X (t ), t )

〉
t

(3)

so that asymptotically in time, �x(t ) ∝ exp[λt].
The main observation is that in one-dimensional contin-

uous dynamics, the Lyapunov exponent cannot be positive
because the phase volume for a statistically stationary regime
cannot grow indefinitely. Furthermore, it is improbable for
random fields that the Lyapunov exponent vanishes. Indeed,
in nonrandom one-dimensional dynamics, the Lyapunov ex-
ponent can be either negative (a sink) or zero (e.g., a steady
periodic motion over a periodic space profile). Randomness
“mixes” these two situations, thus leading to a negative Lya-
punov exponent. For a negative Lyapunov exponent, �x → 0
as t → ∞. This means that neighboring particles glue to-
gether (coalesce), and in a finite system a stable cluster forms
at long enough times. Since all the particles have the same
trajectory there, we will refer to it as the maximal cluster.
Also, since the cluster will perform a random motion, we will,
for definiteness, refer to this motion as macrodiffusion.

We note here that coalescence to a maximal cluster also
occurs in more general situations, provided the maximal Lya-
punov exponent is negative. For example, such a situation is
possible for two-dimensional advection as well, although in
this case there are two Lyapunov exponents, so the maximal
one may become positive and the cluster will be destroyed.
One class of problems where a maximal cluster appears is
irreversible aggregation, where a large number of small par-
ticles coalesce over time with no possibility of breaking up;
see Ref. [9] and the literature therein. On the other hand,
in the context of noise-driven dynamical systems the effect
of the formation of the maximal cluster has been termed
synchronization by common noise, and it was first described
in Refs. [10,11], where an ensemble of identical systems
(i.e., an ensemble of different initial conditions) driven by the
same realization of noise was analyzed. In the mathematical
literature, equations of type (1) are called random dynamical
systems, and a maximal cluster state as described above rep-
resents a point random attractor in such a system [12]. The
effect of synchronization by common noise also appears in
neuroscience (there it is called reliability [13]), and in other
fields [14,15]. If the maximal Lyapunov exponent becomes
positive (which is possible starting from dimension 2), a point
attractor undergoes a transition to a fractal one [16,17]. In the
context of passive scalar advection theory, such a transition,
which occurs as the compressibility of the underlying flow
increases, was discussed in [18].

The nature of the macrodiffusion (i.e., whether it is normal
or anomalous) depends on the actual statistical properties of
the field v(x, t ) (cf. [19]). In the examples considered below,
we will limit ourselves to the case in which spatial and tempo-
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ral correlations of the velocity field decay rapidly, so that the
macrodiffusion will be normal.

We stress that the arguments about attracting clustered
states are valid for a large but finite system. This will be
the case we consider in this paper, where we also will ex-
plore scaling relations as the size of the system goes to
infinity.

Although a clustered state is an attractor in the random
advection dynamics (1), there can be several such attractors in
degenerate situations. Indeed, if, e.g., the velocity field is odd
in space, v(−x, t ) = −v(x, t ), then v(0, t ) = 0 and the par-
ticles starting in positive x > 0 and negative x < 0 domains
never meet and never merge, so there are at least two attractors
here. Below, we assume that such a degenerate situation does
not occur, and we have one ergodic component: all the initially
distributed particles evolve under (1) to one single maximal
cluster.

The above concept of macrodiffusion should be juxtaposed
with a familiar Brownian motion, as given by the Langevin
equations

dxi

dt
= σξi(t ), (4)

where the microscopic noises ξi(t ) are zero-average, in-
dependent (i.e., different for different particles) Gaussian
and white noises with 〈ξ (t )〉 = 0, 〈ξi(t )ξ j (t ′)〉 = 2δi jδ(t − t ′).
This noise leads to a diffusive spreading ∼σ 2t of particles in
the ensemble. We call this effect microdiffusion for a clear
distinction with the above.

Our main goal in this paper is to contribute to an under-
standing of the behavior of an ensemble of particles, where
both macro- and microdiffusion in a given random velocity
field are present; namely, we combine (1) and (4) into an
equation

dxi

dt
= v(xi, t ) + σξi(t ). (5)

We illustrate different regimes in the dynamics of (5) in Fig. 1.
Equation (5) can be considered as a Langevin equation so

that the evolution of the probability density w(x, t ) of an
ensemble of particles obeys the Fokker-Planck equation

∂

∂t
w + ∂

∂x
(v(x, t )w) = σ 2 ∂2w

∂x2
. (6)

We stress that this equation includes averaging over the
microscopic noise terms ξ (t ) but still contains the random
function v(x, t ), which is common for all the particles.
Thus, formally this equation is a stochastic partial differential
equation.

Our main interest is in the statistical properties of the
density w(x, t ). As argued above, in the absence of microdif-
fusion, σ = 0, the asymptotic state is a point attractor (cluster)
which moves randomly: w(x, t ) = δ(x − X (t )). This singular
solution becomes “smeared” by a finite microdiffusion σ > 0.
However, the details of this continuous random field w(x, t )
are not clear a priori, and the goal of this paper is to contribute
to understanding the statistical properties of the distribution
density w.

FIG. 1. Dynamics of a set of 200 particles, initially uniformly
distributed, according to Eq. (5) for different levels of microdiffusion
σ , for the same realization of random field v(x, t ) (this field is
taken as a chaotic solution of the Kuramoto-Sivashinsky equation;
cf. [19]). (a) Microdiffusion-free case σ = 0; here one observes a
perfect formation of the maximal cluster. (b) Small noise σ = 0.005;
here some particles due to noise split from the largest cluster, which,
however, contains most of them. (c) Large noise σ = 0.3; here the
distribution of particles is nonuniform, but there are no dominating
clusters.

III. LATTICE MODELS

It is computationally rather costly to simulate Eq. (6) on
a large domain and for small σ . Furthermore, the results are
expected to depend drastically on the statistical characteris-
tics of the underlying velocity field v(x, t ). In the literature,
one has taken for this field turbulent solutions of the deter-
ministic Kuramoto-Sivashinsky equation [19,20] as in Fig. 1.
Another approach is to interpret the advective motion as
sliding along a one-dimensional surface v(x, t ) = ∂xh(x, t ),
and to use one of the popular stochastic partial differential
equations for the dynamics of this surface h(x, t ), e.g., the
Edwards-Wilkinson equation [21] or the Kardar-Parisi-Zhang
equation [22]; see Refs. [23–28]. Although there are statistical
models for one-dimensional wave turbulence [29], including
the deterministic fractional partial differential equation (PDE)
by Majda, McLaughlin, and Tabak [30], we are not aware of
any study of advection in such models.

A convenient approach to finding scaling properties of ran-
dom advection is to explore proper lattice models. In a lattice
model, the field is discrete in space, and therefore one cannot
perform a continuous stability analysis of a cluster state like
in Eq. (2) above. Indeed, if one takes the continuous-in-space
model (1), then a natural assumption is that the velocity fields
at large distances are independent, but at small distances [at
which the linearization (2) is valid] it is smooth. Thus, if one
takes two particles at a large initial distance, they first diffuse
independently, and only when they are close enough to each
other do they merge according to the Lyapunov exponent (3).
A lattice model can imitate the first stage of independent diffu-
sion but replaces the second stage of exponential convergence
with an abrupt coalescence. Furthermore, the lattice models
below are formulated in a discrete time. In these models, one
defines a conserved “mass field” uk (t ), where k is the lattice
site and t is discrete time. This field should be interpreted
as a discretized density w(x, t ) of advected particles from
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Eq. (6). As is clear from the discussion of existing continuous
models above, one can construct lattice models with different
statistical characteristics. Below we will focus on “maximally
random” lattice models, with vanishing correlations of the
effective “velocity field” in space and time. The motion of
a single particle in such models is pure diffusion, in con-
tradistinction to a superdiffusion due to time-correlation of the
velocity in the cases mentioned above [19,20,26].

A. Generic two-site models

We start with a rather generic setup and then focus on two
particular lattice models that will be considered below. We
assume that the models for a continuous field on a lattice are
formulated as follows:

(i) A pair of neighboring (to ensure locality) sites,
(k, k + 1), is chosen randomly.

(ii) The fields at these sites, uk, uk+1, are redistributed
according to a deterministic (parameters fixed) or stochastic
(parameters chosen from a distribution) linear rule,

u′
k = (1 − a)uk + buk+1, (7)

u′
k+1 = auk + (1 − b)uk+1, (8)

where the primes indicate the masses after a move, and where
we have implemented mass conservation.

Therefore, the rule is generically described by a stochastic
matrix depending on two parameters 0 � a, b � 1:

A(a, b) =
(

1 − a b
a 1 − b

)
.

If a �= b, the distribution is asymmetric. Thus, for fixed a �= b,
one applies matrices A(a, b) and A(b, a) with probabilities
1/2. Such a symmetrization might not be needed if a, b are
chosen as random variables. We note that the parameters
k, k + 1 and matrix A(a, b) do not depend on the field u,
thus the particles are passive. For a lattice model of an active
particle sliding over a surface, which is influenced by the
particle position, see [31].

In terms of these parameters, different models from the
literature (see Fig. 2) can be described as follows:

(i) The Kang-Redner (KR) model [32] (see a detailed de-
scription in Sec. III B below) corresponds to a = 1, b = 0: all
the mass of a random site i is transferred to a random neighbor
i ± 1.

(ii) The Takayasu-Taguchi (TT) model [33] (see a detailed
description in Sec. III C below) corresponds to a = 1 − ε, b =
0: the fraction a of the mass of a random site i is transferred
to a random neighbor i ± 1.

(iii) The Kipnis-Marchioro-Presutti (KMP) model [34] (see
discussion in Sec. VIII) corresponds to a = 1 − b = ξ , where
ξ is uniformly distributed 0 � ξ � 1: the total mass of a
random pair of neighboring sites is randomly redistributed
between them.

(iv) The Rajesh-Majumdar (RM) model [35] (see discussion
in Sec. VIII) in the limiting case of a sequential update is a
random version of the TT model a = ξ , b = 0, where ξ is
uniformly distributed, 0 � ξ � 1.

(v) The deterministic KMP (det-KMP) model (it looks like
this model has not been considered before) corresponds to a =

FIG. 2. Different models in terms of parameters (a, b). Cases TT,
KR, and det-KMP with fixed parameters (except for diffusion) are
shown with markers (for definiteness, we take ε = 0.8); cases KMP
and RM, where parameters are random, are shown with green solid
and blue dashed lines, respectively, upon which the values of these
parameters lie. The case of diffusion is shown with a magenta dotted
line.

ε, b = 1 − ε: a certain portion of the total mass of a random
pair of neighboring sites is distributed between them in a fixed
proportion.

(vi) Diffusion. This is a situation when a = b (either fixed
or random): a random site gains (or loses) a fraction of the
mass difference between it and a neighboring site.

In this paper, we focus on the KR and TT lattice models,
and we discuss the relation to KPM, RM, det-KPM, and some
models based on the particle dynamics in Sec. VIII.

B. Kang-Redner model

This setup is attributed to Smoluchowski; it describes coa-
lescence without microdiffusion (i.e., at σ = 0). We outline it
following Ref. [32] (where this model is also discussed in di-
mensions higher than 1). In this KR model, the field uk is fully
discrete: on each site of a discrete, regular one-dimensional
lattice, the mass is an integer number of “particles,” uk =
0, 1, 2, . . . . Such masses macrodiffuse with a constant dif-
fusion constant, according to the following sequential update:
at each time step, a site k is chosen at random, along with the
direction of motion (±, also chosen at random). Then the mass
migrates from site k to the neighboring site:

uk (t + 1) = 0,

uk±1(t + 1) = uk±1(t ) + uk (t ). (9)

This model is sometimes called the Ai + Aj → Ai+ j kinetic
reaction [9]. Clearly, on a finite lattice of size L, the distri-
bution of masses converges to a state where all the particles
occupy the same lattice site, and this maximal cluster per-
forms a random walk.

The relaxation dynamics towards such a final state is char-
acterized by the temporal evolution of the probability cm(t )
to have a cluster of m > 0 particles. In one dimension and in
the infinite domain, the authors of [32] provide the following
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scaling relation for cm(t ):

cm(t ) ∼ m

t3/2
f
( m

t1/2

)
, m > 0,

where f (x) →
{

1, x � 1,

0 (rapidly), x  1.
(10)

A similar result, cm(t ) ∼ m
t3/2 , valid for m � t1/2 is derived

in [36]. We notice here that one can also formulate the KR
model for masses that are not integers, but any non-negative
real numbers (as is assumed, e.g., in the Takayasu-Taguchi
model below). The phenomenology is the same: over the
course of time, masses coalesce, and in a finite system, even-
tually, one moving maximal cluster contains all the initial
mass. However, in this case, one has to generalize the discrete
distribution cm(t ) into a continuous one; thus, we stick to the
original Kang-Redner formulation for discrete particles.

C. Takayasu-Taguchi model

In this work, we will focus on another microscopic model,
first introduced by Takayasu and Taguchi in Ref. [33]. It is de-
fined for a continuous lattice field uk (t ) on sites k = 1, . . . , L
(with periodic boundary conditions) and discrete time, t =
0, 1, 2, . . . . The dynamical rule is very similar to that in the
KR model. For a randomly chosen site k and a randomly
chosen “direction” ±, the field is updated as

uk (t + 1) = εuk (t ),

uk±1(t + 1) = uk±1(t ) + (1 − ε)uk (t ). (11)

The parameter 0 � ε < 1 gauges the strength of field trans-
port, because a fraction (1 − ε) of the mass uk is transported
to a neighboring site and added to uk±1 [37] (the case ε = 1
is trivial because there is no dynamics). By construction, the
dynamics conserves the total mass,

∑
k uk .

The TT dynamics entails both macro- and microdiffusion,
their relative strengths being controlled by the parameter ε.
This follows from the following two interesting limits.

(i) For ε → 1 the advection is weak, so the microdiffusion
is relatively strong. In this case, at each step, a small portion
of the field at a randomly chosen site is transferred left or
right [38].

(ii) On the other hand, the case ε = 0 is one without
microdiffusion but with pure random advection. It is also
termed irreversible aggregation in Ref. [33]. Here, the fields
at neighboring sites merge (coalesce), but no further splitting
is possible. In fact, one can easily see that for ε = 0 the TT
model (11) is essentially the same as the KR model (9), the
only difference being the allowed set of values of uk: in the
KR model these values are integers, while in the TT model
they are non-negative real numbers. However, this difference
appears to be irrelevant for large systems and for large times
when clusters with large occupations emerge.

It should also be mentioned that some variants of the TT
model, including external injection, have been considered in
Refs. [39,40].

D. Takayasu-Taguchi model with global coupling

In the following, we will also consider a variant of the
TT model with global interaction. By this we mean that the

exchange does not occur between the neighbors but rather
between two independently randomly chosen sites k, m. Evo-
lution follows the same rule,

uk (t + 1) = εuk (t ),

um(t + 1) = um(t ) + (1 − ε)uk (t ). (12)

Remarkably, this model is exactly the multiplicative random
exchange model, introduced in [41] to describe wealth re-
distribution in a population. In general, wealth redistribution
models share some properties, such as conservation of the
total mass, with the random advection models above, but they
are typically formulated with discrete agents not on a lattice
(so that there is no spatial organization and, correspondingly,
no locality) but with global coupling; see [42–44].

E. The TT model as an iterated function system

The TT model has a remarkable mathematical interpreta-
tion as an iterated function system (IFS) with probabilities
[45]. Indeed, each advection event in (11) is a linear contract-
ing transformation of the vector {uk}, and there are altogether
2L such transformations (L sites multiplied by two possible
transport directions). Thus the probability for one particu-
lar transformation is (2L)−1. Evolution is a composition of
these transformations and fulfills the definition of an IFS (see
Chap. IX of Ref. [45]). Typically, IFSs are used to produce
fractal measures. We show in Appendix A that, indeed, one
gets a fractal distribution (although not for all values of ε) in
small lattices with L = 2, 3. In this paper, we are mainly inter-
ested in the case of large systems L  1; thus, we will focus
not on the fractal properties of the field {uk} (which are nev-
ertheless hardly accessible in numerics), but on the statistical
properties.

IV. STATISTICAL PROPERTIES OF THE KR MODEL
ON A FINITE LATTICE

In this section, we report on the scaling properties of the
coalescence process on finite lattices without microdiffusion.
This corresponds to the KR model (9) or to the TT model
(11) with ε = 0. In fact, this section aims to extend the scaling
relation (10) (valid for an infinite system) to the case of lattices
of finite size L.

In numerical simulations, we start with a uniform initial
state uk (0) = 1, k = 1, . . . , L. Because in this section masses
uk (t ) are integers, we refer to these quantities as “number of
particles” at site k, or a “cluster of size uk .” As expected from
the general discussion in Sec. II, the final state after all the
particles merge to a single site (i.e., they form the maximal
cluster of size L) is uk (t ) = Lδk j , where j(t ) is the random
position of the maximal cluster. The characteristic diffusion
time of a particle in the lattice of length L is Td (L) = L2.
[Because in the models (9) and (11) the update is sequential,
the time here and below is measured in units of L to make it
possible for every site to move in one effective time unit.] We
thus expect that Td (L) is the time required for the formation of
the maximal cluster. We now discuss the dynamics in the two
relevant regimes.
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FIG. 3. Scaled probability distributions for the KR model at
different times and lattice sizes. (a) Short times, t � Td . Data for dif-
ferent L and different times: there are six nearly overlapping curves
for L = 256, t = 512; L = 256, t = 1024; L = 512, t = 2048; L =
512, t = 4096; L = 1024, t = 16 384; L = 1024, t = 32 768. The
“guess” (14) F (m/t1/2) (black dashed line) seems also to be
very good. In all runs, averaging over 32 768 realizations is per-
formed. Additionally, the curves for L = 512 and 1024 are locally
smoothed by a running window (otherwise, fluctuations are rela-
tively large). (b) The same but for large times. For four lattice
lengths L = 128, 256, 512, 1024 the instants of time correspond to
t = Td/16, Td/8, Td/4, Td/2 (nearly overlapping curves from top
to bottom), with Td = L2. The curve F (x) is also shown as the dashed
line for comparison on this panel.

A. Short times: t � Td

On this timescale, the scaling properties of the infinitely
large system should hold. Indeed, KR give a scaling relation
(10) (on an infinite lattice) for the average (over realizations
of random advection) number of sites P(m, t ) possessing a
cluster of mass m > 0 at time t . We expect this relation to
hold on a finite lattice for small times. To compare results for
different lattice sizes L, it is convenient to modify the scaling
of (10) by multiplying by L (to pass from a probability to an
average number of sites) and incorporating a factor m/t1/2 in
the scaling function, so that

P(m, t ) = t−1LF1(mt−1/2). (13)

Because L = ∑
m mP(m, t ) ≈ ∫ ∞

0 dm mP(m, t ), we conclude
that normalization of F1(x) is independent of L:∫ ∞

0
dx xF1(x) = 1.

It is noteworthy that
∑

m P(m, t ) (the total number of
nonempty sites) is not normalized to L. In fact,

∑
m P(m, t ) �

L/
√

t , which is the equivalent of the relation
∑

m cm(t ) �
t−1/2 given by Kang and Redner [32].

In Fig. 3(a), we show the simulations for L =
256, 512, 1024. We observe that (i) the data for different
L and t collapse nearly perfectly, and (ii) a guess (black

FIG. 4. Probability for the maximal cluster with occupation L to
occur, Eq. (16), as a function of the scaled time t/L2, for different
L = 256, 512, 1024.

dashed line) in the form of a simple analytical expression,

F (x) = x√
4π

exp

[
−

(
x

2

)2]
, (14)

provides a very close fit of the observed data.

B. Large times: t � Td

For large times t ≈ Td , when the probability for the maxi-
mal cluster to exist, P(L, t ), is not negligible, the distribution
P(0 < m < L, t ) deviates from that for infinite lattices, as
shown in Fig. 3(b). Nevertheless, the distributions overlap for
the same values of t/Td . This observation suggests a finite-size
generalization of scaling (13) of the form

P(m, t ) = t−1LF2(mt−1/2, m/L) + δm,LP(L, t ), (15)

where in F2, one has m < L (in other words, this function
describes all clusters that are less than the maximal one) and
δi j is the Kronecker delta. The separation into two parts, the
maximal cluster and the rest, allows us to use a continuous
approximation for F2. This scaling function now depends on
two arguments: F2(x, y), x = m/t1/2, y = m/L, and it must
satisfy the following properties: (i) As L → ∞, the scaling
(13) must hold, thus F2(x, 0) = F1(x); (ii) there is no cluster
with a size larger than L (and the maximal cluster of size
L is not included to the distribution), thus F2(x, y � 1) = 0
[46]. From the normalization L = ∑

m mP(m, t ), the expected
scaling for the probability of the maximal cluster follows
directly:

P(L, t ) = 1 − L−1
∫ ∞

0
dm mt−1LF2

(
m

t1/2
,

m

L

)
= s(t/L2).

(16)
This relation is verified in Fig. 4.

We check the validity of Eq. (15) in Fig. 5. Here, we
plot the distributions, rescaled according to Eq. (15), for
several different fixed values of x = m/t1/2, namely we plot
G(m, t ) = tL−1P(m, t )/F (mt−1/2) versus y = m/L. For each
x considered, one can see a nice overlap of data obtained
for several different sizes L = 128, 256, 512, supporting the
ansatz (15). As expected, G tends to 1 for x → 0 and vanishes
for x → 1. Another confirmation of scaling (15) is the bottom
panel of Fig. 3.
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FIG. 5. Plot of the rescaled distributions G(m, t ) =
tL−1P(m, t )/F (mt−1/2) at different values of mt−1/2 [different
colors and gray levels: from top right to bottom left, mt−1/2 = 4
(yellow, set a), mt−1/2 = 3.46 (grey, set b), mt−1/2 = 2.83 (dark
red, set c), mt−1/2 = 2 (brown, set d), mt−1/2 = 1.41 (cyan,
set e), mt−1/2 = 1 (magenta, set f), mt−1/2 = 0.5 (blue, set g),
mt−1/2 = 0.25 (green, set f), and mt−1/2 = 0.177 (red, set i) as
a function of the rescaled variable y = m/L, for L = 128 (open
circles), L = 256 (pluses), and L = 512 (crosses).

C. Roughening properties in the KR model

Let us now describe the mass distribution uk (t ) interpreting
it as an “interface” profile, whose width W (L, t, ε) is defined
as usual in the following way:

W 2 = 〈(u − 〈u〉)2〉, (17)

where 〈·〉 is both a spatial and a statistical average. Since
this quantity will also be used later on, we made explicit
the dependence on the parameter ε, which distinguishes the
TT model from the KR model (the models are equivalent for
ε = 0).

Since the field is conserved, with our choice of the initial
conditions 〈u〉 = 1 always. Following the Family-Vicsek scal-
ing approach [47], we can write

W (L, t, 0) ∼ Lχg

(
t

Lz

)
, (18)

where g(ξ ) is a suitable scaling function with g(ξ ) ∼ ξβ for
ξ � 1 and g(ξ ) ∼ 1 for ξ  1, so that W (L, t, 0) ∼ tβ at
short times (t � Lz, growth regime) and W (L, t, 0) ∼ Lχ at
long times (t  Lz, saturated regime). The growth exponent
β, the roughness exponent χ , and the dynamical exponent z
are related by χ = βz.

In the specific case that we are considering in this sec-
tion (the KR model), it is clear that the crossover time between
the two regimes is given by the diffusive time Td = L2, so that
z = 2. At short times we can make use of the scaling relation
(13) for the probability to have a height k:

L−1P(m, t )

=
{

t−1F1(mt−1/2), m > 0,

1 − ∫ ∞
0 t−1F1(mt−1/2) dm = 1 − 1√

πt
, m = 0

FIG. 6. Evolution of the width W (L, t, 0) in the KR model for
different L in the rescaled coordinates. The gray dashed line has slope
0.26, close to the exponent β predicted by Eq. (19). Data collapse on
the scaling function g(t/L2).

[in the last expression, we calculated the integral using func-
tion (14)]. Thus the width can be computed explicitly using
expression (14) for F1:

W 2 =
∫ ∞

0
L−1P(m, t )(m − 1)2 dm = 4t1/2

√
π

+ 3.

Because the scaling holds for t  1, we can assume

W ≈ 2π−1/4 t1/4,

which yields the exponent β = 1/4 and therefore χ = 1/2.
Altogether, we come to the scaling relation

W (L, t, 0) = L1/2 g

(
t

L2

)
. (19)

This theoretical prediction is successfully checked in Fig. 6.
The scaling function g(t/L2) could be formally expressed in
terms of the scaling function F2(x, y), but this would be a
futile exercise, especially because we do not know the analytic
form of F2(x, y) [while we do have a very good expression for
F1(x)].

At first glance, one may argue that β = 1/4 and χ = 1/2
are the Edwards-Wilkinson (EW) [21] roughening exponents
in d = 1. However, this is just a coincidence because, at
variance with EW, the distributions are not Gaussian. This
should be traced back to the fact that, in the present model, the
total mass is conserved, while in EW it is not (see, however, a
discussion of the conserved EW in Sec. VI B below).

In this respect, mass conservation might inspire one to
compare the model under consideration with the conserved
KPZ equation [48–50]. In one dimension, it reads

∂φ

∂t
= −∇2[κ∇2φ + λ|∇φ|2] + η(x, t ),

〈η〉 = 0, 〈η(x, t )η(x′, t ′)〉 = −2D∇2δ(x − x′)δ(t − t ′),
(20)

and fulfills mass conservation
∫

φ(x, t ) dx = const. How-
ever, the dynamic exponents characterizing roughening in this
equation are z = 11/3, β = 1/11, and χ = 1/3 [48], which
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FIG. 7. (a) Field widths W (L, t, ε) as a function of time for dif-
ferent ε (increasing from top to bottom) and L = 8192. The dashed
line has a slope of 0.26, which is close to the theoretical value 0.25
derived for ε = 0. (b) Widths of the field in dependence on time
for different ε, L in scaled coordinates. The dashed line has a slope
of 0.25.

are distinctly different from ours. This is not surprising be-
cause there are two basic differences between (6) and (20): (i)
In (20) the noise is additive, and in (6) it is multiplicative; (ii)
the CKPZ equation is nonlinear while the random advection
equation (6) is linear.

V. EVOLUTION TO A STATIONARY STATE IN THE
TT MODEL: OVERALL PICTURE

Let us now turn to the case in which parameter ε in (11)
is nonzero. In other words, both macrodiffusion and microd-
iffusion are present. We first performed the same roughening
experiment as above but with the TT model. The results for
different values of L and ε are presented in Fig. 7. Both
panels clearly indicate that, for a finite system, a statistically
stationary regime is established at long times. However, the
evolution of the width crucially depends on parameter values
ε, L. In panel (a) of Fig. 7, where we fix L = 8192, one can
clearly see that the values of ε can be separated into two
ranges. For ε � 10−5, there is no significant ε-dependence
in W (L, t, ε); the curves follow the roughening in the KR
model (19). In contradistinction, for ε � 10−4, the depen-
dence of W (L, t, ε) on ε is significant, and the saturated width
W (L,∞, ε) decreases with ε. Therefore, for large values of
ε, we plot the data in another scaling that includes ε in
Fig. 7(b). Now the data for different L overlap, which indicates
that the “roughening” is not L-dependent. In other words,
in this regime there is no true roughening because the satu-
rated width is system-size-independent (but depends on the
parameter ε).

FIG. 8. Asymptotic (t → ∞) roughness W (L, ∞, ε) as a func-
tion of the system size L and of the parameter ε. Data collapse shows
that W (L,∞, ε) = L1/2 f (Lε/(1 − ε)), where the scaling function
f (u) has the limiting behavior f (u) = 1 for u � 1 and f (u) = u−1/2

for u  1. The dashed line has a slope of −1/2.

A clean way to analyze the separate effects of the system
size L and of the parameter ε is to focus on the asymptotic,
time-independent width W (L,∞, ε). This is done in Fig. 8,
where we plot W (L,∞, ε)/L1/2 versus εL/(1 − ε). The data
of Fig. 8 cover a wide range of values of L and ε and clearly
indicate the existence of two types of stationary states:

(i) Macrodiffusion-dominated regime. This regime corre-
sponds to the leftmost part of the graph where the scaled
width W L−1/2 does not depend on ε. Here the width scales
as W ∼ L1/2 like in the KR model at ε = 0. Nevertheless,
the state here is nontrivial and will be discussed in detail in
Sec. VII below.

(ii) Microdiffusion-dominated regime. This regime corre-
sponds to the rightmost part of the curves in Fig. 8, where the
scaling W L−1/2 ∼ ( ε

1−ε
L)−1/2 holds. This means that here the

width does not depend on the system size L: W ∼ ( ε
1−ε

)−1/2.
We discuss this regime in Sec. VI below.

The crossover between two regimes occurs at ( ε
1−ε

L) ≈ 1,
i.e., at εL ≈ 1. We remark that the microdiffusion-dominated
regime is attained when ε  1/L but also for ε → 1 and
rather small L. A final comment about simulations is in order
here. While it is relatively easy to vary parameter ε in a wide
range, for the length L we can hardly significantly increase the
range beyond several thousand.

Below in Secs. VI and VII, we will focus on the de-
tailed analysis of stationary regimes for microdiffusion- and
macrodiffusion-dominated regimes, respectively.

VI. STRONG MICRODIFFUSION ε > L−1

The discussion above shows that the system length is irrel-
evant here.

A. Mean-field theory

We start with the mean-field theory, where spatial correla-
tions are neglected (our approach is similar to that of Ref. [33]
but it does not coincide with it). With probability 1/2, each
site either delivers part of its field to a neighbor or it receives
a part of the neighbor’s field. Thus, the updating rule for a
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field at a given site reads u → ū,

ū =
{
εu Prob 1/2,

u + (1 − ε)v Prob 1/2,
(21)

where v is the field of the neighbor. In the mean-field ap-
proach, we assume statistical independence of u and v, which
have the same distribution. This allows us to express the
evolution of the density through a Perron-Frobenius operator
(w and w̄ denote densities at the subsequent time steps),

w̄(x) = 〈δ(x − ū)〉 = 1

2

∫ ∞

0
du w(u)δ(x − εu)

+ 1

2

∫∫ ∞

0
du dv w(u)w(v)δ(x − u − (1 − ε)v)

= 1

2ε
w

(x

ε

)
+ 1

2

∫ x(1−ε)−1

0
dv w(x − (1 − ε)v)w(v).

(22)

Unfortunately, we cannot solve this equation analytically, ex-
cept for the case ε = 1/2, for which one can easily check that
the solution is an exponential distribution w(u) = exp(−u).
Indeed, in this case the calculation of the right-hand side of
(22) is straightforward:

w(2x) + 1

2

∫ 2x

0
dv e−x+v/2e−v

= e−2x + e−x

2

∫ 2x

0
e−v/2dv = e−x.

It is possible, however, to express, for arbitrary ε, all
the moments Mn = 〈un〉 explicitly in a recursive manner.
Indeed, it follows directly from (21) that Mn = 1

2 (〈εu)n〉 +
1
2 〈[u + (1 − ε)v]n〉, giving

Mn =
∑n−1

k=1

(n
k

)
(1 − ε)kMn−kMk

1 − εn − (1 − ε)n
. (23)

Since the total field is conserved, the value of M1 is arbitrary,
and we may take M1 = 1, as enforced in the numerical simula-
tions. This yields 〈u2〉 = 1/ε, so that the mean width defined
according to (17) is W 2 = M2 − M2

1 = 1−ε
ε

. Figure 8 proves
that this result is correct in the large-εL regime.

To test more thoroughly the accuracy of the approxima-
tions, in Fig. 9 we compare the mean-field values of the first
three nontrivial moments with their numerical values. While
the comparison seems to support the main assumption that the
neighboring sites are statistically independent, an additional
check for this dependence gives a different picture. For a
quantitative characterization of the independence of two dis-
tributions w(un) and w(un+d ) at sites separated by a distance
d , we use the mutual information

I (d ) =
∑
i, j

Wi j log
Wi j

piq j
,

where pi and q j are binned probabilities, and Wi j is the joint
binned probability. For independent random variables, mutual
information vanishes, but in real calculations it is always
positive. The values of I (d ) for large distances d serve as
“surrogates,” giving the numerical level of mutual information
for practically independent distributions. The results (Fig. 10)

FIG. 9. Comparing numerically found moments 2–4 (markers, in
a lattice of L = 1024) with theoretical formulas (lines). The inset
shows a region of large ε with a linear scale of the Mn-axis.

suggest that the independence of neighbors might be exact
for ε � 0.5. But, instead, mutual dependence appears for
ε < 0.5. On the other hand, even for ε = 0.01, only some five
neighboring sites are interdependent according to the mutual
information criterion.

B. Limit of strong microdiffusion ε → 1

Let us rewrite the local TT model as an application of a
matrix,

A(μ,±) =
⎧⎨
⎩

(
1 − μ 0

μ 1

)
prob 1/2,

(
1 μ

0 1 − μ

)
prob 1/2,

where a portion μ = 1 − ε is moved to the right (to the
left). To have a symmetric situation, suppose that this matrix
is applied twice (thus, one has four combinations). Further-
more, we assume μ � 1, in this case A(μ,+)A(μ,−) ≈

FIG. 10. Mutual information for different distances d between
the sites. Details of calculations: L = 1024, number of patterns in
statistical averaging 1024, number of bins 64 (bins are spaced so that
all bins have the same probability 1/64).
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A(μ,−)A(μ,+). Then in the first order in μ,

A2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 − μ μ

μ 1−μ

)
= I + μ

(−1 1
1 −1

)
prob 1/2,

(
1 − 2μ 0

2μ 1

)
= I + 2μ

(−1 0
1 0

)
prob 1/4,

(
1 2μ

0 1 − 2μ

)
= I + 2μ

(
0 1
0 −1

)
prob 1/4

(here, I is the unit matrix). To obtain a continuous-in-space
formulation, we attribute operator ∂xx to the first matrix, and
operators ±∂x to the second and third matrices. In this way,
we approximate the evolution with

∂t u(x, t ) = μ∂x(Vu) + μ∂xxu, V = ±�x

�t
.

Because V has independent values at different sites and differ-
ent time steps, we can model the velocity with a δ-correlated
noise field,

∂t u(x, t ) = μ∂x(ξ (x, t )u) + μ∂xxu,

〈ξ (x, t )ξ (x′, t ′)〉 = δ(x − x)δ(t − t ′).

Rescaling time μt = τ , we obtain

∂τ u(x, τ ) = μ1/2∂x(η(x, τ )u) + ∂xxu,

〈η(x, τ )η(x′, τ ′)〉 = δ(x − x)δ(τ − τ ′).

Let us suppose that u = u0 + μ1/2u1 + μu2 . . . . Substitut-
ing this, we get in the leading order

∂τ u0 = ∂xxu0,

which yields a uniform asymptotic state u0 = const. We sup-
pose u0 = 1, like in the lattice model above.

In the next order, we get

∂τ u1 = ∂x(ξ (x, τ )) + ∂xxu1,

which is the conserved version of the Edwards-Wilkinson
(EW) equation [21].

Smith et al. [51] considered this EW equation and, in
particular, demonstrated that the variance diverges (UV catas-
trophe). They did not perform a cutoff at the lattice size, but
from their Eq. (8) it follows that var(u1) ≈ �−1, where � is
the lattice spacing. The total variance is var(u) ≈ μ�−1, in
agreement with the result for the lattice model. Furthermore,
from Gaussianity of ξ (x, t ) it follows that the distribution of
u1 is Gaussian. We show that the field u in the lattice TT
model is indeed Gaussian in the limit ε → 1 in Appendix B.
Thus, we conclude that the limit ε → 1 corresponds to the
conserved version of the Edwards-Wilkinson stochastic dif-
ferential equation.

C. Field distribution

As mentioned above, we can solve Eq. (22) for the field dis-
tribution only in a special case in which ε = 1/2. Numerical
simulations have shown that for ε < 1/2, the distribution has
a power-law singularity at u → 0, and cumulative distribution
can be well approximated by a stretched exponential with a
Gaussian cutoff:

P(>u) = exp[−A(uL)α − B(uL)2]. (24)

FIG. 11. Cumulative field distributions for ε = 0.1 and 0.01, and
different L. Markers are the simulation data, dotted lines are fits with
expression (24). For the exponents α1,2, the theoretical expression
(25) is used.

We illustrate this in Fig. 11, where we show in rescaled coor-
dinates the distributions for ε = 0.1 and 0.01.

Although we cannot derive expression (24), we can
estimate the exponent α assuming the validity of (24).
Let us suppose that the cumulative distribution P(>u) =∫ ∞

u w(y) dy has the form of a stretched exponential P(>u) =
exp[−auα] for small u and α < 1. Then, the density has a
power-law singularity at small u of the form

w(u) = aαuα−1 exp[−auα] ≈ Auα−1.

Let us look at which value of α is consistent with the Perron-
Frobenius equation (22). Substituting, we get

Auα−1 ≈ 1

2

1

ε
A

uα−1

εα−1

+ A

2ε

∫ u/(1−e)

0
A2[u − (1 − ε)v]α−1vα−1 dv

= Auα−1

2εα
+ A2

2(1 − ε)α
u2α−1

∫ 1

0
(1 − z)α−1zα−1 dz.

Neglecting the last term, we obtain the consistency condition
2εα = 1 which means

α = − log 2

log ε
. (25)

This equation is in excellent agreement with the numerics as
shown in Fig. 12.

D. Time correlations

In this section, we discuss the one-site temporal correlation
function of the field (remember that we set 〈u〉 = 1),

C(�t ) = 〈[un(t ) − 1][un(t + �t ) − 1]〉.
The calculated time-correlation function is shown in panel (a)
of Fig. 13. It appears that the correlations decay as a power
law (�t )−1/2. In contrast, for L = 2 the decay is exponential
[see Appendix A and the panel (b) of Fig. 13]. Thus, one can
expect a crossover at small L. We show in Fig. 13(b) how
correlations for a fixed ε = 0.6 depend on L. Here scaled
coordinates are used; one can see that starting from L =
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FIG. 12. Numerical values of the exponent α of the stretched-
exponential part of the cumulative distribution (24) as a function of
ε (markers) together with the analytic estimate, Eq. (25).

4, the scaling law C(�t ) ≈ L−1b(�tL2)−1/2 exp[−a�tL2]
works well (fitted values for a, b are in the caption).

VII. WEAK MICRODIFFUSION ε < L−1

A. Hierarchical structure of peaks

We start our treatment of the case of very small microd-
iffusion with a visualization in Fig. 14(a) of a snapshot of
a field {uk} in a statistically stationary regime (i.e., at times
larger than characteristic transient time L2), at small values
of microdiffusion parameter ε. At ε = 0, the field is just one
peak (the maximal cluster) at which the whole initial “mass” is
concentrated, at a random spatial position. For better compar-
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FIG. 13. (a) Time-correlation functions for a lattice of length
L = 1024 and different ε. The dashed gray line on this panel has
a slope of −1/2. (b) Time-correlations in scaling coordinates for dif-
ferent L and ε = 0.6. The dashed gray line is a fit log y = −0.511 −
0.5 log x − 6.122 exp(x).
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FIG. 14. (a) Snapshots of the fields with ε = 10−5 (red circles)
and ε = 10−6 (blue squares) for L = 512. Green vertical lines show
the positions of the main peaks (i.e., those with markers; there are
many other peaks with masses smaller than 10−18; cf. the bottom
panel). (b) The logarithmic difference in the levels of the peaks [i.e.,
the distance between red circles and blue squares of panel (a) at each
peak] vs the level of the blue squares.

ison of fields for different sizes of the lattice L, we use below
the normalization

∑
k uk = 1; thus, the single peak for ε = 0

has mass 1. Together with this maximal cluster, one observes
in Fig. 14(a) peaks at different levels with a strong separation
(several orders) between them.

To qualitatively understand this hierarchical structure of
the field (which we will quantitatively characterize below), let
us start with a single peak at ε = 0 and switch to a finite but
small value of ε. Then, the randomly moving main peak will
leave behind secondary peaks of mass ≈ ε. These peaks will
also move, leaving the next generation of peaks of mass ≈ ε2;
they can also merge and be absorbed by the main peak (the
size of which remains close to 1—this is where the condition
εL < 1 plays its role). Thus, one can expect peaks at levels
∼ε,∼ ε2,∼ ε3, . . . . However, this hierarchy is not very dis-
tinct, although recognizable, in the single profile at fixed ε;
see the set of red circles or of blue squares in Fig. 14(a). To
separate different levels in a more apparent way, we perform
a simultaneous run of the TT model at two different values
of parameter ε: ε1 and ε2. This means that the same random
choices for advection steps (11) are chosen in two runs. As
a result, the peaks in the two runs coincide in position but
differ in their height by a factor (ε1/ε2)m with integer m.
For an illustration in Fig. 14(a) we have chosen L = 512,
ε1 = 10−5 (red circles), and ε2 = 10−6 (blue squares). The
grid in the y-axis corresponds to the ratio ε1/ε2 = 10. One
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FIG. 15. The same plots as in Fig. 14(b), but for different values
of ε = 10−m. One can see that for large ε the order structure becomes
blurry, and eventually no clear separation is seen for large ε.

can see that the main peaks in the two runs coincide. There
are four peaks at the next level, with a separation between
them by a factor ε1/ε2 = 10. The number of peaks at the
next level is larger; there, the separation is (ε1/ε2)2 = 100,
etc. To make the correspondence of the separation and the
level apparent, we plot in Fig. 14(b) all the L = 512 values
of {uk} from the snapshot Fig. 14(a) in the coordinates “mass
versus separation” (both axes are logarithmic). One can see
that the separations are very well “discretized” at integers of
log10(ε1/ε2) (y-axis), while the levels in the field values are
spread much wider (x-axis), and these widths for deep levels
are of the same order as − log10 ε2 = 6.

To illustrate that this hierarchical structure appears for
small enough ε only, we show in Fig. 15 the same plots as
Fig. 14(b) for L = 1024 and different values of ε1 = 10−m

and ε2 = 10ε1. One can see that the separation is apparent
for m = 10, 9 but becomes less distinct for m = 4 and is
practically not seen for large ε (m = 3).

B. Order kinetic model

In this section, we present an effective model [termed the
order kinetic model (OKM)] to describe the structure ob-
served in the simulation for small ε; see Figs. 14 and 15.
Motivated by the observed hierarchical structure, we attribute
to each site k an integer-valued order μk , and we assume that
the field uk is represented as

uk ≈ ρεμk . (26)

Here μk � 0 is an integer called the “order” of the field at site
k. Parameter ρ ≈ 1 is a normalization factor [it corresponds
roughly to the mass of the (unique) site having zero order

in the asymptotic steady state]. In the following, we will
refer to the sites having the same value of μ as the peaks of
order μ, and we denote by n(μ) their number and by p(μ) =
n(μ)/L their fraction (i.e., the probability to observe specific
order). The expression (26) corresponds to an approximation
in which the horizontal steps in Fig. 14(b) have zero width and
zero height.

Let us now rewrite the update rule (11) in terms of the
orders μk by considering two neighboring sites (i, j) corre-
sponding, respectively, to orders (μi, μ j ), with the direction
of advection i → j. Since the mass (1 − ε)ui is transferred to
site j and the mass εui is left to site i, we write the following
update rule for the orders:

μi → μi + 1,

μ j → MIN{μi, μ j}. (27)

The approximation here follows from our perfect discretiza-
tion of the levels: we neglect changes in the field if the
addition is smaller than the existing field by a factor εm,
m � 0.

Special care should be taken about the sites with minimal
possible order, μmin = 0. As it follows from (27), the number
of such sites can only decrease, and eventually there is only
one such site in the lattice. With one site having zero order,
this situation is an absorbing state in model (27).

Before proceeding, we notice that the OKM (27) is, in
fact, a skew (unidirectionally coupled) system: Higher-order
peaks do not influence the zero-order peak; the first-order
peaks interact only with each other (can coalesce) and with
the zero-order peak (they can be “emitted” or “absorbed” by
it), etc. We will use this property in Sec. VII D below.

C. Mean-field approach

In the framework of the OKM, one can apply the same
mean-field approach as in Sec. VI A to write an equation for
the evolution of the probabilities p(μ). The basic assumption
is the independence of neighboring values of μi, j in (27).
Thus, the minimum (MIN) in (27) should be calculated as a
minimum value of two independent random variables having
the same distribution p(μ):

prob(MIN(μi, μ j ) > μ)

= prob(μi > μ) prob(μ j > μ)

= (1 − prob(μi � μ)) (1 − prob(μ j � μ)).

This leads to the following expression for this distribution,
valid for μ � 1 [this expression is analogous to (22)]:

p(μ) = 1

2
p(μ − 1)

+ 1

2

⎡
⎣(

1 −
μ−1∑
ν=0

p(ν)

)2

−
(

1 −
μ∑

ν=0

p(ν)

)2
⎤
⎦. (28)

The first term corresponds to the case in which the site is
a “source” (this happens with probability 1/2); the second
term corresponds to the case (also with probability 1/2) when
the site is a “destination.” One can see from (28) that p(μ)
depends only on values p(ν) with ν < μ. In terms of p(μ),
expression (28) is a quadratic equation. Its solution begets a
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FIG. 16. Comparison of a theoretically obtained distribution of
peaks p(μ) [Eq. (29), red curve] with numerics for the TT model
(green squares) and for the global coupled TT model (12), blue
circles. All these data are for L = 1024. In the inset, we also show
data for the TT model with L = 512 and 256.

recursion relation

p(μ) =
√

s2(μ − 1) + p(μ − 1) − s(μ − 1),

s(μ) =
μ∑

ν=0

p(ν), (29)

which has to be iterated starting from p(0) = 1/L. We com-
pare this solution with a numerically obtained distribution in
Fig. 16. One can see that the correspondence is not good,
which indicates that in the TT model (11) the correlations be-
tween the neighboring sites are large and cannot be neglected.
On the other hand, for the global coupled version of the TT
model (12), where correlations are expected to be very small
in the thermodynamic limit, the correspondence is very good.

D. Dynamics of lowest-order peaks

As demonstrated above, for the OKM the mean-field ap-
proximation is not very successful because of correlations in
the peak positions. Such a correlation is not very surprising
because the first-order peaks are “daughters” of the zero-order
peak and thus are located close to it; the same holds for
other orders (“The apple never falls far from the tree”). To
get insight, we visualize the dynamics of the peaks of orders
μ = 0, 1, 2. In Fig. 17, we compare the trajectories of the
main (zeroth-order) peak (blue) with those of the peaks of
order 1 (red) and 2 (green). One can clearly see that the first-
order peaks are mainly in the vicinity of the zero-order peak
(from which they are created), but some leave this vicinity,
diffuse, and merge. A similar creation-merging is observed at
the bottom panel, where peaks of order 1 and 2 are depicted.

Let us now describe the relative motion of the main peak
and the first-order peaks. To this aim, let us focus on Fig. 17
(middle panel), which shows the main peak (order 0) and the
peaks of order 1. Let us redraw this figure by plotting the
differences in the positions of the peaks of order 1 and the
position of order 0; see Fig. 18 (in fact, here, another random
realization is taken).

To describe Fig. 18, we can formulate a reduced version
of the OKM (27), which takes into account only peaks of the

FIG. 17. Trajectories of peaks of orders 0 (blue, dark) and 1 (red,
middle dark) (top panel), and of orders 1 (red, middle dark) and 2
(green, light gray) (bottom panel) [simulations of the TT model (11)
for L = 512, ε = 10−6]. Simulations were started from random ini-
tial conditions, but an initial transient of duration L2 was dismissed.

first order (we denote their masses as wk) and the main one
(zero-order peak). Moreover, it is instructive to go beyond the
OKF and distinguish masses of the first-order peaks (although
later, we will ignore them). Because the motions of the main
peak and of other sites are independent, we place the main
peak at zero and fix it. The dynamics of all other sites follows
the KR model (TT model with ε = 0). Namely, at time t , a pair
of points k, l is chosen randomly, with l = k ± 1. If k = 0,
then we set wl (t + 1) = wl (t ) + 1. If k �= 0 and l �= 0, then
the dynamics is as follows:

wk (t + 1) = 0, wl (t + 1) = wl (t ) + wk (t ).

If k �= 0 and l = 0, then wk (t + 1) = 0. This dynamics can
be described as follows: The mass of the main peak (located

FIG. 18. Trajectories of the distances of the peaks of level one
from the main peak for L = 512 (thus, the position of the main peak
is at zero) in the TT model (11).
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FIG. 19. Occupation densities W (k, L) (markers) of the first-
order peaks along the lattice for different L, in the scaled coordinates
LW vs k/L. In this panel, the curves (red solid, L = 1024; green
dashed, L = 512; blue dotted, L = 256) are non-normalized mass
densities ρ vs k/L.

at the origin) is not varied. Instead, this peak randomly emits
“daughters” of mass 1. These first-order particles diffuse and
coalesce. They disappear when the main peak absorbs them.

This model yields positions of the first-order peaks that
crowd around the main peak but can also leave its vicinity,
making excursions to the “bulk” of the lattice. Note also that
the model is not space-shift invariant because we fix the main
peak at the origin.

To characterize the crowding, it is important to distin-
guish two types of densities. One is ρ(k) = 〈w(±k, t )〉 (here
because of symmetry around zero, sites ±k are considered
equivalent). This is an average mass; peaks with higher mass
(after one or several coalescence events) contribute more to
this density.

Another density is W (k, t ) = 〈1 − δ(w(±k, t ))〉, where
δ(w) = 1 if w > 0 and δ(w) = 1 if w = 0. This density
counts occupied sites, irrespective of the value of the mass
w at these sites.

Because the motion of the peaks between interactions with
the main peak at the origin is a pure diffusion, one expects
that the stationary mass density ρ(k) is uniform. On the other
hand, the occupation density W (k) decays due to collisions
with other first-order peaks, thus one expects that in the sta-
tionary state, it is maximal close to the origin and decays
toward the bulk of the lattice.

We elaborate on statistical theory for the occupation den-
sity W (k, t ) in Appendix C. This theory predicts that the
stationary density scales with the lattice size L as W (k) =
L−1Ŵ (k/L). This relation is tested in Fig. 19. We also confirm
that ρ(k) is uniform in this figure.

Another prediction is that the average number of the first-
order peaks grows with the lattice size as ∼ log L; this relation
is checked in Fig. 20. For higher-order peaks, the dependence
on log L is nonlinear (not shown).

VIII. DISCUSSION AND CONCLUSIONS

We start by summarizing our main findings. We have stud-
ied the statistical properties of KR and TT lattice models. The
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FIG. 20. Mean number of order-1 peaks as a function of lattice
size L (markers). The dashed line is a linear fit.

only two parameters are the redistribution constant ε and the
lattice size L. There are two main regimes: ε � L−1, where
microdiffusion is small, and ε � L−1, where microdiffusion
is large. For small microdiffusion, one observes a concen-
tration of almost all mass on a single randomly moving site
(this concentration is perfect in the KR case, ε = 0). The
masses on other sites are small, and for very small ε, the
dynamics builds a hierarchical structure, described in detail
in Sec. VII. For large microdiffusion, a random regime that
is statistically uniform in space is established, as described in
Sec. VI. In the limit ε → 1, this regime corresponds to the
Edward-Wilkinson equation with conserved noise.

It is instructive to compare the properties of the
KR and TT models to other cases from the literature
where mass-conserved models, which can be interpreted as
advection/transport on a one-dimensional lattice (some with
condensation/coagulation), have been studied.

The foremost feature of all models studied in this paper and
summarized in Fig. 2 is that the average density ρ is a scalable
parameter; therefore, it cannot act like a control parameter,
and no (equilibrium or out-of-equilibrium) phase transition
can appear when tuning ρ, not even at ρ = 0, because the
model is not defined in the absence of mass. This property
is, of course, shared with the random advection-diffusion
equation (6).

Nonetheless, it is interesting to analyze our models in terms
of condensation, a process occurring when a finite fraction
of the total mass/energy is localized on a finite number of
sites; in our language, this corresponds to the formation of a
maximal cluster.

Adopting a strict point of view according to which a phase
transition only occurs in the thermodynamic limit, the only
model displaying condensation is KR, whose steady state
corresponds to a single site hosting the whole mass. However,
considering the mass distribution at finite size L, the TT model
has remarkable features because the degree of condensation
depends on the product of the intensive parameter ε and the
extensive parameter L: we have a sort of finite-size condensa-
tion for lattices with L � 1/ε. On this scale (which diverges
for ε → 0), almost all mass is concentrated on a single site (a
zero-order peak), as described in Sec. VII.
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We add that such finite-size condensation is attained via
a dynamic coarsening, in which the condensed fraction in-
creases with time. This phenomenon is visible as the increase
of roughness over time, as described in Sec. V.

When comparing different models, the deterministic ver-
sus random rule to redistribute the mass is an important
feature. In the TT model, the parameter ε is fixed, but it
could be chosen randomly in the unitary interval, obtaining
effectively the “random TT model,” which has been studied
(although not with this name) by Rajesh and Majumdar in
Ref. [35] (it corresponds to their symmetric model in the
limit of continuous-time dynamics). Thus we denoted it as
RM in Sec. III A. The phenomenology of such a model is
fairly different from ours, which is strongly dependent on εL,
a parameter that is meaningless if ε is random.

It is also instructive to compare with the Kipnis-Marchioro-
Presutti (KMP) model [34], where a pair of sites (k, k ± 1) is
chosen randomly, and the masses are redistributed according
to

u′
k = ξ (uk + uk±1), u′

k±1 = (1 − ξ )(uk + uk±1), (30)

ξ being a random number uniformly distributed in (0, 1]. In
Ref. [34], it has been proven that a stationary distribution in
the KMP model is an equilibrium Gibbs distribution. This is
not surprising because the update rule (30) satisfies the de-
tailed balance condition. This is in contradistinction to the TT
model (even in its random version), where the detailed balance
is not valid. KMP is the prototypical example of diffusion, and
therefore of a smoothing process. It is interesting, therefore, to
consider its deterministic counterpart (det-KMP in Sec. III A),
where ξ is fixed, and we denote ξ = ε. In the limit ε = 0, it is
the same as the KR model; we might therefore think that for
small ε it is similar to the TT model. Before considering this
possibility, we should note that the det-KMP model is invari-
ant under the transformation ε → 1 − ε, which sets 1/2 as the
maximal value of ε. For this reason, when reproducing Fig. 8
for the det-KMP model, we have replaced ε/(1 − ε) (see the
label of the horizontal axis) with ε/(0.5 − ε). The result is
plotted in Fig. 21, showing a strong resemblance between the
two deterministic models. We emphasize “deterministic” to
stress that the TT model is far more similar to det-KMP than
to the random version of itself (RM).

It is worth stressing a further difference between the finite-
size localization found in TT and det-KMP and the standard
condensation process found in models where the density ρ

(density of mass or other conserved quantity) plays the role
of the control parameter. There are many such models, but
we will not review them here. We will simply say that con-
densation exists if ρ is larger than some critical value ρc (we
will give a specific example later). Let us now try to make a
connection between the standard condensed phase appearing
for ρ > ρc and the finite-size localized phase found in TT
and det-KMP models when ε < εc = 1/L. In both cases, we
have a condensate in equilibrium with a background, and, for
large L, the condensate is composed of a single site hosting
a macroscopically large peak. Let us now imagine removing
the condensate: in the TT model the density is scalable, and
a new condensate will spontaneously appear. Instead, in the
standard condensation models, this will not occur because
removing the condensate will also reduce the density to its

FIG. 21. Saturated width of the interface in the det-KMP model
in scaled coordinates, for different ε and different lattice sizes. This
plot is very similar to Fig. 8, suggesting that the det-KMP model
probably has the same statistical properties as the TT model.

critical value, ρ → ρc. We stress that this is not just a triv-
ial reformulation due to the different physical nature of the
two control parameters ρ and ε (a “density” versus “not a
density”), rather it is a consequence of a different dynamical
behavior in the condensed phase. In standard condensation
models, the condensate and the background belong to two
different equilibrium phases, and the removal of the conden-
sate does not affect the background. In the TT model, there
is really no such distinction, as clarified by the order kinetic
model discussed above.

To obtain a standard condensation transition where the
density plays the role of a control parameter, it is necessary to
introduce a physical scale of the mass. For this reason, we con-
clude this discussion by mentioning a chipping model (CM)
[52,53] where the mass ui is a non-negative integer and which
seems to have some features similar to the TT model. Here
mass is transported (advected) symmetrically to one of the
neighboring sites with two distinct and parallel processes: (i)
The whole mass (i.e., all particles) is transported from site i to
site i ± 1 (this corresponds to advection, or macrodiffusion).
This occurs with rate 1. (ii) One single particle (if it exists)
is transported from site i to site i ± 1 (this corresponds to
microdiffusion). This occurs with rate w. This model displays
condensation for ρ > ρc = √

1 + w − 1.
If w = 0, then ρc = 0, and this model is equivalent to

the KR model, displaying the formation of a single cluster
containing all the mass. If ρ  1, the discrete nature of the
mass is not relevant, and for diverging w CM is similar to
the TT model for (1 − ε) � 1, which explains why it does
not display condensation. The CM model is another simple
example of a lattice with a clear separation of micro- and
macrodiffusion: for w = 0 there is only macrodiffusion, while
for w = ∞ there is only microdiffusion. For finite values of
w, their relative importance depends on the mass density.

In this manuscript, we have proposed a unifying picture to
gather several models of local mass transport under the same
umbrella; see Fig. 2. It seems to us that different models,
including models not covered by such an umbrella, e.g., the
just-mentioned CM model, might be discussed in terms of
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micro/macrodiffusion, macrodiffusion being a key element in
obtaining a condensation-like phenomenon, and microdiffu-
sion being the obstacle to it. In particular, we have discussed
in detail a deterministic process in which a single parameter ε

allows us to switch between the two cases.
Since we have shown that the deterministic or random

nature of the parameters a, b entering in the definition of the
generic two-site model, see Sec. III A, is of crucial impor-
tance, it might be of interest to distinguish between these two
classes and determine the ensemble of models of each class
displaying condensation.

Another challenging problem for future studies is an
extension of the above-mentioned models to two- and three-
dimensional lattices (cf. [27] for studies of particles sliding
along two-dimensional surfaces). Here already the phe-
nomenology of pure random advection is nontrivial, as
depending on the sign of the maximal Lyapunov exponent,
one can observe in the absence of microdiffusion either a sin-
gle cluster (a δ-distribution of density as in one-dimensional
case) or a random fractal. It is not clear how the latter case can
be modeled on a lattice.

Finally, we mention that a possible experimental setup
where the statistics of one-dimensional random advection can
be studied is that of particles floating on the surface of fluid
where one-dimensional wave turbulence is realized [8,54].
While natural turbulence has quite specific statistical proper-
ties (that of the Kolmogorov-Zakharov spectrum [29]), a more
random field could potentially be created via external random
driving. It might, however, happen that in such an experiment
the cluster size will be affected not by microdiffusion, but by
the finite sizes of the particles.
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APPENDIX A: THE TT MODEL AS AN IFS

In this Appendix, we demonstrate the fractal properties of
the invariant distribution in the TT (11) model for small lattice
lengths, adopting the iterated function systems (IFSs) concept.

1. Case L = 2: Bernoulli convolution

Let us consider the minimal case L = 2 and u1 + u2 = 2.
Because of the conservation law, we have just one nontrivial
variable u, since another variable is expressed as 2 − u. In this
case, the transformation (21) reads

u(t + 1) =
{
εu(t ) Prob 1/2,

εu(t ) + 2(1 − ε) Prob 1/2.
(A1)

This one-dimensional IFS is the so-called Bernoulli convo-
lution [55–57]. Bernoulli convolution generates a classical
fractal if ε < 1/2, and a relatively smooth distribution without
voids for ε > 1/2; see [58,59]. [For ε = 1/2, the invariant dis-
tribution is uniform.] The expression for the dimension (there
is only one dimension for ε < 1/2; the set is a mono-fractal)

FIG. 22. The cumulative distribution P(< u) in the IFS system
(A1) for different ε (upper two panels). This distribution is a classical
fractal for ε < 1/2. The distribution is continuous for ε > 1/2 but
becomes smooth only for large ε. Bottom panel: densities for cases
ε > 1/2.

is a trivial application of the scaling relation: d = − log 2
log ε

, and
it is smaller than 1 for ε < 1/2. In Fig. 22, fractal and smooth
examples are presented [58,59].

It is straightforward, using linearity of (A1), to cal-
culate the statistical properties of u(t ) (cf. [60]). The
average is 〈u〉 = 1. For the autocorrelation function C(t ) =
〈[u(t ) − 1][u(0) − 1]〉 one easily obtains a recursion C(t +
1) = εC(t ), from which the exponential decay of correlations
follows, C(t ) = C(0)εt .

2. Case L = 3

In this case, because of the conservation law u1 + u2 +
u3 = 3, the dynamics lies on a two-dimensional simplex. Sev-
eral images of the distribution (104 points are drawn) are
shown in Fig. 23. As in the L = 2 case, the distribution is with-
out voids for ε � 0.5 and a fractal measure with a hierarchy
of voids for ε < 0.5.

APPENDIX B: GAUSSIANITY OF THE FIELD
DISTRIBUTION IN THE LIMIT ε → 1

Here we rewrite the TT model using μ = 1 − ε � 1:

ū =
{

(1 − μ)u prob 1/2,

u + μu± prob 1/2.

Let us introduce the characteristic function C(k) = 〈eiku〉 and
assume that u and u± are statistically independent. Then the
Perron-Frobenius equation for C reads

C̄(k) = 1
2C[k(1 − μ)] + 1

2C(k)C(kμ).

In the stationary situation, C̄ = C, and we obtain

2 = C(μk) + C[(1 − μ)k]

C(k)
. (B1)

Because the mean value of u is arbitrary, we set it to 1.
Then the characteristic function can be written in terms of
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FIG. 23. Distributions of fields (u1, u2, u3) for L = 3 and several
values of ε.

cumulants κm, m � 2:

C(k) = exp

[
ik +

∞∑
m=2

κm
km

m!

]
.

For the ratio of characteristic functions, we get

C[(1 − μ)k]

C(k)
= exp

[
−ikμ + κ2

k2

2
(−2μ + μ2)

+ κ3
k3

6
(−3μ + 3μ2 − μ3) + · · ·

]
.

The equation for C (B1) then reads

2 = exp

[
− ikμ + κ2

k2

2
(−2μ + μ2)

+ κ3
k3

6
(−3μ + 3μ2 − μ3) + · · ·

]

+ exp

[
ikμ + κ2μ

2 k2

2
+ κ3μ

3 k3

6
+ · · ·

]
.

We now expand the r.h.s. keeping orders μ0, μ1, μ2 only:

2 = 2 + μ

[
− κ2k2 − κ3

k3

2
− κ4

k4

6
− · · ·

]
− μ2k2

+ μ2

[
κ2

k2

2
+ κ3

k3

2
+ κ4

k4

4
+ · · ·

]
.

Comparing terms at k2, in the leading order in μ we obtain
κ2 = μ. Comparing terms at k3, k4, . . . we obtain κ3 = κ4 =
· · · = 0. This proves that for μ → 0 the field is Gaussian, with
a variance κ2 = μ.
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FIG. 24. Mean occupations of the sites W (k = d ) close to the
main peak (which is at k = 0) for different sizes of the lattice L. The
closest neighbor site has occupation ≈0.37.

APPENDIX C: STATISTICAL THEORY FOR THE
OCCUPATION DENSITY OF FIRST-ORDER PEAKS

Here we derive, within the OKM, an equation for the evo-
lution of the occupation density of first-order peaks (treated as
particles) W (k, t ), in a lattice of length L. First, we replace k
with a continuous coordinate 0 � x � L. The basic dynamics
is a diffusion of particles; thus, we start with the diffusion
equation ∂tW (x, t ) = D∂xxW (x, t ).

Due to the coalescence of particles, the number of occu-
pation sites decreases. Therefore, one should add a damping
term. To elaborate on this, consider a spatially homogeneous
state with constant density W . Then the distance between the
particles is X ≈ W −1. The time for two particles to coalesce
is the diffusion time for the distance between the peaks,
i.e., tc ≈ X 2/D. The rate of coalescence is therefore t−1

c =
DX −2 = DW 2. Thus from the equation ∂t (ln W ) = −DW 2 we
get the damping term ∂tW = −DW 3. We notice that the spa-
tially homogeneous solution W (t ) = W (0)√

1+2DW 2(0)(t−t0 )
yields

the asymptotic time dependence W ∼ t−1/2, which is con-
firmed by numerics.

However, in our case the occupation density is inhomoge-
neous because particles are created at x = 0 (or, equivalently,
at x = L), where the main peak is placed. The sites near the
main peak are predominantly occupied; therefore, we can
assume a constant occupation W = c at this boundary. To
check that the density at the boundary does not depend on
L, we calculated this density numerically at sites adjacent to
the main peak in the TT model; see the results in Fig. 24. This
figure shows that the occupation of the nearest neighbor to the
peak is around 0.37, almost independent of L.

Summarizing, we have the following PDE and boundary
conditions for the occupation density W (x, t ):

∂W (x, t )

∂t
= D

∂2W

∂x2
− DW 3, W (0, t ) = W (L, t ) = c

for some c > 0. The stationary solution W (x) of this equa-
tion obeys

d2W

dx2
− W 3 = 0, W (0) = W (L) = c.
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We can integrate once and obtain

1

2

(
dW

dx

)2

− 1

4
W 4 = −w4

4
,

dW

dx
= ± 1√

2

√
W 4 − w4,

(C1)
where we took as a constant w = Wmin = W (L/2). Integration
of this equation on the interval 0 � x � L/2 yields

wL

2
√

2
=

∫ cw−1

1

dy√
y4 − 1

= 1√
2

F

(
arccos

w

c
,
√

2/2

)
,

where F (φ, k) is the elliptic integral of the first kind. The con-
stant w should be obtained self-consistently from this relation.
If we assume w � 1, which is to be expected for large lattice
sizes L, then F (0, k) = π/2 and we get a relation

wL = π.

Substituting this in (C1), we can represent the stationary occu-
pation density as W (x) = π

L Q( x
L ), where Q(z) is a solution of

ODE dQ
dz = −π2−1/2

√
Q4 − 1 with initial condition Q(0) =

cLπ−1. This relation agrees with data in Fig. 19(b).
We can calculate the average number of particles in the lat-

tice from the derived distribution. The total number of order-1
peaks is

K = 2
∫ L/2

0
W (x)dx = 2

√
2

∫ c

w

W dW√
W 4 − w4

=
√

2
∫ c2w−2

1

dy√
y2 − 1

= 21/2 ln(y +
√

y2 − 1)|c2w−2

1

≈ 23/2 ln L,

where in the last expression we assumed w � 1 and neglected
ln cπ . The numerical dependence of K on ln L is presented in
Fig. 20.
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