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We consider a one-dimensional array of phase
oscillators coupled via an auxiliary complex field.
While in the seminal chimera studies by Kumamoto
and Battogtokh only diffusion of the field was
considered, we include advection which makes the
coupling left-right asymmetric. Chimera starts to
move and we demonstrate, that a weakly turbulent
moving pattern appears. It possesses a relatively large
synchronous domain where the phases are nearly
equal, and a more disordered domain where the local
driving field is small. For a dense system with a
large number of oscillators, there are strong local
correlations in the disordered domain, which at most
places looks like a smooth phase profile. We find also
exact regular traveling wave chimera-like solutions of
different complexity, but only some of them are stable.

1. Introduction

Chimera patterns are intriguing structures combining
order and disorder in oscillatory media [1,2,3]. Since
their discovery by Kuramoto and Battogtokh (KB) twenty
years ago [4], they attracted high attention both in
applications and experimental realizations [5,6,7,8], and
in theoretical treatment [9,10,11,12,13,14,15,16]. Chimeras
manifest themselves in synchronous and asynchronous
patches, which are best characterized in terms of the
oscillator phases. Correspondingly, the most simple
models are formulated in terms of the phase dynamics
equations, and we will follow this approach in this paper.
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A characteristic feature of chimeras is that they appear when coupling between oscillators
is described by integral terms. This allows for non-smooth in space phase profiles, where
neighboring oscillators can be uncorrelated or weakly correlated. Such disordered profiles can
exist in a part of the system, while in another part neighboring phases are highly correlated and
thus the phase profile there looks like a smooth curve. Such a picture in a lattice of identical
oscillators, first presented and analyzed by KB [4], is a typical chimera pattern. However, for
a theoretical description it is not appropriate to operate with non-smooth phase profiles, and
thus a description based on the dynamics of the coarse-grained order parameters has been
developed [11,12]. These order parameters, being defined as averages over small spatial domains,
are per definition continuous, and one writes partial differential equations for them [17,16].
However, these equations are well-posed if the oscillators are not identical, but have a spread
of natural frequencies. Then equations for the order parameters (obtained usually using the
Ott-Antonsen ansatz) contain damping terms that regularize the dynamics (another possible
regularization is inclusion of viscosity [18]).

In one-dimensional lattices, one typically considers a left—right symmetrical coupling between
oscillators. In this case, it is natural to expect chimera to stay (up to weak diffusion induced
by finite-size fluctuations [19]), and such a spatial-temporal pattern indeed is observed in most
setups. However, in some cases traveling solutions have been observed. In [18], traveling soliton
chimera was studied. It was demoinstrated that a directed motion is a finite-size effect, which
disappears in the thermodynamic limit. Most close to the topic of our paper are studies of
traveling chimeras in [20,21,22,23]. Xie et al. [20] observed two types of traveling patterns in
a system of identical units with symmetric in space coupling. At some values of parameters
traveling regular phase profiles in a lattice of identical phase oscillators were formed, moving
with a slightly periodically modulated in time velocity. For other parameters, moving with a
nearly constant velocity chimeras consisting of synchronous and asynchronous regions, have
been observed. Bick and Martens [21] considered a ring of identical oscillators with an asymmetric
KB-type coupling. They observed moving of a chimera state (see their Fig. 2), although they
followed this motion for a relatively short time interval (their goal was to just to shift a chimera
along the ring). Omelchenko [22,23,24] considered non-identical units (so that the PDE approach
based on the coarse-grained order parameter could be applied) with asymmetric coupling, and
described different patterns and their stability. In these works the case of identical oscillators
was not considered. We mention also that synchronization waves (moving patterns of different
degrees of local synchrony) has been reported in systems with local coupling [25] and with a
combination of global and local coupling [26]. After our manuscript has been submitted, a paper
by Lee and Krischer [27] appeared, where a ring of ninlinearly nonlocally symmetrically coupled
Stuart-Landau oscillators has been considered, and nontrivial regular traveling waves similar to
those reported below in Figs. 8, 9,10 have been reported.

In this paper, we consider traveling chimera states in a system of identical oscillators. Our
model is based on the KB setup, with an additional advective term in the coupling. This model
is introduced in Section 2. Our basic observation is that a relatively smooth phase profile appears
in such a system, which, however, can be well visualized for a large number of oscillators only.
This traveling regime is non-stationary and weakly irregular, and we illustrate it and describe
its statistical properties in Section 3. In Section 4 we construct a family of regular traveling wave
profiles of the phases. However, only some of them are stable (and if yes, in a certain range of the
advection parameter only).

2. Basic model: advection term in coupling of oscillators

In this section, we introduce the basic model which incorporates an advective term in the coupling
of oscillators. It is based on the famous KB setup [4]. The original KB model is formulated as a
one-dimensional, periodic in space with period 1 array of phase oscillators ¢(x,t) coupled via a
complex diffusive field H(z,t). In the continuous in space formulation the equations read
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Figure 1. The Green’s function (coupling kernel) for «k =4 and V' = 0 (red dashed curve), V' = 1.25 (blue solid curve).

Op _ —ip(z,t)—ia
= —Im(H(m7t)e ) , (2.1a)
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Here, x~! is the characteristic diffusion length of the local driving field H(x,t), T is
its characteristic time scale, and o is the phase shift in the coupling. Below, periodic
boundary conditions ¢(z + 1,t) = ¢(z,t), H(z + 1,t) = H(z,t), and 0 H(z + 1,t) =0 H(z, 1)
are assumed. The coupling (2.1b) is motivated by a chemical interpretation of the dynamics
according to works of Y. Kuramoto and co-workers [28,4,29,30]. In this interpretation, lump
oscillators interact via a diffusive medium. We extend the setup (2.1) by adding advection
with velocity 2V to the evolution of the field H, so that the second equation is now the
advection-diffusion equation

2
7'68—1;[ + QV%—Z — %TI;[ + K12H = —g2eP@D), (2.2)
This makes the interaction between the oscillators asymmetric in space, so that traveling solutions
are to be expected.

Following the original KB formulation [4], we consider the case of very fast relaxation of field
H(z,t), i.e. the limit 7—0 (see [31,18] for the analysis of a general situation 7>0). In this case,
the field H(z,t) can be represented via the Green'’s function of the time-independent equation
(d%/dz*—2V d/dz—k*)G=—~?(z) with periodic boundary conditions at 2 = 0, 1, which reads

o P el2® et 5 5 )

_ _ = v/ <z<l. .
(x) m/W(eW—l eMl—l)’ w12 VFEFVre+Ve 0<x<1 ( 3)
With this function, the phase dynamics according to (2.1a) can be written as an integral equation

1
8‘0(8“;’ 2 :J Gla — 7)sin(p(E, ) — p(z, t) — a)di. 2.4)
0

We illustrate the Green’s function G(z) in Fig. 1.

For performing numerical simulations, we discretize Eq. (2.4) as follows. One considers a finite
set of N oscillators at poisions zn, = (n — 1) /N, and approximates the integral as a sum. As a
result one has a system of N ordinary differential equations for phases ¢n:

N

d 1 .

% =¥ 2:1 G(zn — x) sin(pn — o7 — @). (2.5)
n—

3. Traveling chimera and its properties

(a) Pictures of chimera

In this section, we present results of direct numerical simulations of model (2.5). We always
start with a standing chimera pattern existing for the symmetric case V' = 0: the oscillators are
synchronous in one spatial domain, and asynchronous in another one. For V # 0, this state
starts to move. We illustrate what is observed in a system with a relatively small number of
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Figure 2. Chimera states at different moments of time in a lattice of NV = 256 units. Panel (a): t = 300, panel (b): t = 550,
panel (c): t = 1750, panel (d): t = 3500. Parameters: « = 1.5, k =5, V =0.1.

units in Fig. 2. One can see that in snapshots (a,b,c) there is one synchronous domain and one
asynchronous domain, so that the moving chimera pattern looks rather similar to the standing
chimera.

In Fig. 2 the number of oscillators is N = 256. The picture is rather different if one considers
a dense set of oscillators with N = 8192. In Fig. 3 we present the evolution of an initial chimera
at the same times and for the same parameters as in Fig. 2. One can see that a continuous spatial
profile p(z, t) develops, without a disordered domain. At the first stage, the synchronous domain
moves to the right, and behind it a continuous profile of the phases forms. In panel (b) one can see
a stage at which an initial strongly disordered domain still exists (the synchronous domain has
been shifted by a distance less than 1). The strongly disordered domain disappears at ¢ ~ 500, and
after that an ordered profile appears (panel (c)). This profile is however unstable and a modulation
develops: distances between some branches become smaller, and between some other branches
become larger (this modulation is already seen in panel (c) of Fig. 3). In the course of this irregular
modulation some branches merge and disappear. We call this regime weak turbulence, because
it, on one hand, is irregular in large, but on the other hand, locally it at most places looks like a
continuous phase profile. It is illustrated in panels (d,e) of Fig. 3. In all snapshots we also show
the profiles of the driving field |H(z,t)|. These profiles are rather smooth in all cases, because
of diffusion. The maximum position of the field |H(z,t)| is in the mostly synchronous domain,
where the phases are close to each other (they form a horizontal bar).

(b) Phase shift number

Next, we present characterizations of the phase profiles of moving chimera. An inspection of the
panels (c,d) in Fig. 3 reveals rather smooth in space profiles of phases. These profiles are wrapped
to the interval 0 < ¢ < 27, but one can unwrap them to the phases belonging to the real line. It
is thus possible to characterize them with the “spatial rotation number”, we will call it the phase
shift. We define the total phase shift along the circular spatial domain 0 <z <1 as

1 N-1 . o)
M= > nglarg [e Prt1Tn ] . (3.1)

One can see that this definition is invariant to shifts of the phases ¢, — ¢n &+ 27, provided
that we stick to the definition of the arg function as —7 < arg[z] <n. Thus for smooth profiles
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Figure 3. Evolution of chimera for the same parameters as in Fig. 2, but for N = 8192. Panels (b-e): snapshots at the
times indicates by vertical dashed lines in panel (a). Red dots: phases ¢(x, t), green line: profile of the field | H (z, t)]
(right axis). (Panel (a): time evolution of the spatial phase shift M defined according to (3.1).

‘arg [ei(%“_“’")] ’ <1 and the phase shift M is defined properly. We will apply definition
(3.1) also to erratic profiles, where the phase shift along the spacial domain cannot be defined
unambiguously. The results of this analysis are presented in panel (a) of Fig. 3. One can see
that at the initial stage, where the smooth phase profile is still in the formation, the phase shift
strongly fluctuates in time; this is a clear indication for the intrinsic non-smoothness of the phase
profile (panel (b)). This stage finishes at ¢ ~ 500, here the smooth phase profile like in panel (c)
is formed. One can see that quite for a long time the value of the phase shift is nearly a constant
M (t) ~ —30. This state is however weakly unstable and in the course of evolution for ¢ > 920 the
value of M changes significantly. Moreover, there are visible fluctuations on a small time scale
in the dependence M (t), indicating that there are non-smooth changes of the phase (such small
non-smooth domains are clearly seen in the snapshot panel (e)).

(c) Velocity and lifetime

Above in Fig. 3 we illustrated the evolution of traveling chimera for relatively short time intervals.
Numerical simulations on longer time intervals show, that for many parameter values the
described in Fig. 3 regime is a long transient, after which a regular state appears. This regular
state can be either a fully synchronous state where all the phases are equal, or a twisted wave
where all the phases build a linear in space profile, or a nontrivial regular traveling wave, to be
discussed in details in Section 4. In Fig. 4 we report a statistical evaluation of the fate of an initial
chimera after a long time interval T'=15 - 105, in dependence on parameter V. The procedure
was as follows. During an evolution of the system, we checked at regular time intervals, wchich
type of the dynamics is observed. Identification of synchronous states was done with help of the
global order parameter (e’#). At a homogeneous synchronous state and at a twisted synchronous
states, the values of this parameter are one and zero, respectively. This parameter was also used
to identify regular traveling waves: because the order parameter is not sensitive to spatial shifts,
this parameter is a constant in time for stationary regular traveling waves. Thus, this regime
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Figure 4. A stacked plot of probability (obtained from 100 independent runs) of different states after evolution of initial
chimera up to time 7' = 5 - 10°. Parameters: N = 2048, o = 1.5, x = 5. We distinguish here 3 regimes: chimera like in
Fig. 3 (red); a synchronous regime with a linear or a constant phase profile (green) and a traveling wave (blue).

was attributed if several consequitive values of the order parameter were the same. One can
see that chimera always survives for small V, while in the range 0.05 SV <0.15 up to 35% of
all runs lead to synchrony. Characteristic lifetimes of chimera in the latter cases are ~ 2.5 - 10°
(we remind here that the simulations stopped at 7' =5 - 10°). In the range 0.16 <V < 0.28 the
dominant asymptotic regime is a traveling wave, the characteristic transient time from chimera
to this state is 7 - 10% < Ty, <7 - 10%. At larger values of parameter V > 0.28 a synchronous state
arises after a relatively short characteristic transient time Ty, ~ 5 - 103,
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Figure 5. Velocity of chimera vs advection parameter V' for k =5, a = 1.5.

The observed situations where traveling chimera states are long transients should be
juxtaposed with similar observartions for standard chimeras (at V' = 0). According to Ref. [32],
standard chimeras are also long transients evolving eventually to synchronous regimes. However,
there the transition time grows exponentially with the number of units N, so that for typical
parameters no transition is observed for N 2 50. In the case of traveling chimeras above, we have
not found any significant dependence of the lifetime on the number of units N. We attribute
this to the structure of the phase profile, which is strongly correlated at small distances between
the elements (see Fig. 6 below for quantitative characterization of these correlations). Thus, the
number of independent patches in the turbulent state can be esctimated as the phase shift number
|M] (see Eq. (3.1)). Because this number only weakly depends on N and is relatively small,
effective fluctuations leading eventually to a transition to a regular regime do not decrease with
the number of units N. This explains finite lifetimes even for systems with a large number of units.

Next, we discuss statistical properties of turbulent states. We show the mean velocity of the
chimeras in dependence on parameter V' in Fig. 5. This quantity was determined numerically
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Figure 6. Correlation function for N = 2048 and two values of parameter V. Other parameters: « = 1.5, Kk = 5.

according to the position of the maximum of the acting field |H|. Indeed, this field, because of
diffusion, is rather smooth, and at each moment of time it has a spatial profile with one maximum
(see profiles in Fig. 3). To reduce fluctuations, we calculated the position of the maximum as the
phase of the complex spatial mode | é |H (2, t)]e>™® dz. Remarkably, the velocity is proportional
to the square of the advection parameter v ~ V*.
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Figure 7. Largest Lyapunov exponents for the standard standing chimera (V' = 0) and for traveling turbulent chimera in
dependence on the number of units INV. The dashed line is the power law ~ N—1/2 parameters: o = 1.5, k =5.

(d) Cross-correlations

One characteristic feature of traveling chimeras is that they have continuous (or at least with
large domains of continuity) profiles of phases (if IV is large). To characterize this quantitatively,
we calculated the cross-correlation function of the phases. Because the phases are distributed non
uniformly, it is appropriate to use a transformation to nearly uniformly distributed phases ¢ — 6.
For this, the global order parameter is calculated Z = (¢'¥), and a Mobius transform is performed

0 etn _ 7

e =
1 — Z*eivn

(3.2)

After this the quantity
A(n) = (e Om=Omn)) 3.3)

where the brackets denote averaging in time and in space, is calculated. The correlation function
shown in Fig. 6 is |y(n)| vs Az=n/N. One can see that for V=0 (i.e. for standing usual
chimera) the correlations tend to ~~1/3 for small distances Az. This reflects an average of full
correlations in the synchronous domain and of absence of correlations in the asynchronous
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domain. In contradistinction, the correlation function for V' = 0.1 tends to one at small distances,
what indicates for continuity of the phase profiles.

(e) Lyapunov exponents

Next, we present calculations of the largest Lyapunov exponent of chimera states. The standard
chimera (at V' =0) is known [19,32] to be weakly chaotic, the largest Lyapunov exponent
is positive. However, chaos decreases with N and disappears in the limit N — co. In the
thermodynamic limit, the field H(x,t) acting on oscillators is stationary (in the corresponding
reference frame), and the Lyapunov exponents of particular oscillators are either negative (in the
synchronous domain) or zero (in the asynchronous domain). In the traveling turbulent chimera
we observe a different behavior of the largest Lyapunov exponent (Fig. 7) in dependence on the
number of the oscillators N. It decreases for small N, but than saturates. This level of the largest
Lyapunov exponent characterizes chaoticity of the turbulent state, which exists apparently also
in the thermodynamic limit N — co.

4. Traveling wave solutions

(a) Equations for traveling wave solutions

In this section, we focus on the traveling waves in form of a continuous phase profile with a fixed
shape, moving at a constant velocity. Our starting point is the KB setup, formulated as integro-
differential equation (2.3) with an asymmetric in space exponential-type kernel (2.4). To formulate
tractable equations for the traveling waves, we employ full equivalence between the modified
KB model under consideration and an oscillator medium closed in a ring consisting of identical
elements interacting via a rapidly relaxing advection-diffusion mean field. This means, we use
the representation whereby the dynamics of the phase ¢(z, t) of each unit is given by Eq. (2.14),
where the instantaneous distribution of complex valued coupling field H(z,t) is governed by
Eq. (2.2) (in which we set 7 =0 due to our assumption of fast relaxation process) with periodic
boundary conditions.
We apply the following traveling wave ansatz:

pla,t) =2t + $(6), H(x,t)=h(©)e'?, t¢=z—vt (v#0), (4.1)

where (2 is the (unknown) rotation frequency and v is the (unknown) velocity of the
corresponding wave pattern. Both of these unknown constants play the role of the two unique
parameters of the moving structure repeatedly running over the system, and are to be determined
simultaneously with a continuous phase profile ¢(£¢) and an inhomogeneous profile k(&) of the
self-consistent acting field. Substituting (4.1) in Egs. (2.1a) and (2.2) with 7 =0, we obtain a
5-dimensional system of ordinary differential equations (ODEs) (because /() is complex):

dp 11 —id(&)—ia

b {9 Im (h(g)e )} (4.2q)
d%h dh p
i 2V K2h = k2. (4.2b)

Because we consider an ensemble of nonlocally coupled phase oscillators on a ring with unit
length (in dimensionless variables), functions ¢(§) and h(§) satisfy the following periodicity
conditions at the ends of the interval 0 < ¢ < 1:

#(0)=o¢(1) —2xM, h(1)=h(0), K'(1)=Ahr'(0). (4.3)

Hereafter primes at functions denote derivatives with respect to the traveling coordinate &.
Noteworthy, in (4.3) we take into account that, with bypass over the full spatial domain, the phase
determined in the thermodynamic limit at each point of the oscillatory media can make several
rotations by 27 (cf. Fig. 3(c)). The number of these rotations is a topological characteristics of a
traveling wave characterized by an additional integer parameter M (cf. Eq. (3.1)).
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(b) Procedure of finding traveling waves solutions

Here we describe the adopted procedure for finding solutions of the system (4.2), (4.3). Because of
the phase shift invariance ¢ — ¢ + ¢ and the space shift invariance  — = + z¢ of the KB model
(where ¢g and xq are arbitrary constants), one can assume (without loss of generality) that such
solutions satisfy the following two equalities: Im [1(£ = 0)] =0 and Re[h'(¢ = 0)] = 0. The first of
them means that the phase of the complex field h(£) can be set to zero at the origin £ =0, and the
second means that the smooth distribution of the absolute value of h(§) has an extremum at the
origin £ = 0 of the moving coordinate system.

Therefore, one has 5 unknown quantities ¢(¢ =0) = Q, Re[h({ =0)] =R, Im[h/ (£ =0)] =,
2, v and 5 periodicity conditions (4.3) to be fulfilled. Actually, we arrive at the system of nonlinear
equations for the announced above real variables Q, R, S, {2, and v:

o(E=11Q,R,S,2,v) — Q—2rM =0,
Re[h(¢=1]Q,R,S,2,v)] =R =0, Im[h(6=1|Q,R,S,2,v)] =0, (4.4)
Re[h'(6=1|Q,R,S,2,v)] =0, Im[h'(£=1]Q,R,S,2,v)] —S=0,

where the real function ¢(¢|Q, R, S, £2,v) and the complex field h(£|Q, R, S, 2, v) together with
its derivative h'(£|Q, R, S, 2, v) for a given values of {2 and v describe the trajectory in the phase
space of the 5-dimensional system of ODEs (4.2) beginning at the initial point (Q, R, 0,0, S).

As a result, for fixed values of the parameters «, 7, and «, the problem of finding a traveling
wave reduces to the problem of finding roots of Egs. (4.4) and can be solved numerically (with
high precision) by a so-called shooting procedure based on the Newton-Raphson method. The
corresponding approach has a sufficiently good convergence rate, but can have a rather small
convergence domain, which is the main stumbling block for the numerical calculations of a fixed
point of the system (4.4) in this way. Thus, in order to avoid such an inherent impediment, it is
necessary to find a good initial approximation close to the genuine values of Q, R, S, £2, and v.
We have developed a special procedure for this, described in Appendix (Section 6).

(c) Results: traveling wave profiles

In Figures 8-10 we report branches of the solutions for different values of the parameters
V, k, a, M, obtained by virtue of the combination of the iterative procedure of Appendix 6 with the
Newton-Raphson method for continuation along parameter V. For each set x, a, M, the branch
of TW solutions is limited in the advection parameter V. These ranges of V shift to smaller
values for larger |M|: the traveling waves with larger number of phase rotations exist for smaller
advection terms, and have smaller velocities. It appears that traveling waves can be found for very
small values of V, although this would require considering profiles with a very large number of
phase shifts |M| (e. g., see Fig. 10). We mention here that the approach described did not allow for
revealing of possible “bifurcations” of the found solutions. The ends of the branches in Figures
8-10 are just points where the adopted Newton-Raphson continuation failed, but we could not
found intrinsic reasons for this. This is an issue to be clarified in future studies.

(d) Results: stability of traveling waves

In Figs. 8-10 we also depict the stability of the solution. It has been evaluated as follows. First,
we re-write the equation in the traveling reference frame, where the traveling wave is a stationary
solution:

! nt ~ ~
awéi, t) _ U&a(gg, D L G(£ — &) sin (@(g, t) — p(&,t) — a) dé. (4.5)

Linearization (&, t) = ¢(§,t) + $(&, t) yields

~ ~ 1
PP 028 1 | Gie— & cos(9(6) - 90 — o) (0160 - pE0) d 46)

0
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Figure 8. (a), (b) Traveling wave solutions: dependence of frequency {2 and wave velocity v on advection parameter V'
for M = —1,—2,...,—10. Each line connecting two identical markers corresponds to a certain value of the parameter
M (see the graphic legend from bottom to top). Here, we also depicted the stability of phase profiles moving at constant
velocities. Unstable solutions are shown with a thin part of the respective curve, stable solutions with a thickened part
of the curve. In this case, only the traveling patterns with M = —1 are stable only. (c)—(f) Examples of traveling wave
solutions for V' = 0.65 (dotted vertical lines on panels (a) and (b)) and several values of M: (¢c) M = —1, (d) M = —3,
(e) M = —5, and (f) M = —7. The dotted red line merging into a solid curve is the phase profile, the dash-dot green line
is the real part of the complex mean field (&), and the dashed blue line depicts its imaginary part. Other parameters are
the same as the parameter values used in the original KB article [4]: K =4, o = 1.457.

where $(&,t) describes ¢-periodic small deviations from the traveling wave profile ¢(£). Now,
with a spatial discretization we get a matrix, eigenvalues A of which can be found numerically.
Relevant eigenvalues have finite imaginary parts (there are also some spurious eigenvalues with
very large imaginary parts that are not relevant). Reliability of this approach is confirmed by the
overlap of found eigenvalues for different discretizations, as shown at Fig. 11.

In the explored range of the parameters (4 <x <5, 7/2 —0.2<a <7/2, 0 <V <3) we have
found stable traveling waves with | M| =1, 2 only, all waves with larger phase shifts are unstable.
This observation corresponds to the statistical analysis of different asymptotic states in Fig. 4:
in the range of parameters where the traveling wave with |M|=1 is stable, it almost always
appears after a long evolution of a transient turbulent chimera. For other parameter values, either
the turbulent chimera persists, or a synchronous state establishes. If one starts from a found exact
traveling wave solution, the evolution depends on the stability of this profile. For the parameters
where this profile is stable according to the analysis described, this wave practically does not vary
in direct numerical simulations with a finite ensemble. If the profile is unstable, it is observed
for a certain time interval (up to several dosens of rotations around the circle, for cases close to
the stability boundary), but then gets destroyed and a weak turbulence sets on. We have never
observed intermediate states (like, e.g., modulated traveling waves).
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Figure 9. The same as in Fig. 8 but for k =5 and a = 1.5 (such a set of values corresponds to the parameters of
Sec. 3). In this case, the traveling patterns with M = —1 and M = —2 are stable. Examples of the traveling wave
patterns depicted on panels (c)—(f) correspond to the advection parameter V' = 0.2 (dotted vertical lines on panels (a)
and (b)) and the following values of M: (c) M = —2, (d) M = —4, () M = —6, and (f) M = —8.

5. Discussion

Summarising, we have studied a one-dimensional medium of identical oscillators, coupled via
an external field which is subject to diffusion and advection. This setup generalizes the KB
model, where only diffusion is present. Due to advection, the coupling is asymmetric, and a
chimera pattern starts to move. We have demonstrated, that for a dense system (large number
of oscillators), one observes strong correlations between the oscillators not only in the former
synchronous region (where the phases are nearly equal to each other), but also in the former
disordered domain, which in the moving case looks locally like a continuous profile of phases
with a nearly constant gradient. Such profiles indeed, as shown in section 4, can be found as
traveling waves in the system. However, these regular waves are typically unstable, and weakly
turbulent regimes where together with continuous profiles phase slips and small disordered
regions exist, are observed.

Appearance of regularity of the phase profile due to motion is not surprising, if one considers
stability properties of the oscillators dynamics. In a standing chimera, the oscillators in the
synchronous domain have stable dynamics, while those in the disordered domain are marginally
stable (their Lyapunov exponent vanishes in the thermodynamic limit). When synchronous
and asynchronous patches start to move, each oscillator experiences epochs of stability and
marginality, so that in average one has stability for all oscillators. This stability means that
neighbouring elements are close to each other, because they are driven by close forces. The more
dense are the elements, the more close are the forces acting on the nearest neighbours, and the
more visible is the coherence between them. We have characterized this local coherence with the
spatial correlation function, which for the moving chimera attends values close to one for the
nearest neighbours, while for a standing chimera the correlations do not exceed 1/3.

It is instructive to discuss, whether “traveling chimera” is a proper term to characterize the
described regime in the system of identical oscillators. It appears worth comparing this state
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Figure 10. The same as in Fig. 9 but for larger absolute values of the phase shift number M. Examples of the traveling
wave profiles shown on panels (c)—(f) correspond to the advection parameter V' = 0.05 (dotted vertical lines on panels
(a) and (b)) and the following values of M: (c) M = —25, (d) M = —27, (e) M = —32, and (f) M = —34.
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Figure 11. Linear stability spectrum X of traveling wave solutions obtained for the corresponding set of parameters oo =
1.5, k=5, V' =0.5, and the following values of phase shift number M: (a) M = —2 (here the solution is stable),
(b) M = —4 (here the solution is unstable with four unstable complex eigenvalues), (c) M = —6 (here the solution is
unstable with six unstable complex eigenvalues), and M = —8 (here the solution is unstable with eight unstable complex
eigenvalues). The profiles of phase distributions ¢(£) and the attributed acting mean field structures k(&) are shown
in Fig. 9 (c)—(f). Different symbols and colors mean different discretizations: red square markers represent results of
calculations employing 512 discrete points, green crosses correspond to 1024 discrete points, and blue circles represent
results of calculations for 2048 discrete points (because of a nearly perfect overlap, red squares are hardly visible).

with the one observed for nonidentical oscillators in Refs. [22,23], termed “traveling chimera”
in these papers. The classical KB chimera in a system of identical oscillators contains a domain of
synchronized oscillator (with a smooth phase profile), and a disordered domain with large phase
differences between the neighbors. The coarse-grained order parameter (in our notation, the field
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|H (z,t)|) has a maximum in the synchronous domain and minimum in the disordered domain.
For non-identical oscillators, the phase profile is always disordered (cf. Fig. 1 in [22]), however
the coarse-grained order parameter is inhomogeneous (with a maximum and a minimum) and
moving along the circle. This means that the term “traveling chimera” was coined in [22,23]
although, strictly speaking, a separation into synchronous and disordered domains does not
hold. The regimes described in the present paper are characterized by an inhomogeneous moving
profile of the coarse-grained order parameter, like in [22,23]. Furthermore, for small numbers of
oscillators the profile appears to possess synchronous and disordered domains, see Fig. 2 above.
Only for large numbers of oscillators one can hardly separate synchronous and asynchronous
domains, because in the latter neighboring oscillators are highly correlated. We can conclude,
that the regime described in this paper is more close to the classical chimera compared to one
for non-identical oscillators, so the term “traveling chimera” appears appropriate. We mention
here that a similar term was used in [21] to characterize moving states in a small population of
identical oscillators. Noteworthy, in a standing classical KB chimera setup, one can observe strong
spatial correlations (similar to those described here for a traveling chimera with a large number
of oscillators), if together with a relatively small number of “active” oscillators one considers a
dense set of “passive” oscillators, driven by the active ones [33]. The feature that the snapshot
appears differently for small and large numbers of oscillators is a novel remarkable property of
the considered setup: both the classical KB chimera and one for non-identical oscillators possess
no qualitative dependence on the system size. It is difficult to define a particular system size
starting from which a visual correspondence to the classical KB chimera gets lost. However, in
our characterization via the largest Lyapunov exponent, Fig. 7, one can clearly see a transition at
around N = 400 (for the parameters given).

We have found exact traveling wave solutions in the continuous limit and studied their
stability. Only in some ranges of parameter stable waves have been found, and for these
parameters such waves typically appear as attractors after a long chaotic chimera transient. In
other parameter domains no stable traveling waves exist, and although such a wave can be
observed during initial evolution starting from the standing chimera, due to instability it is
destroyed and a weakly turbulent chimera establishes. We have checked that this turbulence is
not a finite-size effect (like chaos in a standing chimera), by showing that the largest Lyapunov
exponent of the system remains size-independent starting from a certain number of units N
(Fig. 7). The weak turbulent chimera exists for long time intervals, but in some regions of
parameters we observed a transition to a fully synchronous state (or to a regular twisted wave). It
is, however, not completely clear if for these values of parameters there is a bistability of chimera
and synchrony, or in all cases the chimera is a transient, although with a very long lifetime.

Finally, we would like to mention that similar features can be found in the chimera setup
suggest by Abrams and Strogatz [9]; these results will be reported elsewhere.
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6. Appendix: Construction of an initial approximation

If one already has a solution of Egs. (4.4) or its approximation for some parameters c, 7,
and &, then a continuation for neighboring values of parameters is an obvious straightforward
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approach, in which at each small step the Newton-Raphson to numerically find a fixed point of
the system (4.4) can be implemented. Substantially, the strategy is to start from a case where the
phase profile moving at a constant velocity with a permanent shape is roughly known (hence,
one can get adequate estimations for the genuine values of Q, R, S, {2, and v) and to change
parameters gradually to remain within the convergence domain of the Newton-Raphson method.
Because parameter M is discrete, one cannot continue solution in it, thus one has to find at least
one good estimation for each desired value of M. Practically, we perform continuation in the
advection parameter V.

In order to obtain a preliminary information about nonuniform phase profiles, spatial
structure of acting mean field and properties (including estimations for values of a rotation
frequency {2 and a propagation velocity v) of at least one example of a traveling solution for
a given set of parameters «, v, s, and M, we develop an auxiliary iterative procedure. We
successfully implement and approve this approach, but with no any rigorous mathematical
proof of convergence. Actually, we confirm efficiency and performance of the developed method
only experimentally by direct numerical calculations for a number of different cases. However,
such evidence is sufficient for the practical purposes of searching for starting points for the
shooting procedure and further constructing families of traveling wave patterns using the
control-parameter continuation concept. The main idea of our auxiliary approach is as follows.

The complex field h(§) is a periodic function of spatial coordinate { with unit period.
Supposing such a dependence h(§) and assuming that parameters {2 and v are approximately
known (saying, from priori information), at the iteration, we first fix h(¢), £2, v and consider them
to be independent of the phase profile ¢(§). Then, we find the profile ¢(£) for given h(§), £2,v as
follows. Substituting the current approximation for i (€) to Eq. (4.24), one gets an equation that can
be interpreted as the Adler equation with a periodic forcing in the nonlinear term. Transforming
to a variable z = ¢*(?+®), Eq. (4.2a) can be written in a complex form

sz _ 2% (W(©)2* + 2022~ n(©)), 6.1)
which is the complex Riccati equation with periodic coefficients [34,35,36,37]. Here and below,
symbol * denotes complex conjugate. Noteworthy, this equation is partially reminiscent of the
Ott-Antonsen equation for a coarse-grained complex order parameter (e.g., see [17,16,18,34]).
Formally, Eq. (6.1) can be considered not only on the unit circle |z| =1 but also inside the unit
disc |z| <1 of the complex plane. In the paper [34], it is shown that, in general, there exists a
unique stable solution to Eq. (6.1) starting from the initial condition z(£ = 0) = zp, where |z9| <1,
and lying entirely in such a closure of the corresponding domain. Moreover, if |2g| < 1 or |z9| =1,
then |z(§)| < 1 or |2(€)| =1 for all £ > 0, respectively, i. e. every solution z(§) of Eq. (6.1) satisfying
|z0] < 1 remains trapped inside the domain |z| < 1, and each trajectory starting from the initial
point |zp| = 1 on the unit circle of the complex plane stays on the given circle.

It is well-known (e. g., see [34,35,36,37]) that the Poincaré map of the periodic complex Riccati
equation coincides with the Mobius transformation. In our case, this Mobius transformation maps
the closed unit disk |z| < 1 onto itself, thus it can be written in the canonical form [38,35]

iy

Mg y(2) = % 62)
with parameters ¢ and v, where ¢ is on the open complex unit disc |¢| <1, and ¢ on the
complex unit circle. Here, we use the same parametrization as in Refs. [38,35], where one can find
properties of the Mobius transformation (6.2) and justifications that the Poincaré map of Eq. (6.1)
with periodic coefficients h(€) and h*(€) is described by formula (6.2). Note, the transformation
My (2) can be applied to any complex number z in the complex domain |z| <1 and leaves
this domain invariant (as we need). According to [34], the values of two parameters ¢ and ¢
in (6.2) can be uniquely determined using two solutions Zp(&) and Z1(§) of Eq. (6.1) starting
from the initial conditions Zy (£ = 0) = 0 and Zy(£ = 0) = 1, respectively. Evaluating Z,(§ =1) =¢
and Z,(¢=1) =€’ by direct numerical calculations of the corresponding initial value problems

0000000908 “Y "SueiL ‘g Bi0-BuiysigndAisioos ek ers)



for the complex Riccati equation (6.1) on the period of the function /(¢) and implying the
definition (6.2) of the related Poincaré map, we obtain the following expressions for ¢ and e

i C_ei’&

Nt (63)

q=¢, e
It is worth mentioning that, in our case, the inequality |¢| = |¢| < 1 is always satisfied.

Then, every periodic solution of Eq. (4.2a) corresponds to a fixed point z of the Poincaré
map coinciding with the Mobius transformation (6.2). In other words, to find a periodic orbit
of Eq. (4.2a) for a given periodic complex function h(§), we need to find a fixed point of
transformation (6.2) with constant map parameters ¢ and ¢ determined by expressions (6.3).
Consequently, we arrive at the following quadratic equation:

q*52 - (1 - e_w)é - qe_w =0, (6.4)
which has, in general, two roots z; and Z2 with the properties 21 + z2 = (1 — efm’)eig / o, and
Z1Z9 = ei(zgﬂrﬂ/’), where p (0 < p < 1) and ¢ are the amplitude and phase of the complex value

q = €™, respectively. These properties allow one to define fixed points of the Mobius map that
are of interest to us. In particular, from the second relation for z; and Zz» it follows that either the
two fixed points are on the unit circle of a complex plane, or one of them is inside and the other
outside the unit circle. For us only the former case is relevant, since we are looking for traveling
wave patterns with a strongly inhomogeneous but continuous phase profile. Such a profile is
given by Eq. (4.2a) to which one can transform the periodic complex Riccati equation (6.1) on
the manifold |z(€)| = 1. In this case, for the two fixed points we obtain the following expressions:
i(Y£0) where ¥ =< + (1 — 1)/2, and © is determined by equality ¢ cos© =sin(1/2).
Thus, the condition for the two fixed points on the unit circle is |sin(+)/2)| < o. Noteworthy, the
fulfillment of this condition is to be checked at each step of the auxiliary iterative procedure we
develop.

One of the fixed points of the Poincaré map is stable and the other is unstable. We take the
stable fixed point as an initial condition to reconstruct the phase distribution ¢(§) corresponding

Z12=¢€

to the periodic solution of Eq. (4.2a) for a given approximation for the structure of acting mean
field k(&) and current values {2 and v of the traveling pattern parameters.

Next, we use the profile ¢(£) obtained in the above way to calculate a new approximation for
the complex function i (§). In order to do this, we evaluate the convolution integral

1 -
(e = | G~ e O ©5)
0

employing the fast Fourier transform method. Here, the kernel G(§) is the asymmetric in space
exponential-type kernel (2.4). Then, we find the point £y where the derivative ¢'(¢) of the phase
profile vanishes, i.e. ¢’ (o) = 0. According to Eq. (4.24), this allows one to compute a new value
of (2 approximating the genuine rotation frequency of the traveling wave pattern. Integrating
Eq. (4.2a) over the interval 0 < ¢ <1 and taking into account the boundary conditions, we obtain
a formula for the velocity v which can be used to refine its current value for the next step of the
auxiliary iterative procedure. As a result, we arrive at the following update rules for {2 and v:

—i —ia 1
Q:Im(h(&))e ®(%o) )’ v=o

- J:Im (h(é)ei¢(é)ia)df~] . 6.6)

After that, in order to find a good initial approximation close to the genuine values of Q, R, S, (2,
and v which is appropriate for the shooting approach, we repeat several times the above iteration
scheme to get quantitatively acceptable profiles ¢(§) and h(¢).
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