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Exact finite-dimensional description for networks of globally coupled spiking neurons
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We consider large networks of globally coupled spiking neurons and derive an exact low-dimensional
description of their collective dynamics in the thermodynamic limit. Individual neurons are described by the
Ermentrout-Kopell canonical model that can be excitable or tonically spiking and interact with other neurons via
pulses. Utilizing the equivalence of the quadratic integrate-and-fire and the theta-neuron formulations, we first
derive the dynamical equations in terms of the Kuramoto-Daido order parameters (Fourier modes of the phase
distribution) and relate them to two biophysically relevant macroscopic observables, the firing rate and the mean
voltage. For neurons driven by Cauchy white noise or for Cauchy-Lorentz distributed input currents, we adapt
the results by Cestnik and Pikovsky [Chaos 32, 113126 (2022)] and show that for arbitrary initial conditions
the collective dynamics reduces to six dimensions. We also prove that in this case the dynamics asymptotically
converges to a two-dimensional invariant manifold first discovered by Ott and Antonsen. For identical, noise-free
neurons, the dynamics reduces to three dimensions, becoming equivalent to the Watanabe-Strogatz description.
We illustrate the exact six-dimensional dynamics outside the invariant manifold by calculating nontrivial basins
of different asymptotic regimes in a bistable situation.
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I. INTRODUCTION

Synchronization phenomena in ensembles of coupled os-
cillators is an active field of interdisciplinary research with
numerous applications in physics, engineering, and life sci-
ences (see, e.g., books and reviews [1–4]). One important
area of application is neuroscience, where synchronization of
neurons is crucial for understanding brain functioning [5,6].
While for many systems in physics and engineering the ba-
sic equations for the oscillator dynamics can be formulated
in the form of the Kuramoto model and its modifications
[3], neural models usually follow a different formulation that
takes into account specific properties of spiking neurons and
their interaction. Nevertheless, studies of collective effects
in large neural populations have profited enormously from
the analogy of particular models of neural dynamics to the
Kuramoto model [7]. Notably, a breakthrough in the descrip-
tion of the Kuramoto-type dynamics by Ott and Antonsen [8]
has recently been transferred to the realm of spiking neuron
networks [9–14], see also the reviews [15,16].

The main finding of Ott and Antonsen is the existence
of an invariant two-dimensional manifold, the so-called Ott-
Antonsen (OA) manifold, corresponding to a wrapped Cauchy
distribution of the oscillators’ phases, which allows for a
formulation of exact closed equations of motion for the
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global order parameter. In terms of the neural dynamics, these
equations correspond to closed equations for the parameters
characterizing populations of neurons, such as the firing rate
and mean voltage [12]. While the OA manifold is generally
assumed to be attractive for systems with quenched and/or
noisy inhomogeneity, and thus describes asymptotic in time
attractors, generally initial conditions lie outside the OA man-
ifold and the corresponding transients are not captured by the
OA equations. Recently, two of us developed an exact six-
dimensional description for the evolution of Kuramoto-type
oscillator populations outside of the OA manifold [17]. The
goal of this paper is to extend this approach to networks of
globally coupled spiking neurons, whose microscopic dynam-
ics are given by the quadratic integrate-and-fire (QIF) or the
theta-neuron model,

v̇k = v2
k − gvk + I (t ) + �Ik (t ), k = 1, . . . , N,

θ̇k = 1 − cos θk − g sin θk + (1 + cos θk )[I (t ) + �Ik (t )],

with global recurrent input I (t ) and individual inputs Ik (t )
that include quenched and noisy inhomogeneity (for a detailed
discussion of these equations see Sec. II below). In Ref. [14] it
was demonstrated that the collective dynamics of QIF neurons
driven by independent Cauchy white noise is described by a
mean-field model on the OA manifold that is identical to that
for QIF neurons driven by time-independent Cauchy-Lorentz
distributed inputs. Here we will go beyond the OA theory
and demonstrate that the collective dynamics in the thermo-
dynamic limit N → ∞ are exactly described by system (31),

�̇ = i�2 − g� − iI (t ) + �, λ̇ = 2i�λ − gλ, σ̇ = iλ,
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for three complex collective variables, �, λ, and σ (Sec. IV is
devoted to the derivation of this principal result of our work).
These variables readily allow for extracting the dynamics of
the population firing rate R(t ) and of the mean voltage V (t )
through a simple relation, Eq. (32). With these exact six-
dimensional equations one can properly describe the transient
dynamics outside the OA manifold, and in particular find
exact basins of attraction of different asymptotic dynamical
regimes (which lie on the OA manifold) for arbitrary pertur-
bations.

The paper is organized as follows. In Sec. II we introduce
the two basic equivalent spiking neuron models, the theta
neuron and the QIF neuron, and derive equations for the
order parameters in the thermodynamic limit in presence of
inhomogeneity and noise. In Sec. III we discuss the mean-field
observables and the coupling terms. Section IV contains our
main findings. Here we derive the six-dimensional reduction
of the dynamics, and show how the initial states of the neu-
rons translate into initial conditions for the low-dimensional
dynamics. We also discuss the case of identical units (in the
absence of noise and heterogeneity). In Sec. V we discuss the
relation to the OA theory, and in particular we demonstrate
how the stability of the OA manifold manifests itself within
our formalism. In Sec. VI we present several examples of
application of our approach to the dynamics off the OA man-
ifold, including numerical simulations of finite ensembles of
spiking neurons. We discuss our results in Sec. VII.

II. GLOBALLY COUPLED SPIKING NEURONS

A. Theta-neuron and QIF formulations

In this paper we consider globally coupled spiking neurons
described by the Ermentrout-Kopell canonical model [18].
There are two equivalent formulations of this model: One
(theta neuron, TN) uses a continuous phase-type variable θ (t ),
and the other (QIF) uses a variable v(t ) which is roughly inter-
preted as a membrane potential (for mathematical simplicity
one allows v to attain infinite values, thus it is not a real
membrane potential of a neuron). We present both versions
in parallel, cf. Refs. [9–13,19].

A QIF neuron is described by the equation

v̇ = v2 − gv + I (t ), (1)

where I (t ) is the input current that together with the gap
junction coupling parameter g determines the dynamics of
the neuron. Because of the quadratic nonlinearity, the voltage
variable v may reach infinity in a finite time, at which point it
is reset to −∞, and this event is interpreted as a spike.

To obtain the equation for a theta neuron, one makes a
transformation v(t ) = tan[θ (t )/2], so that Eq. (1) takes on the
form

θ̇ = 1 − cos θ − g sin θ + (1 + cos θ )I (t )

= ω + he−iθ − h∗eiθ

i
. (2)

Here the spike occurs when the phase variable θ passes
through π with positive speed. Hence, the spike form can be
modelled with a function of the variable θ having a peak at

θ ≈ π . We have introduced parameters

ω(t ) = 1 + I (t ), h(t ) = g + i[I (t ) − 1]

2
, (3)

because they allow to interpret Eq. (2) as a Kuramoto-
Sakaguchi model for phase oscillators [3,20,21], with natural
frequency ω and driving field h.

The QIF dynamics (1) represents a discontinuous dy-
namical system that may encompass real conceptual and
mathematical difficulties due to the instantaneous reset when-
ever a neurons crosses the threshold at infinity [22,23]. For
this reason, it may be advantageous to consider the TN dy-
namics (2), which is bounded and smooth, circumvents the
fire-and-reset discontinuity and can be treated as a smooth
dynamical system.

B. Population of identical neurons in the thermodynamic limit

We now consider a population of identical neurons, which
means that for all of them the values of g, I (t ) are the same.
In the thermodynamic limit of an infinite number of units, a
proper description is via the probability density. In the TN
formulation, the equation of probability conservation for this
density P(θ, t ) reads

∂P

∂t
+ ∂

∂θ

{[
ω + 1

i
(he−iθ − h∗eiθ )

]
P(θ, t )

}
= 0. (4)

In the QIF formulation, one has density W (v, t ), which is
related to P(θ, t ) as

W (v) = 2P(2 arctan v)

1 + v2
, P(θ ) = W (tan θ/2)

1 + cos θ
(5)

(we have omitted the dependence on time for readability).
This density obeys the probability conservation equation

∂W

∂t
+ ∂

∂v
{[v2 − gv + I]W (v, t )} = 0,

which should be equipped with the consistency condition
(outgoing flux at “threshold” v = ∞ should be equal to the
incoming flux at “reset” v = −∞).

The relation to the Kuramoto model mentioned above sug-
gests the use of the Kuramoto-Daido order parameters

zn(t ) =
∫ 2π

0
dθP(θ, t )einθ =

∫ ∞

−∞
dv W (v, t )

(
1 + iv

1 − iv

)n

,

(6a)

P(θ, t ) = 1

2π

∞∑
n=−∞

zn(t )e−inθ , (6b)

to describe the evolution, which now reduces to an infinite
system

żn = n[iωzn + hzn−1 − h∗zn+1]. (7)

This system is a Fourier representation of Eq. (4). Due to
the symmetry z−n = z∗

n that follows from definition (6a) of
the Kuramoto-Daido order parameters, it suffices to consider
only positive indices n > 0. Since the probability density is
normalized, we have z0 = 1.

The order parameter representation of the probability den-
sity deserves a more detailed discussion. This representation
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is straightforward in the TN formulation, because there it is
just the Fourier series representation of a periodic function.
Correspondingly, the order parameter description is adequate
if the probability density P(θ, t ) is smooth enough [24]. For
the QIF model, the distribution density W (v, t ) is defined on
the line −∞ < v < ∞, and one may expect that a discrete
series representation would be insufficient. However, because
we define the density W via the transformation (5), smooth-
ness of P implies a restriction on the possible behavior of W
so that the series representation is valid for the QIF model as
well.

C. Effect of Cauchy noise

Here we generalize the deterministic model above and con-
sider spiking QIF neurons (1) subject to additive independent,
identically distributed Cauchy noise ξ (t ) (cf. Ref. [25]); a
particular case of this generalization is also considered in
Ref. [14]. The TN dynamics (2) now reads

θ̇k = 1 − cos θk − g sin θk + (1 + cos θk )[I (t ) + γ ξk (t )],
(8)

where γ is the noise intensity, and we assign index k to
neurons to stress the independence of the noise terms ξk and
ξm for k �= m. Then instead of Eq. (4) we obtain a generalized
Fokker-Planck equation (in the Stratonovich interpretation)

∂P

∂t
+ ∂

∂θ
{[1 − cos θ − g sin θ + (1 + cos θ )I]P}

= γ
∂

∂|θ | (1 + cos θ )P(θ, t ) , (9)

where in the Fourier space the operator ∂
∂|θ | acts as ∂

∂|θ |e
ikθ =

−|k|eikθ . If we insert the Fourier series (6), then

∂

∂|θ | (1 + cos θ )P(θ, t ) =
∞∑

n=−∞
−znκn(θ ), where

κn(θ ) = |n|e−inθ + |n + 1|
2

e−i(n+1)θ + |n − 1|
2

e−i(n−1)θ .

This leads to the following modification of Eqs. (7) for the
order parameters zn, n � 1,

żn = n
[
iωzn + hzn−1 − h∗zn+1 − γ

(
zn + 1

2 zn−1 + 1
2 zn+1

)]
.

(10)

D. Effect of Cauchy inhomogeneity

We further generalize the system under consideration by
allowing for nonidentical neurons. We assume that the driving
current I (t ) possesses an additive quenched quantity ηk so that
instead of Eq. (8), we now consider the TN dynamics

θ̇k = 1 − cos θk − g sin θk + (1 + cos θk )[I (t ) + �Ik (t )],
(11a)

which, in the corresponding QIF formulation, reads

v̇k = v2
k − gvk + I (t ) + �Ik (t ), (11b)

with the same resetting as above. The neuron-specific input Ik

is given by

Ik (t ) = cξk (t ) + (1 − c)ηk, (11c)

where the parameter c ∈ [0, 1] weights the relative contribu-
tions from deterministic heterogeneity and independent noise;
one retrieves Eq. (8) by setting c = 1. We draw the quantities
ηk (which are similar to natural frequencies in the Kuramoto
model) from a Cauchy-Lorentz distribution f (η) with zero
mean and unit half-width,

f (η) = 1

π (1 + η2)
.

The parameter � := (1 − c)� in Eq. (11) determines the
spread of “natural frequencies,” i.e., the degree of heterogene-
ity among neurons. According to the definition above, the
noise intensity is now γ = c�.

Because the quantities ηk are quenched (time independent),
we can consider them as an additional parameter in the dis-
tribution of the variables θ , and write P(θ, t ; η) instead of
P(θ, t ). Correspondingly, one can introduce the order param-
eters zn(t ; η) that now depend also on the values of η. For
globally coupled neurons, the mean fields that are relevant
then appear after averaging the order parameters over the
distribution of η:

Zn =
∫ ∞

−∞
dη f (η)zn(t ; η)

=
∫ ∞

−∞
dη f (η)

∫ 2π

0
dθ P(θ, t ; η)einθ .

Next we follow the approach of Ott and Antonsen [8] and
make an assumption that the density P(θ, t ; η) is an analytic
function of the complex-valued parameter η in the upper half-
plane and converges exponentially to zero as Im(η) → ∞.
Then, the integral over η can be taken by virtue of the Cauchy
residue theorem (using the pole η = i)∫ ∞

−∞
dη f (η)P(θ, t ; η) = P(θ, t ; i),

so that

Zn(t ) = zn(t ; i).

Using Eqs. (10) together with ω = 1 + I (t ) + �η and h(t ) =
g+i[I (t )+�η−1]

2 evaluated at the pole η = i, we finally obtain

Żn = n

{
i[1 + I (t )]Zn − (� + γ )Zn

+ g + i[I (t ) − 1] − (� + γ )

2
Zn−1

− g − i[I (t ) − 1] + (� + γ )

2
Zn+1

}
, n � 1 . (12)

Note that both Cauchy noise and Cauchy inhomogeneity
have the same effect on the dynamics of the population, which
is why we introduced the effective inhomogeneity parame-
ter � = � + γ in Eq. (11). We remark, however, that the
microscopic state of the network can depend on the relative
weighting c of deterministic and stochastic individual inputs,
as analyzed in more detail in Ref. [14]. We also stress here
that while the effect of noise in Eqs. (12) is unconditional, the
effect of the inhomogeneity is based on an additional assump-
tion about analyticity of the distribution density. This will
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be important for the interpretation of the dynamical regimes
below.

In addition, we stress a special feature of the Cauchy-
distributed noise: Because in Fourier space it acts propor-
tionally to the mode number, the resulting system (12) is
homogeneous in mode number n, which is essential for the
theory below. This was first recognized in Refs. [25,26]. In
contradistinction, Gaussian noise acts proportionally to the
square of the mode number and thus destroys homogeneity
of system (12).

III. MEAN-FIELD OBSERVABLES
AND COUPLING TERMS

In the description of populations of neurons, the two main
observables are typically the mean firing rate R and the mean
voltage V . In networks of globally coupled neurons, the
synaptic input I (t ) depends on the recurrent coupling and in
some (but not all) cases becomes a function of R and V . Here
we relate the mean firing rate, mean voltage, and synaptic
input to the order parameters.

A. Firing rate and mean voltage

Computational models of large networks of recurrently
coupled spiking neurons typically focus on a macroscopic
observable that measures the mean rate at which neurons emit
spikes, the network firing rate

R(t ) = 1

N

N∑
k=1

∑
j

1

τr

∫ t

t−τr

ds δ
[
s − t ( j)

k

]
, (13)

where the instant t ( j)
k corresponds to the jth spike of neuron

k (it happens when the corresponding variable θk crosses π )
and τr is a time window of spike events. Taking first the limit
of infinitely many neurons, N → ∞, and then τr → 0, one
obtains the mean firing rate that, in terms of the probability
density in Eq. (9), is defined as the flux of probability density
at θ = π [in the Stratonovich interpretation, the flux at θ = π

is purely deterministic, because the noisy term is multiplied
by (1 + cos θ )]:

R(t ) = 2P(π, t ) = 1

π

[
1 +

∞∑
n=1

(−1)n(Zn + Z∗
n )

]
. (14)

The mean voltage V is the population average of the mem-
brane potential variables v:

V (t ) = 〈v〉 =
〈

sin θ

1 + cos θ

〉
= i

∞∑
n=1

(−1)n(Zn − Z∗
n ); (15)

the last equality can be obtained by taking the limit
limε→0〈 sin θ

1+cos θ+ε
〉 as in Ref. [27]. A combination of both R

and V can be expressed as a simple alternating sum of the
moments:

πR − iV = 1 + 2
∞∑

n=1

(−1)nZn. (16)

The mapping (16) between the macroscopic variables R and V
and the Kuramoto-Daido order parameters Zn was originally

derived in Eq. (B2) in Ref. [12] and could have been used
alternatively to obtain the expressions (14) and (15).

B. Recurrent coupling

Next we introduce two types of global recurrent coupling
in the population [13,28]: electrical coupling via gap junctions
and chemical coupling via excitatory or inhibitory synapses.
In the microscopic dynamics Eq. (11), the input I (t ) now
incorporates a common external input I0 and two additional
terms,

I (t ) = I0 + g

N

N∑
k=1

vk + κ

N

N∑
k=1

sk = I0 + gV − κS.

Thus, gap junction coupling of strength g � 0 amounts to in-
cluding the term gV to the driving current I (t ) of each neuron
[27]. We model chemical interactions with the term κsk , with
κ > 0 (κ < 0) denoting excitatory (inhibitory) synaptic cou-
pling and the synaptic variables sk satisfy τsṡk = ρ(θk ) − sk ,
where ρ(θ ) is the spike pulse profile and τs a synaptic time
constant. The mean synaptic activity S(t ) = 〈sk〉 satisfies the
relaxation equation

τsṠ = 〈ρ〉 − S.

In the limit of fast relaxation, i.e., for instantaneous interac-
tions τs → 0, one has S = 〈ρ〉 = ∫ 2π

0 dθρ(θ )P(θ, t ).
In the following, we briefly present several possible

choices of the pulse profile ρ(θ ). We assume that the pulse
is localized around θ = π (i.e., when the membrane poten-
tial diverges, v → ∞) and that the total area is normalized∫ 2π

0 dθρ(θ ) = 2π . If we write the pulse profile as a Fourier
series

ρ(θ ) =
∞∑

n=−∞
cneinθ , c0 = 1,

then the average synaptic activity is represented via the order
parameters as

〈ρ〉 = 1 +
∞∑

n=1

(c∗
nZn + cnZ∗

n ).

1. Dirac δ pulses

Because spikes are rather narrow, in many situations
a Dirac δ function ρδ (θ ) = 2πδ(θ − π ) is adequate. The
Fourier coefficients are cn = (−1)|n| and the synaptic activity
reduces to the mean firing rate [see Eq. (14)],

〈ρδ〉 = 1 +
∞∑

n=1

(−1)n(Zn + Z∗
n ) = πR(t ). (17)

2. Ariaratnam-Strogatz pulse

Ariaratnam and Strogatz (AS) [29] suggested a family
of pulse profiles ρAS(θ ) = am(1 − cos θ )m with am = 2m (m!)2

(2m)! ,
where m is an integer parameter. The AS pulses are smooth,
but in the limit m → ∞ they converge to δ pulses. The average
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synaptic activity is a finite sum of the order parameters

〈ρAS〉 = 1 + (m!)2
m∑

n=1

(−1)n Zn + Z∗
n

(m + n)!(m − n)!
. (18)

3. Rectified Poisson (RP) pulse

Gallego et al. [30] suggested the following pulse form:

ρRP(θ ) = (1 − r)(1 − cos θ )

1 + 2r cos θ + r2
,

where the “sharpness” parameter r ∈ (−1, 1) determines the
width of the pulse: For r = −1, ρRP = 1 is flat; for r = 0,
ρRP(θ ) = 1 − cos θ coincides with the AS pulse with m = 1;
and in the limit r → 1, ρRP(θ ) becomes a δ pulse. The Fourier
coefficients are cn = 1+r

2r (−r)|n| and the average activity is the
infinite series

〈ρRP〉 = 1 + 1 + r

2r

∞∑
n=1

(−r)n(Zn + Z∗
n ). (19)

The different pulse shapes above are symmetric about θ =
π and satisfy ρ(0) = 0. We remark that the RP pulses of
width r can be further generalized to account for nonsymmet-
ric pulses when considering Fourier coefficients cn = c∗

−n of
the form cn = aei(ϕ+nψ )rn, n > 0, with additional parameters
a > 0 and ϕ,ψ ∈ [0, 2π ). In all these cases, it is possible to
represent the relevant observables and mean fields governing
the dynamics of the neural population via the order parameters
Zn. Such representations can directly be used for numerical
simulations of the ensemble of neurons in the thermodynamic
limit, with a proper truncation of the infinite series.

IV. FINITE-DIMENSIONAL REDUCTION

A. Reduction in terms of Kuramoto order parameters

In this section we demonstrate that the infinite system of
order parameter dynamics (12) can be reduced to three com-
plex equations (and a constant function, which is an integral of
motion). Our derivation here directly follows the correspond-
ing derivation for the Kuramoto problem in Ref. [17], so we
omit some technical details.

First, we rewrite Eqs. (12) in a more compact form

Żn = n

[
(iω − �)Zn +

(
h − �

2

)
Zn−1

−
(

h∗ + �

2

)
Zn+1

]
, n � 1. (20)

We introduce the complex-valued exponential generating
function Z(k, t ) = ∑∞

n=0 Zn(t ) kn

n! , which obeys the partial dif-
ferential equation (a prime denotes derivative with respect to
k):

Ż = k(iω − �)Z′ + k

(
h − �

2

)
Z − k

(
h∗ + �

2

)
Z′′.

With the ansatz Z(k, t ) = ekQ(t )B(k, t ), assuming that Q obeys
Q̇ = iωQ + h − h∗Q2 − �

2 (1 + Q)2, we find that the generat-
ing function B(k, t ) = ∑∞

n=0 βn(t ) kn

n! obeys the dynamics

Ḃ = k

[
iω − � − 2

(
h∗ + �

2

)
Q

]
B′ − k

(
h∗ + �

2

)
B′′

and the equations for the new variables βn read

1

n
β̇n =

[
iω − � − 2

(
h∗ + �

2

)
Q

]
βn

−
(

h∗ + �

2

)
βn+1, n � 1. (21)

Due to normalization of the exponential generating function
Z(0, t ) = 1, we have β0 = 1.

We now introduce two new complex dynamical variables y
and s. As we will show below, the set of variables βn can fully
be represented through these variables y, s and the constants
of motion to be defined below. The collective dynamics of
the network of spiking neurons is exactly described by the
following dynamical equations for Q, y, and s,

Q̇ = iωQ + h − h∗Q2 − �

2
(1 + Q)2, (22a)

ẏ = [iω − 2h∗Q]y − �(1 + Q)y, (22b)

ṡ = h∗y + �

2
y. (22c)

To reveal the connection between {βn} and y, s, we introduce
an additional set of variables {αn} via

βn = ynαn. (23)

In combination with Eqs. (21) and (22b), we find the dynamics
of αn:

1

n
α̇n = −

(
h∗ + �

2

)
yαn+1, n � 1. (24)

In terms of the corresponding ordinary generating function
(OGF) A(k, t ) = ∑∞

n=1 αnkn, the dynamics (24) can be rep-
resented as

Ȧ = −
(

h∗ + �

2

)
y[A′ − k−1A]. (25)

Finally, we introduce another OGF that is related to A via the
dynamical variable s(t ):

M(k) = k

k + s(t )
A(k + s(t ), t ).

A direct calculation of the time derivative of M yields
Ṁ(k) = 0, which means that this function is an integral
of motion. Equivalently, using the representation M(k) =∑∞

n=1 μnkn, we observe that the system possesses an infinite
set of integrals μn. To conclude the derivation, we present the
relations between the different variables (see Ref. [17] for an
explicit derivation):

μn =
∞∑

m=n

(
m − 1

n − 1

)
αm(t )[s(t )]m−n, (26a)

αn =
∞∑

m=n

(
m − 1

n − 1

)
μm[−s(t )]m−n, (26b)

βn =
n∑

m=0

(
n

m

)
Zm(t )[−Q(t )]n−m, (26c)
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Zn =
n∑

m=0

(
n

m

)
βm(t )[Q(t )]n−m

= Qn −
n∑

m=1

(
n

m

)
Qn−mym

m−1∑
d=0

sd−m

d!
M(d )(−s), (26d)

where M(d ) denotes the dth derivative of M with respect to k.
The Kuramoto order parameter, i.e., the first circular moment,
is expressed as:

Z1 = Q − y
M(−s)

s
. (27)

B. Reduction in terms of voltage and firing rate

As we discussed in Sec. III, macroscopic observables of
interest for populations of neurons are the mean firing rate R
and the mean voltage V . It is instructive to represent them in
terms of the newly introduced dynamical variables Q, y, and s.
Inserting Eq. (26d) into the expansions (14) and (15) for R and
V , respectively, and using the definitions of the OGF A,M,
after straightforward algebra we obtain

R = 1

π
Re

{
1 − Q

1 + Q
+ 2y

y(1 + Q) + s(1 + Q)2

×M
[
−y + s(1 + Q)

1 + Q

]}
, (28a)

V = −Im

{
1 − Q

1 + Q
+ 2y

y(1 + Q) + s(1 + Q)2

×M
[
−y + s(1 + Q)

1 + Q

]}
. (28b)

Expressions (33) suggest a transformation from the variables
Q, y, and s to new dynamical variables �, λ, and σ according
to

� = 1 − Q

1 + Q
, λ = 2y

(1 + Q)2
, σ = y

1 + Q
+ s. (29)

The inverse transformation reads

Q = 1 − �

1 + �
, y = 2λ

(1 + �)2
, s = σ − λ

1 + �
. (30)

When substituting Eq. (3) for ω and h, we obtain from (22)
the dynamical equations for the new variables

�̇ = i�2 − g� − iI (t ) + �, (31a)

λ̇ = 2i�λ − gλ, (31b)

σ̇ = iλ. (31c)

The main advantage is that the mean firing rate and the mean
voltage in terms of these new variables simplify as

πR − iV = � + λ
M(−σ )

σ
. (32)

Equation (32) readily allows for extracting the firing rate or
the mean voltage from the dynamical system (31) by taking
either the real or the imaginary part of the right-hand side,

R(t ) = 1

π
Re

[
� + λ

M(−σ )

σ

]
, (33a)

V (t ) = Im

[
� + λ

M(−σ )

σ

]
. (33b)

At this point some comments are in order. First, note the
resemblance between Eqs. (32) and (27), which may be due
to the transformal mapping between � and Q. Second, there
is also a more apparent resemblance of Eq. (31a) to the initial
QIF dynamics (1). Third, Eqs. (31) are asymmetrically cou-
pled: The dynamics (31a) for � does not depend on λ and
σ explicitly but may implicitly depend on them through the
input current I , e.g., if I = I (R,V ) depends on mean-field
terms such as the firing rate R or the mean voltage V . In
case that the current I is not a function of the state vari-
ables λ and σ , then Eqs. (31) is a skew system and the first
equation (31a) acts as a two-dimensional driving to the other
two equations.

C. Recurrent coupling in terms of dynamical variables

For a self-consistent description of the collective dynam-
ics, we also need to express the recurrent coupling via gap
junctions and/or via the previously introduced synaptic pulses
in terms of the newly introduced variables �, λ, and σ . As
the gap junction coupling term is proportional to the mean
voltage V , we can here use Eq. (33b). Likewise, for synaptic
interactions via Dirac δ pulses ρδ (θ ) according to Eq. (17),
we can use Eq. (33a) because the average synaptic activity
〈ρδ〉 reduces to the mean firing rate R (multiplied by π ).

In general, however, the synaptic coupling depends on the
assumed shape of the pulse and one obtains complex expres-
sions for 〈ρ〉, e.g., for the RP pulse (19) we have

〈ρRP〉 = Re

{
1 − Q

1 + rQ
+ (1 + r)y

ry(1 + rQ) + s(1 + rQ)2
M

[
− ry + s(1 + rQ)

1 + rQ

]}

= Re

{
�

u
+ (1 + r)λ

2σu2 − (1 − r)λu
M

[
−σ + (1 − r)λ

u

]}
,

where we introduced the auxiliary variable u = 1
2 (1 + r + (1 − r)�) = 1+rQ

1+Q with u|r=1 = 1.
For the AS pulse, 〈ρAS〉 is represented by a finite sum of order parameters (18). Here one has to use Eq. (26d) expressing

these order parameters via dynamical variables Q, y, and s. If needed, then the transformation (30) to variables �, λ, and σ can
be used.
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D. Initial conditions

Given an initial distribution P(θ, t = 0) of phases θ (0),
or W (v, t = 0) of membrane potentials v(0), we ought to
initialize the dynamical system (Q, y, s) accordingly. Note,
however, that the set of dynamical variables Q, y, s is under-
determined, which is characteristic for a finite-dimensional
theory of infinite-dimensional dynamics. There is a certain
freedom in choosing the initial values Q(0), y(0), s(0), which
follows from the way we introduced them in relation to the
moments Zn. For any set (Q(0), y(0), s(0)), one can find corre-
sponding values of μn. Indeed, a straightforward combination
of relations (26a), (23), and (26c) begets an explicit formula
relating constants μn (which in turn define the constant func-
tion M(k)) to Q(0), y(0), s(0), and Zn(0):

μn = 1

[s(0)]n

∞∑
m=n

(
m − 1

n − 1

)[
− s(0)Q(0)

y(0)

]m

×
m∑

j=0

(
m

j

)
Zj (0)[−Q(0)]− j .

Of course, the dynamical evolution of order parameters Zn(t )
is the same for all admissible choices. This arbitrariness has
been already discussed by Watanabe and Strogatz [31] in their
finite-dimensional reduction for the population of identical
oscillators. Here we adopt the approach of Ref. [17] and define
the initial values as

Q(0) = s(0) = 0, y(0) = 1. (34)

In this case, as it follows from relations (26),

μn = αn(0) = βn(0) = Zn(0).

The constant OGF M(k) is thus directly related to the initial
values of the order parameters

M(k) =
∞∑

n=1

Zn(0)kn.

Substituting here the expression of the order parameters via
the initial distribution density of the phase variables P(θ, 0),
we obtain

M(k) =
∫ 2π

0
dθ P(θ, 0)

keiθ

1 − keiθ

=
∫ ∞

−∞
dv W (v, 0)

k(1 + iv)

1 − k − iv(1 + k)
. (35)

In terms of the observables �, λ, and σ the initial conditions
are

�(0) = σ (0) = 1, λ(0) = 2. (36)

Below we present several cases where an expression for M(k)
is relatively simple.

(i) A δ distribution of voltages W (v, 0) = δ(v − v0) corre-
sponds to P(θ, 0) = δ(θ − θ0) with θ0 = 2 arctan(v0), leading
to Zn = einθ0 and thus M(k) = eiθ0 k

1−eiθ0 k
= k( 1+iv0

1−iv0
− k)

−1
.

(ii) A Cauchy-Lorentz distribution of voltages

W (v, 0) = 1

π

x

(v − v0)2 + x2
for some x ∈ R>0 (37)

corresponds to a wrapped Cauchy distribution of the phase
variables P(θ, 0) = 1

2π

1−|μ|2
|1−μe−iθ |2 , where μ = 1−πx+iv0

1+πx−iv0
∈ C.

This leads to M(k) = μk
1−μk . The initial order parameters are

powers of the parameter, Zn(0) = μn = μn.
A skewed generalization of the Cauchy distribution can

also easily be represented with the Kato-Jones [32] distribu-
tion of phases, which yields M(k) = c μk

1−μk where c ∈ C.
(iii) A uniform distribution of voltages in some interval

[v0 − d, v0 + d] with v0 ∈ R, d > 0,

W (v, 0) =
{

1
2d if v ∈ [v0 − d, v0 + d],
0, otherwise,

(38)

corresponds to P(θ, 0) = [2d (1 + cos θ )](−1) if −π <

2 arctan(v0 − d ) � θ � 2 arctan(v0 + d ) < π and 0
otherwise, where we used that arctan(v) is bijective on
(−π, π ). The OGF is

M(k) = −1

d

k

(1 + k)2

{
(1 + k)d

+ i log

[
(1 + k)(v0 − d + i) − 2ik

(1 + k)(v0 + d + i) − 2ik

]}
. (39)

We notice also that a weighted sum of different initial
distributions allows for a proper representation of the constant
OGF M(k). Because of linearity of representation (35), if the
initial density of the phase variable is a sum of “elementary”
densities, then the OGF is a sum of “elementary” OGFs:

P(θ, 0) =
∑

m

wmPm(θ, 0), M(k) =
∑

m

wmMm(k),

(40)

for weights wm � 0 with
∑

m wm = 1. We will explore this
property in the next Sec. IV E and in the Sec. VI below, where
we discuss the dynamics of a population of neurons following
the resetting of a fraction of neurons to a new state.

Finally, we mention that the function M(k) can be ap-
proximated for an arbitrary distribution W (v, 0), by first
expressing it in the TN formulation P(θ, 0) via (5), and
then approximating it with a finite Fourier series: P(θ ) ≈

1
2π

[1 + ∑N
n=1 ane−inθ + c.c.], yielding a polynomial M(k) ≈∑N

n=1 ankn.

E. Identical units without noise

In the case of identical units without noise, � = 0, the
following simplification follows from Eq. (35) in Ref. [17]:

λ = (� + �∗)σ . (41)

The dynamics (31b) for λ thus becomes redundant and
Eq. (31c) for σ reduces to σ̇ = i(� + �∗)σ = 2iRe[�]σ .
Given the initial value σ (0) = 1, we thus have σ (t ) =
exp[iζ (t )] and the argument ζ ≡ arg(σ ) follows the
real-valued dynamics ζ̇ = 2Re[�]. Hence, for � = 0 the
collective dynamics is three dimensional. Note that the
relation (32) connecting the firing rate and mean voltage
remains valid as well as the different choices of initial
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conditions described in Sec. IV D. The full three-dimensional
dynamics can be summarized as:

�̇ = i�2 − g� − iI (t ), (42a)

ζ̇ = 2Re[�], (42b)

with initial conditions �(0) = 1, ζ (0) = 0; and the firing rate
R and mean voltage V can be expressed via Eq. (32) as:

πR − iV = � + (� + �∗)M(−eiζ ). (43)

This essentially boils down to the Watanabe-Strogatz (WS)
description [31,33] of a population of identical units, here
translated for QIF neurons. The constant function M(k)
contains the information of the WS constants of motion
ψ j = θ j (0), which are, for this simple choice of initial
conditions (36), just the initial values of the TN phases
and relate to the initial voltages via v j (0) = tan(ψ j/2). The
function M(k) is in general expressed as:

M(k) =
∞∑

n=1

〈einψ j 〉kn =
∞∑

n=1

〈[
1 + iv j (0)

1 − iv j (0)

]n〉
kn .

This description outlined above is also applicable for fi-
nite networks: Consider an ensemble of N identical neurons
{θ1, θ2, . . . , θN } (or {v1, v2, . . . , vN } in the QIF represen-
tation), whose distribution density can be described as a
sum of δ functions: P(θ ) = 1

N

∑N
n=1 δ(θ − θn) [or W (v) =

1
N

∑N
n=1 δ(v − vn)]. For each unit θn (or vn), we can determine

the constant function Mn(k) corresponding to the respec-
tive δ function, that is, Mn(k) = eiθn (0)k

1−eiθn (0)k = k[ 1−ivn (0)
1+ivn (0) − k]

−1
,

n = 1, . . . , N . Using Eq. (40), we thus obtain the full func-
tion M(k) = 1

N

∑N
n=1 Mn(k). In this way, ensembles with an

arbitrary number of QIF neurons can be integrated exactly
in just three dimensions as their collective dynamics is re-
stricted to the three-dimensional manifold with coordinates
|�|, arg(�), ζ . We stress again that this three-dimensional
description is only valid for identical neurons without noise,
� = 0, i.e., without dissipation.

V. OTT-ANTONSEN MANIFOLD AND ITS STABILITY

A. Ott-Antonsen and Lorentzian manifolds

From Eqs. (22) it is obvious that y = 0 is a solution. The
manifold {y = 0} is invariant, and on it the variable s becomes
irrelevant because, as it follows from Eq. (26d), the order
parameters are just powers of the variable Q: Zn = Qn. This
manifold is thus completely described by the complex variable
Q, and hence is two dimensional. It has first been identified by
Ott and Antonsen [8], who subsequently demonstrated that, in
the case of heterogeneous oscillators ω j �= ωk with common
forcing h j = h, it is attractive in the time-asymptotic limit
[34,35]. Due to the relation Zn = Qn, the distribution P(v, t )
of phases θ on the so-called OA manifold follows a wrapped
Cauchy distribution (a.k.a. Poisson kernel).

In terms of the variables �,λ, σ , the OA manifold corre-
sponds to {λ = 0} and on it the dynamics are fully captured by
the variable � = πR − iV . For λ = 0, the voltages v follow
a Cauchy-Lorentz distribution, so in this context one calls the
OA manifold also the Lorentzian manifold [12]. The dynam-
ics of neural populations on the OA, or Lorentzian, manifold

has been explored in a variety of setups, building primarily
on the original results in Refs. [9–13]. Time-asymptotic at-
tractiveness of the Lorentzian manifold was later proven in
Ref. [36].

B. Global stability of the reduced OA manifold

Here we demonstrate that the reduced OA manifold for TN,
or the Lorentzian manifold for QIF neurons, is asymptotically
stable for � > 0, i.e., in presence of an inhomogeneity of input
currents η or of Cauchy white noise ξ . In fact, we show that
asymptotically y → 0 so that the OA manifold is attractive.
Our starting point are Eqs. (22a) and (22b). We introduce two
real variables, X = 1 − |Q|2 and Y = |y|2, and express their
dynamics as

Ẋ

X
= −(h∗Q + hQ∗) + 2�

1 − X

X
+ �(Q + Q∗)

2 − X

2X
,

(44a)

Ẏ

Y
= −(h∗Q + hQ∗) − �

(
1 + Q + Q∗

2

)
. (44b)

First, we argue that X cannot become negative. Indeed, be-
cause at X = 0, |Q| = 1, 2 + Q + Q∗ � 0 and therefore X
cannot become negative. Moreover, X cannot vanish because
for this one needs the state with Q = −1 to be steady, but
at this value of Q from Eq. (22a) we have Q̇|Q=−1 = −2i
independently of the coupling terms g, I . This corresponds to
the fact that in the original formulation (2) at θ = π one has
θ̇ = 2 independently of the forcing terms g, I .

Next, we combine these two equations into one:

Ẏ

Y
= Ẋ

X
− �

|1 + Q|2
1 − |Q|2 . (45)

We integrate this equation to obtain

Y (t ) = Y (0)
X (t )

X (0)
exp[−�

∫ t

0

|1 + Q(t ′)|2
1 − |Q(t ′)|2 dt ′]. (46)

If |Q(t ) + 1| is bounded from zero, then also |1+Q(t )|2
1−|Q(t )|2 has a

lower positive bound, and so the integral in Eq. (46) tends to
zero exponentially for � > 0. On the other hand, if Q → −1,
then X vanishes and in this case Y vanishes as well. Thus in all
the cases Y (t ) eventually vanishes, which means convergence
of arbitrary initial states to the OA manifold. Furthermore,
Y → 0 entails y → 0, which in turn entails λ → 0 due to
Eq. (29), thus proving global stability also of the Lorentzian
manifold described by �.

The convergence Y → 0 is ensured for � > 0, but for van-
ishing noise and/or inhomogeneity � = 0 we obtain Y (t ) =
X (t ) Y (0)

X (0) . Thus, Y can vanish only if eventually X → 0, which
corresponds to a δ-function distribution with |Q| = 1, i.e., to
full synchrony of the neurons. In all other situations the OA
manifold is not attracting.

VI. DYNAMICS OFF THE OA MANIFOLD

As we have discussed in the previous Sec. V, asymp-
totically the six-dimensional dynamics reduces to a two-
dimensional dynamics on the OA manifold. Thus, the exact
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(a) (c)

(b) (d)

FIG. 1. Numerical simulations of spiking neuron networks, the exact six-dimensional theory and the two-dimensional OA theory. Initial
voltages v j (0) are uniformly distributed on [v0 − d, v0 + d] with d = 1, v0 = 0.25. (a) Firing rate R(t ) and (b) mean voltage V (t ) obtained from
the microscopic network Eq. (11) with N = 105 neurons driven by Cauchy noise (c = 1, violet curves) or with Cauchy-Lorentz distributed
inputs (c = 0, yellow curves) are in excellent agreement with the exact low-dimensional theory Eqs. (31) and (39) (black curves). [(c) and
(d)] Comparison of the exact theory [black, the same curves as in panels (a) and (b)] with the two-dimensional OA dynamics initialized
with R(0) = 0 and V (0) = v0 according to the initial voltage distribution (blue) or when projecting the initial voltage distribution on the OA
manifold (green), R(0) and V (0) are then obtained from the Kuramoto order parameter Z1(0) via πR(0) − iV (0) = [1 − Z1(0)]/[1 + Z1(0)].
In panels (a) and (b) the network firing rate and the voltage are smoothed with a rectangular filter of width 0.025. Other parameters: Noise or
heterogeneity strength � = 1/4, coupling strengths κ = 15

√
�/π and g = 0, input current I0 = −4�.

six-dimensional evolution derived above is relevant for tran-
sient processes only, as the attractors themselves lie on the
OA manifold. Importantly, the full six-dimensional dynam-
ics is needed to faithfully determine the basins of attraction
of different asymptotic regimes. The two-dimensional OA
theory is restricted to specific initial conditions that already
lie on the invariant OA manifold (wrapped Cauchy distri-
bution for TN phases, Cauchy-Lorentz distribution for QIF
voltages). By contrast, our approach captures the exact six-
dimensional evolution from general initial phase or voltage
distributions, which are incorporated in the corresponding
M function as described in Sec. IV D. In the following, we
present three examples that underscore the power of our exact
finite-dimensional reduction.

A. Complex initial transients of the collective dynamics

As the first litmus test, we compare our finite-dimensional
reduction Eqs. (31) to numerical simulations of large networks
of spiking neurons, see Fig. 1. For the network simulations,
we consider N = 105 neurons either driven by Cauchy white
noise or by heterogeneous inputs drawn from a Cauchy-
Lorentz distribution, whose dynamics are given by Eq. (11)
with c = 1 or c = 0, respectively. The neurons are all-to-all
coupled via instantaneous Dirac δ pulses [Eq. (17)] of strength
κ > 0, and g = 0. The initial voltages v j (0) are uniformly
distributed in [v0 − d, v0 + d] with d = 1, so that the initial

firing rate R(0) = 0 and mean voltage V (0) = v0. The popu-
lation firing rate R(t ) can be computed according to Eq. (13),
or in the TN framework as R(t ) = 1

N dt

∑N
j=1 1(π−2dt,π][θ j (t )],

where 1A(θ ) is the indicator function and the interval A =
(π − 2dt, π ] ensures that we count all neurons that cross
the firing threshold θ = π within the next integration step
dt , and thus elicit a spike before time t + dt . The mean
voltage V (t ) is computed as the average over the neurons’
voltages, or in the TN framework as V ≈ 〈 sin θ

1+cos θ+ε
〉 with ε =

10−5; note that when following [13,28] with ε = 10−2, there
will be some initial disagreement between network voltage
and theory.

The collective dynamics of the network is described by
Eqs. (31) with I (t ) = I0 + κπR(t ), which is exact in the ther-
modynamic limit with initial conditions �(0) = σ (0) = 1,
λ(0) = 2. The initial uniform voltage distribution amounts to
the M function given by Eq. (39) with d = 1. As shown in
Figs. 1(a) and 1(b), the match between network simulations
(violet with Cauchy noise and yellow with heterogeneous
inputs) and exact theory (black) is remarkable. Even the com-
plex initial transient (up to time t ≈ 8) is excellently captured
by our theory. By contrast, the two-dimensional OA theory
cannot account for such a perfect agreement [Figs. 1(c) and
1(d)]. To begin, it is unclear how to choose the initial con-
ditions on the OA manifold. In the OA theory, the width
parameter d of the initial uniform voltage distribution is lost,
so that it is unclear whether the OA dynamics describes the
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FIG. 2. Attractor switching due to resetting of a fraction of neu-
rons. (a) Bifurcation analysis yields a region of bistability between
two stable, stationary states (full line) whose basins of attraction on
the OA manifold are separated by the stable manifolds of the unstable
stationary state (dotted line). The red vertical line marks the chosen
parameter regime I0/� = −4. (b) Basin boundaries of high-activity
attractor: After initializing the system in the low-activity state, we
reset a fraction ε of oscillators according to a uniform distribution
(blue) or a Cauchy distribution (red), centered at v0 and having half-
width (at half-maximum) 1. Shaded regions indicate switching to
the high-activity state. White domains correspond to decay after the
perturbation back to the initial low-activity state. Model parameters
as in Fig. 1: τs = 0, g = 0, � = 0.25, I0 = −4�, and κ = 15

√
�

π
.

Runge-Kutta fourth-order method with time step dt = 10−3 was used
for integration.

network evolution from the correct initial condition (d = 1)
or even from a δ distribution of voltages (d = 0). The choice
of initial conditions, however, can have significant conse-
quences for the predicted collective dynamics—especially in
bistable regimes as considered here; see Fig. 2(a) for the
corresponding bifurcation diagram. When initializing the OA
dynamics [Eqs. (31) with λ ≡ 0] according to the initial con-

dition R(0) = 0 and V (0) = v0, which corresponds to the
initial microscopic network state, then the dynamics predicted
by the OA theory can run into an attractor that is different
from the actual network dynamics [blue curve in Figs. 1(c)
and 1(d)]. We recover the correct attractor of the collective
dynamics when projecting the initial voltage distribution onto
the OA manifold by, first, computing the Kuramoto order pa-
rameter Z1(0) = 1/N

∑N
j=0 exp[2i arctan v j (0)] and, second,

determining the initial R and V values on the OA manifold via
πR(0) − iV (0) = [1 − Z1(0)]/[1 + Z1(0)], see Eq. (28) with
y = 0. The transient OA dynamics evolves toward the true
attractor [green curve in Figs. 1(c) and 1(d)]; however, it does
not completely coincide with our exact six-dimensional theory
nor with the microscopic network dynamics. The damped
oscillations exhibit a phase lag between OA dynamics and
our exact theory. Moreover, since the OA theory is restricted
to two-dimensional dynamics, its behavior is limited to ei-
ther an almost monotonous decay [blue curves in Figs. 1(c)
and 1(d)] or a simple oscillatory decay with a monotoni-
cally decaying amplitude (green curves). By contrast, the full
six-dimensional dynamics can exhibit many modes in the
transient decay patterns (black curves).

B. Resetting a fraction of neurons induces switching
between attractors

As the attentive reader may have noticed, in the example
above a slight change in initial conditions, while keeping all
the other parameters the same, resulted in collective dynamics
converging to different attractors: either an asynchronous
low-activity state or an asynchronous high-activity state;
synchronous behavior would correspond to collective
oscillations. As mentioned above, the attractors of the
network dynamics lie on the two-dimensional OA manifold,
allowing for a concise bifurcation analysis of the bistability
between the low- and high-activity states. Below we expand
on this bistable situation, which was already reported in
Ref. [12] and where the basins of attraction were explored
within the OA manifold. Here we show how our approach
generalizes the basins of attraction in the full state space of
QIF spiking neurons driven by Cauchy white noise and how
resetting a fraction of neurons can induce a switch from one
to the other attractor.

As before, we consider global recurrent coupling via in-
stantaneous Dirac δ pulses and set g = 0, so that the total input
current is I (t ) = I0 + κπR(t ). In dependence on the scaled pa-
rameter I0/� one observes a bistability of the stationary firing
rate, as shown in Fig. 2(a). This bistability scenario corre-
sponds to that of Fig. 1(b) in Ref. [12], where the neurons were
assumed heterogeneous (� = 1/4) without noise (γ = 0). In
our notation, their setting corresponds to � = 1/4 and c = 0
in Eq. (11), but we stress that the same bifurcation diagram
can be achieved for any (microscopic) weighting c ∈ [0, 1]
between Cauchy heterogeneity and noise. In the following, we
set c = 1 and the coupling strength is κ = 15

π

√
�.

We now induce switching from the low- to the high-activity
state by resetting a fraction ε of the neurons to a predefined
voltage distribution. We consider here identical, noise-driven
neurons (c = 1); this approach cannot be pursued in the
presence of heterogeneity (c < 1) because then the selection
of neurons that are reset crucially influences the collective
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dynamics. The common input is fixed at I0/� = −4 in the
region of bistability and we initialize the neurons on the low-
activity branch. At the fixed point, the distributions W0(v) of
voltages v and P0(θ ) of phase variables θ is Cauchy-Lorentz,
or wrapped Cauchy, respectively, as it should be on the OA
manifold. Then we take a portion 0 � ε � 1 of the neurons
and redistribute their voltages (phases) according to a new
distribution W1(v) [P1(θ ), correspondingly]. Thus, according
to expression (40) we have to start calculations of the transient
using full Eqs. (31) with M(k) = (1 − ε)M0(k) + εM1(k).
(Note that in Ref. [37] resettings inside the OA manifold have
been considered).

We use two distributions W1(v) for the resetting:
(1) A Cauchy-Lorentz distribution (37) with fixed half-

width at half-maximum x = 1 and varying parameter v0. Then
M1(k) = μk

1−μk with μ = 1−π+iv0
1+π−iv0

.
(2) A uniform distribution of voltages (38) with half-width

d = 1 and different v0. Because at the initial condition σ (0)
= 1, the denominator of M1(−σ ) vanishes, one needs an
expansion

M1(−σ ) = −1 + iv0

2
− 3 + δ2 + 3v2

0

12
(σ − 1) + O[(σ − 1)2]

(47)
to start calculations properly.

Integrating the system of equations (31) with the elaborated
constant functions M(k), we have observed convergence to
one of the attractors on the OA manifold. The basins of
attraction for the different resetting distributions W1(v) are
depicted in the parameter plane (v0, ε) in Fig. 2(b). Resetting
a large fraction of neurons according to a Cauchy-Lorentz dis-
tribution (red), significantly increases the chances of attractor
switching from the low- to the high-activity state compared to
a resetting according to a uniform distribution (blue).

C. Phase-dependent resetting from synchronous
to asynchronous states

We now add gap junction coupling g > 0 while keeping
the other parameters as before. For gap junctions, the input
current now reads I (t ) = I0 + κπR(t ) + gV (t ). On increasing
g, the high-activity state undergoes a Hopf bifurcation and
becomes a stable limit cycle on the OA manifold; the low-
activity state remains a phase-locked, fixed-point solution, see
Fig. 3(a). We now fix g = 0.35 and initialize the system in the
oscillatory, synchronous steady state, Q(t ) = Q(t + T ) with
period T , that has bifurcated from the high-activity branch.
At different phases of the collective oscillation, we reset a
portion ε of oscillators with a uniform distribution of voltages
with mean voltage v0 = 0 and half-width d = 1. We therefore
consider the function M(k) = (1 − ε)M0(k) + εM1(k) as a
combination of the Cauchy M0(k) = Qk

1−Qk with the expres-
sion (39) for the M1(k). In this special case (v0 = 0, d = 1),
M1(k) is given by

M1(k) = −k

(1 + k)2
[(1 + k) − π/2 − 2 arctan(k)]. (48)

The basin boundary of the asynchronous low-activity state
is depicted in blue in Fig. 3(b), and sensitively depends on
the collective oscillation phase and on the reset fraction ε

of neurons. By contrast, resetting according to a Cauchy-
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FIG. 3. Phase-dependent attractor switching from synchronous
to asynchronous states. (a) Bifurcation analysis yields a region of
bistability between an oscillatory, synchronous state (orange), which
emerges from a stable high-activity state via a supercritical Hopf bi-
furcation, and a stable low-activity stationary state (full line). The red
vertical line marks the chosen parameter regime g = 0.35. (b) Basin
boundaries of low-activity attractor: After initializing the system in
synchronous state, we reset a fraction ε of oscillators according to a
uniform distribution centered at 0 and having half-width 1 for every
phase of the collective oscillation. Shaded blue regions correspond
to values that induce a switch to the fixed point. White domain
corresponds to decay after the perturbation back to the collective
oscillation state. Model parameters are τs = 0, g = 0.35, � = 0.25,
I0 = −4�, and κ = 15

√
�

π
. Runge-Kutta fourth-order method with

time step dt = 10−3 was used for integration.

Lorentz distribution W1(v) centered at 0 with half-width at
half-maximum 1 never induces a switch (for any portion ε

and at any phase of collective oscillation).

VII. DISCUSSION AND CONCLUSION

In this paper, we have put forward a finite-dimensional
description of large networks of globally coupled spiking
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neurons that are described by the Ermentrout-Kopell canon-
ical model of excitable neuronal systems. Each neuron can
equivalently be expressed as a phase model (theta neuron)
or as a QIF neuron with threshold and reset going to ±∞,
respectively. In the presence of heterogeneous input currents
(or natural frequencies) and/or Cauchy white noise, our for-
malism is exact in the thermodynamic limit. The derivation
of the set(s) of three complex ordinary differential equations,
(22) or (31), does not rely on assumptions of weak coupling,
separation of timescales, averaging, or any other approxi-
mation. Rather, the assumptions underlying the validity of
the low-dimensional description are that (i) the neurons are
all-to-all connected, (ii) noise is Cauchy (and not Gaussian),
and (iii) inputs are distributed according to a Cauchy-Lorentz
distribution; we will comment on these assumptions further
below. We note that in the finite-dimensional reduction, both
situations—neurons are subject to Cauchy white noise, or
they receive Cauchy-Lorentz distributed (time-independent)
inputs—result in identical mean-field dynamics. Yet, only in
the former case is there a simple unique correspondence be-
tween the mean-field dynamics via the order parameters and
the phase (voltage) distribution of theta (QIF) neurons. In the
case of heterogeneity, one can calculate the order parameters
from the distribution of phases only under certain analyticity
assumptions, e.g., that the density admits an analytic contin-
uation in the upper complex plane of inputs (or frequencies
in the phase description). Hence, the results of this paper
are fully applicable to noisy ensembles, but some approaches
(e.g., the resetting example) are not suitable for neurons with
distributed inputs or heterogeneous frequencies. At this point
we also mention that while traditionally applicability of the
OA reduction was restricted to the case of quenched Cauchy-
Lorentz distribution of inputs (frequencies) in the classical
Kuramoto setup and in the QIF model [8–13], only recently
has it been realized that the same equations are valid for
a population driven by independent Cauchy white noises.
First, it has been demonstrated for the Kuramoto model in
Refs. [25,26] and recently extended to a QIF setup [14]. We
stress that Ref. [14] does not go beyond the OA ansatz, in
contradistinction to the full description developed above.

We remark that the six-dimensional dynamical reduction
presents an important extension of previous results [9–14]
which were restricted to the OA (Lorentzian) manifold. Ac-
cording to these results, the collective dynamics can only be
described in the time-asymptotic limit, t → ∞, or if the initial
state of the neurons is meticulously instantiated. By contrast,
our approach allows us to faithfully capture the network dy-
namics from arbitrary initial conditions. Furthermore, we can
track how the collective dynamics is eventually attracted to the
two-dimensional, attractive OA manifold. We have derived the
global stability of the OA manifold (in the weak sense), whose
attractiveness has already been argued in the literature [17,
34–36,38,39]. In contrast to networks of conventional
Kuramoto-type oscillators, where the convergence rate is
given by the degree of heterogeneity and/or noise strength
[17], here we cannot indicate an exact lower bound on the
convergence rate toward the OA manifold; note, however, that
here we do not consider conventional Kuramoto-type oscil-
lators with additive noise and identical forcing fields h j �= h
but rather parameter-dependent oscillatory systems with mul-

tiplicative noise and oscillator-dependent natural frequencies
ω j �= ωk and forcing fields h j �= hk .

Our theory is valid for any mean-field coupling. As
particular examples we considered all-to-all coupling via
instantaneous chemical synapses as well as via electrical
synapses through so-called gap junctions. In Sec. III we pro-
vide a general framework how chemical interactions via a
variety of pulses, emitted from the pre- to the postsynaptic
neuron, can be incorporated through mean-field variables in
our low-dimensional description. While we have focused here
on symmetric pulse profiles, in future work we will investigate
the effect of asymmetric pulses on the collective dynamics of
spiking neurons.

As to the specific noisy and quenched inputs, we remark
that in case of Gaussian white noise additional terms ap-
pear in the equations for the order parameters (12), which
does not allow for truncating the infinite system (21) for
the βn. Nevertheless, truncation might yield an approximative
finite-dimensional description similar to that proposed in the
supplementary material of Ref. [39] and in Refs. [40,41]; this
is a subject of a forthcoming research and of particular rele-
vance when endogenous fluctuations, e.g., in networks with
sparse synaptic coupling, can be described by an effective
Gaussian noise [42].

Relaxing the nature of quenched heterogeneity appears
straightforward, in particular if the input parameters η are
drawn from a nonsingular distribution with a finite set of
poles outside the real axis, see, e.g., Eq. (2) in Ref. [43].
The proposed distribution allows one to approximate both
Gaussian [44] as well as uniform heterogeneity [45,46] with a
finite-dimensional extension of the OA dynamics to arbitrary
accuracy. We leave the corresponding extension of our exact
low-dimensional description of spiking neurons subject to
heterogeneous inputs with q-Gaussian or rational distributions
for future work. As a side note, we advise caution when
dealing with distributions of inputs that do not comply with
the analyticity assumptions mentioned above. In those cases,
transient dynamics can become nontrivial and the basins of
attraction of time-asymptotic solutions depend on the choice
of initial conditions and cannot be treated within the theory
presented here, see, e.g., Refs. [47,48].

Finally, we mention that our approach will hold for more
general networks of spiking neurons. Possible extensions
include networks with distributed synaptic weights κ , in ad-
dition to distributed inputs η, or interacting populations of
excitatory and inhibitory neurons. Moreover, synapses can
follow more complex synaptic kinetics and can be mod-
eled as conductances with reversal potentials, that can also
be distributed. In these cases, it may be more important to
faithfully capture transient dynamics off the OA manifold,
which can readily be achieved with our exact low-dimensional
description.
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