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ABSTRACT

We study the heterodimensional dynamics in a simple map on a three-dimensional torus. This map consists of a two-dimensional driving
Anosov map and a one-dimensional driven Möbius map, and demonstrates the collision of a chaotic attractor with a chaotic repeller if param-
eters are varied. We explore this collision by following tangent bifurcations of the periodic orbits and establish a regime where periodic orbits
with different numbers of unstable directions coexist in a chaotic set. For this situation, we construct a heterodimensional cycle connecting
these periodic orbits. Furthermore, we discuss properties of the rotation number and of the nontrivial Lyapunov exponent at the collision and
in the heterodimensional regime.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0144672

Hyperbolic dynamics is the most perfect form of chaos, with many
nice mathematical and physical properties. However, in realis-
tic systems, one often deals with not so perfect situations, where
hyperbolicity is broken. One particular case of broken hyper-
bolicity is that of heterodimensional dynamics, where inside a
chaotic set there are orbits with different numbers of unstable
directions. In this paper, we present a particular mechanism of
appearance of heterodimensional dynamics via a collision of a
chaotic attractor and a chaotic repeller. We follow this transi-
tion by determining bifurcations of the periodic orbits embedded
in the attractor and the repeller. We also demonstrate that het-
erodimensional dynamics has implications for the distribution of
finite-time Lyapunov exponents.

I. INTRODUCTION

Hyperbolic chaotic sets are ideal objects with nice dynami-
cal and statistical properties, however, they are quite rare in real
applications. Hyperbolicity can be broken in many ways, and one
particular case, that has attracted much attention recently, is that of

heterodimensional dynamics, where different orbits inside a chaotic
set have different numbers of positive Lyapunov exponents. In
particular, periodic orbits embedded in chaos can have different
numbers of stable and unstable directions. Remarkably, conclusions
about the robustness of such a situation can be drawn just from
the existence of so-called heterodimensional cycles1—trajectories,
connecting periodic orbits with different dimensions of stable and
unstable manifolds.

One of the first examples of hyperbolicity breaking associ-
ated with the existence of heterodimensional cycles was presented
by Abraham and Smale.2 The persistence of non-transversal inter-
sections of invariant manifolds in such cycles was discovered and
studied by Díaz and his collaborators.3–5 The mathematical theory
for maps with heterodimensional cycles of co-index one (where the
difference between the dimensions of the unstable manifolds of the
pair of saddle orbits connected by these cycles is one) was developed
by Bonatti and Díaz,1,6 where the authors proved the C1-robustness
of heterodimensional cycles. A more general higher smoothness ver-
sion of this result has been recently obtained by Li and Turaev.7

The results of Ref. 7 imply the existence of the heterodimensional
dynamics caused by heterodimensional cycles in an appropriate
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two-parameter family that unfolds an initial heterodimensional
cycle.

In this paper, we explore a mechanism for the appearance of
heterodimensional dynamics through a collision of a simple chaotic
attractor with a simple chaotic repeller (both these objects are hyper-
bolic prior to the collision). Such a collision occurs naturally at the
breakout of chaotic phase synchronization8 (although in realistic sit-
uations one can hardly assume hyperbolicity). This collision is an
extension of a simple saddle-node (tangent) bifurcation, responsible
for the loss of synchrony of periodic driven oscillators, to the case
of chaotic amplitude dynamics. We formulate the basic system as a
chaotic hyperbolic subsystem (Anosov torus map), driving a circle
map (Sec. II).

In the context of the chaotic phase synchronization
applications,8 the chaotic subsystem corresponds to the amplitude
dynamics, and the circle map describes the driven phase dynamics.
A stable regime of chaotic phase synchronization corresponds to the
existence of a chaotic attractor on which the phase variations are
bounded, roughly “in phase” with the driving. Since in the consid-
ered model the amplitude dynamics is invertible, there also exists
a chaotic repeller (an attractor in the inverted time), roughly “in
antiphase” with the driving. The dimensions of the stable and unsta-
ble manifolds of orbits on the attractor and on the repeller follow
from one unstable and one stable directions of the Anosov map, and
from the stability (instability) for the attractor (repeller) in the phase
direction. As a parameter responsible for the “frequency mismatch”
varies, the attractor and the repeller collide (Sec. III).

We show that this collision can be best traced through tan-
gent bifurcations of periodic orbits embedded in chaos (Sec. IV). We
argue that beyond the collision the attractor and the repeller overlap,
and one chaotic set appears containing orbits with different dimen-
sions of unstable manifolds. For two-dimensional reversible maps,
the attractor-repeller collision was studied in Refs. 9–11 where it was
also shown that after this a new type of chaotic dynamics—the so-
called mixed dynamics appears. The mathematical theory of mixed
dynamics was developed in Refs. 12–14; recent examples are given
in Refs. 15–20.

Furthermore, we show in Sec. V that right beyond the attrac-
tor–repeller collision a heterodimensional cycle appears connecting
a pair of saddle orbits from the former attractor and repeller. This
implies, according to the Li and Turaev theorem,7 that arbitrarily
close to this cycle other heterodimensional cycles exist. Thus, one
can say that the heterodimensional dynamics caused by the observed
heterodimensional cycle is robust, i.e., it persists under variations of
the parameter values.

II. MODEL

The basic model we study in this paper is a chaotically driven
circle map. Because we want to have invertable equations, the
driving chaotic map must be at least two-dimensional. We take a
standard Anosov torus map (a.k.a. Arnold cat map) defined on a
2D-torus, which has nice properties: it is hyperbolic, and the sta-
ble and unstable manifolds can be easily found as straight lines on
the torus. As a circle map we take a Möbius map,21–24 which is
readily invertible (for convenience, we summarize relevant prop-
erties of Möbius maps in the Appendix). Thus, the system under

investigation is an invertible map on 3D-torus 0 ≤ t, s, x < 1,

tn+1 = 2tn + sn (mod 1) , (1a)

sn+1 = tn + sn (mod 1) , (1b)

xn+1 = xn + c + µ sin(2π tn + α)

−
1

π
arctan

(

ε sin 2πxn

1 + ε cos 2πxn

)

(mod 1). (1c)

Here, Eqs. (1a)–(1b) describe the driving Anosov map; it has no
free parameters. Equation (1c) is the driven Möbius map. The free
Möbius map (i.e., with µ = 0) has two parameters ε and c. Param-
eter ε determines how close is this map to a circle shift, which is
realized for ε = 0. In the limit ε → 1, almost the whole circle is
mapped to a small neighborhood of one point on it. Parameter c
is an additive one, it defines in a natural way the rotation number of
the free Möbius map.

In some situations below, e.g., at calculations of the rotation
number, it is convenient to lift map (1c) from the unit circle to the
real line, in this case one just drops the operation (mod 1). We will
denote the corresponding variable on the real line as x̃n.

In the context of chaotic phase synchronization,8 where a peri-
odically driven chaotic attractor with a well-defined phase variable is
studied, system (1) and the parameters have the following interpre-
tations. The Anosov map (1a)–(1b) describes chaos of the amplitude
variables of the attractor, while variable x in Eq. (1c) corresponds to
the phase. Parameter µ describes “internal coupling” between the
amplitude and the phase; it governs phase diffusion and is related
to the level of coherence of free chaotic oscillations (larger values of
µ correspond to a stronger phase diffusion, small values of µ mean
almost regular phase rotations). Particularities of this internal cou-
pling depend on the additional phase shift α. Terms c and ε describe
the effect of the external periodic force on the chaotic attractor,
their meaning is the same as in the context of a circle map reduc-
tion for forced periodic oscillations: c is roughly proportional to the
frequency mismatch, while ε describes the strength of the forcing.

Below, we will describe attractors and repellers and their meta-
morphoses in dependence on the parameters. Parameter ε will be
mainly fixed to ε = 0.4, due to the following reasons. Nontrivial
dynamics of x disappears in the limit ε → 0, where map (1c) is
just the forced circle shift. On the other hand, in the limit ε → 1
map, (1c) becomes singular. While one does not expect any quali-
tative dependence of the regimes described below in ε (see Fig. 4),
mostly convenient for the numerical analysis and especially for
visualization are “moderate” values of parameter ε.

III. PHENOMENOLOGY OF THE
ATTRACTOR–REPELLER COLLISION

A. Attractor and repeller

We illustrate the chaotic attractor and the chaotic repeller in
system (1) in Fig. 1. We depict long trajectories forward and back-
ward in time, after discarding initial transients. These trajectories
give impression on the invariant measures of the attractor and of
the repeller. In the situation depicted in panel (a) these sets are
separated, so that the attractor has its basin, and, in the forward
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FIG. 1. Projections of the attractor (blue dots) and the repeller (red dots) for ε = 0.4, α = 0, andµ = 0.1. Panel (a): c = 0.05, the attractor and the repeller are separated;
panel (b): c = 0.1, the attractor and the repeller overlap, but their measures are quite different; panel (c): c = 0.4, the measures of the overlapping attractor and repeller are
quite similar.

time, the repeller serves as a chaotic saddle, close to which the
long-lived transient dynamics occurs.25 For the backward in time
dynamics, these sets exchange their roles. Panels (b) and (c) show
the case of overlapped attractor and repeller, where both sets are
dense in the whole phase space (3D torus). However, the invari-
ant measures of the attractor and the repeller are quite different
in the case of panel (b), while for the case of panel (c) these mea-
sures nearly coincide. A transition from the separated attractor and
repeller [Fig. 1(a)] to the overlapped chaotic set [Figs. 1(b) and 1(c)]
is called attractor–repeller collision.8

B. Rotation number and the Lyapunov exponent

It is convenient to characterize the regimes in system (1) by
means of the rotation number and the Lyapunov exponent, both
calculated for the driven variable x.

The rotation number, both for the free and for the driven
Möbius map, is defined as the mean velocity of rotations around the
circle, using the lifted map,

ρ = lim
n→∞

x̃n − x̃0

n
. (2)

It is clear that only the interval of values − 1
2

≤ c < 1
2

is of interest,
because ρ(c ± 1) = ρ(c)± 1.

Another quantity we will calculate in numerical simulations
with system (1) is the Lyapunov exponent (LE) in the x-direction.
Indeed, because (1) is a skew system with driving variables (s, t), the
three Lyapunov exponents are combined from the two Lyapunov
exponents of the Anosov cat map (1a) and (1b) and of the Lyapunov
exponent in the x direction from (1c). A direct calculation of the
derivative of the r.h.s. of (1c)

dxn+1

dxn

=
1 − ε2

1 + 2ε cos 2πxn + ε2

yields the expression λ =
〈

log
dxn+1

dxn

〉

=
〈

log 1−ε2

1+2ε cos 2πx+ε2

〉

. Here, the

average should be taken according to the invariant measure on the

attractor; due to ergodicity it can be practically calculated as the time
average.

We illustrate application of the rotation number and of the
nontrivial Lyapunov exponent to the characterization of the attrac-
tor–repeller collision in Fig. 2. It shows profiles of the quantities ρ
and λ in dependence on parameter c for fixed other parameters of
the system. Both quantities are calculated in forward time (i.e., they

FIG. 2. Dependence of the rotation number [panel (a)] and the Lyapunov expo-
nent [panel (b)] on parameter c for ε = 0.4 and α = 0, for several values ofµ. To
reveal that the LE λ is negative (although rather close to zero in some domain) in
the whole range of parameters, we show −λ in the logarithmic scale in panel (c).
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FIG. 3. Time series x̃n of the lifted map (1c) with ε = 0.4 and α = 0. Panel (a):
fixed forcingµ = 0.04 and two values of parameter c, one with zero rotation num-
ber, and one where variable x̃ continuously grows. Panel (b): symmetric case
c = 0. Here for µ = 0.15 there are separated attractor and repeller, and vari-
able x̃ remains bounded. For µ = 0.25, there attractor and repeller have already
collided and the evolution of x̃ represents unbounded diffusion.

characterize the attractor). The domain where ρ = 0 is that of sepa-
rated attractor and repeller [like in Fig. 1(a)], because here variations
of x̃n are bounded. States with ρ 6= 0 correspond to the overlapped
attractor and repeller [like in Figs. 1(b) and 1(c)]. A separate con-
sideration should be performed at the symmetric case c = 0, where
the rotation number vanishes due to statistical symmetry x ↔ −x,
although the attractor and the repeller can overlap. We illustrate this
in Fig. 3, where we show in panel (a) trajectories of x̃n in the asym-
metric case c 6= 0, and in panel (b) in the symmetric case c = 0. In
the latter situation, an overlap of the attractor and repeller can be
detected by following the difference between maximal and minimal
values of x̃n during a long time interval. As panel (b) of Fig. 3 illus-
trates, this difference takes large values (definitely larger than one)
for overlapping attractor and repeller, and remains small if they do
not overlap.

Calculations of the Lyapunov exponent are presented in
Fig. 2(b). This quantity remains negative in all cases, the only dif-
ference is in the level of the LE: for nearly symmetric overlapping
attractor and repeller it is close to zero, while in the non-overlapping
case its value is of order one. This property is different from the
corresponding feature of an autonomous circle map: there inside
Arnold tongues the LE is negative, while it vanishes at the quasiperi-
odic dynamics outside of the Arnold tongues. For the autonomous
Möbius map, which either possesses only one Arnold tongue or oth-
erwise is conjugated to a circle shift (see discussion in the Appendix),
the LE vanishes exactly in the whole interval of parameters out-
side the Arnold tongue. We will further discuss this property of the
chaotically driven Möbius map in Sec. IV.

Adopting the criterion for the overlap of the attractor and
repeller as described above, we calculate in Fig. 4 an analog of the

FIG. 4. Domains of existence of attractor and repeller on the (c, ε)-parameter
plane (what corresponds to a usual representation of Arnold tongues), for several
values of parameter µ and α = 0. The attractor and the repeller are separated
above the curves, where the rotation number ρ vanishes.

Arnold tongue on the plane of parameters (c, ε) for the system
(1). As discussed above, in the context of the phase synchroniza-
tion theory, these parameters correspond to “frequency mismatch”
(parameter c) and the “amplitude of the force” (parameter ε) for
a periodically driven chaotic system, internal phase irregularity of
which is described by parameter µ. One can see that for large values
of parameterµ, larger values of the forcing are needed to “phase syn-
chronize” the system, i.e., to ensure that the attractor and the repeller
do not overlap and the rotation number vanishes.

IV. COLLISION OF ATTRACTOR AND REPELLER IN
TERMS OF PERIODIC ORBITS

A. Bifurcations of periodic orbits

In descriptions of transitions of chaotic sets, a common
approach is to follow the corresponding transitions of saddle peri-
odic orbits, embedded in chaos. In the case of attractor–repeller
collision in the skew system (1), this method corresponds to consid-
ering bifurcations of the Möbius map (1c), driven by periodic orbits
of the Anosov subsystem (1a)–(1b).

These bifurcations are rather simple, because the Möbius map
has a special property distinguishing it from generic circle maps: any
iteration of a Möbius map is again a Möbius map (although with dif-
ferent parameters, see the Appendix). Thus, for any period-m orbit
in the driving (tn, sn)-subsystem, the map xn → xn+m according to
(1) is a Möbius map. Because the latter map is autonomous, it either
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FIG. 5. Curves for saddle-node bifurcations in map (1) for all periodic orbits of
the Anosov map with periods up to 7 (curves for the periodic orbits of the same
period have the same color, as indexed on the panel), on the plane of parameters
(c, ε) for ε = 0.4 and µ = 0.1. The “envelopes” of these curves define border
between regimes 1 and 3 (small values of c) and between regimes 2 and 3 (large
values of c).

(i) possesses a pair of stable and unstable fixed points (inside
the basic “synchronization region,” where the rotation number is an
integer); (ii) can be transformed by a smooth transformation x → y
to the circle shift yn+m = yn + mρ, where ρ is the rotation num-
ber according to (2) (see the Appendix for details). This number
smoothly depends on the parameters so that there are no windows
of periodicity (no higher-order Arnold tongues).

This feature of the Möbius map means that for any driving peri-
odic orbit (tn, sn), in Eq. (1c) there is just one possible saddle-node
(tangent) bifurcation which separates regimes (i) and (ii) above. In
Fig. 5, we show these bifurcation curves in the plane of parameters
(c,α) for fixed ε = 0.4 and µ = 0.1.

One can see from Fig. 5 that for every value of parame-
ter α there is a range of critical positive values of parameter c,
0 < c1(α,µ, ε) ≤ c ≤ c2(α,µ, ε), at which different periodic orbits
bifurcate (the corresponding interval of negative values of c is
c3(α,µ, ε) ≤ c ≤ c4(α,µ, ε) < 0). We will call these ranges of c tran-
sitional regions. Thus, the system demonstrates three dynamical
states:

1. Small |c|: Separated attractor and repeller exist for c4(α,µ, ε)
< c < c1(α,µ, ε). On these sets the x-coordinates on the attrac-
tor and repeller are functions of (t, s). These functions are
expected to be relatively smooth for large ε and are non-smooth
(fractals) for small ε. All other points of the phase space belong
to basins of the attractor (or of the repeller, if one iterates
backward in time). The rotation number ρ is zero.

2. Large |c|: Attractor and repeller overlap and possess no isolated
periodic orbits for c > c2(α, ε,µ) and c < c3(α, ε,µ). Thus,
there are no hyperbolic sets for this range of parameters. Evolu-
tion of variable x for each periodic trajectory of the Anosov map

is described by a superposition of Möbius maps, which results
in a Möbius map that is smoothly conjugate to a circle shift.
This means that the full system (1) possesses no isolated peri-
odic orbits. The rotation number ρ is non-zero. It is instructive
to discuss the Lyapunov exponent in this region. According to
calculations shown in Figs. 2(b) and 2(c), it is negative, although
small in the absolute value. On the other hand, the LE calculated
on any periodic orbit of the Anosov map vanishes (because the
Möbius map is conjugated to a circle rotation). Moreover, it is
well-known that periodic orbits in the Anosov map are dense.
Thus, one cannot obtain the LE for a typical chaotic trajectory
in the skew map (1) by virtue of the averaging over values cor-
responding to periodic orbits. The reason for this paradoxal
situation is that the Lyapunov exponent in the x-direction is
not an “observable” along a trajectory of the Anosov map, but
requires additional averaging over the dynamics of x (and this
averaging is not ensured when a chaotic trajectory “jumps” from
one periodic orbit to another one).

3. Moderate |c|: In these transitional regions c1 ≤ c ≤ c2 and
c3 ≤ c ≤ c4, some pairs of saddle periodic orbits already disap-
peared via a saddle-node bifurcation, but some other still exist.
Attractor and repeller overlap, but their measures are concen-
trated in different regions [cf. Fig. 1(b)]. In Sec. V, we construct
a heterodimensional cycle in the region c1 ≤ c ≤ c2, i.e., a het-
eroclinic cycle connecting saddle periodic orbits inherited from
the former attractor and the repeller. These periodic orbits have
different dimensions of stable and unstable manifolds: those
which belong to the attractor have two stable directions (one
of them in x variable) and one unstable, and those which belong
to the repeller have two unstable directions (one of them in x
variable), and one stable. Thus, the dynamics in this region is
heterodimensional.

B. First tangent bifurcation

The aim of this section is to show how the attractor and repeller
collide at the first tangent bifurcation, and what happens to het-
eroclinic connections. In region 1 each period-m point Pi

m in the
Anosov subsystem (1a)–(1b) corresponds to a pair of period-m
orbits Ai

m and Ri
m: Ai

m belongs to the attractor, while Ri
m belongs to

the repeller. At the curves c = c1(α,µ, ε) and c = c4(α,µ, ε), one of
pairs of these periodic orbits merges via a tangent bifurcation. We
illustrate this situation in Fig. 6.

For simplicity, we consider the case where the first tangent
bifurcation occurs with fixed points A1 and R1. Such a bifurcation
occurs as the first one when c increases while parameter α is close
to α = π/2 in Fig. 5(a). Below the curve c = c1(α,µ, ε), all peri-
odic orbits Ai

m of the attractor are intertwined in one homoclinic
tangle formed by stable Ws

(

Ai
m

)

and unstable Wu
(

Ai
m

)

invariant
manifolds (the same for the repeller). This means that there are hete-
roclinic connections between all periodic orbits of the attractor (the
same for the repeller). Schematically, this is illustrated in Fig. 6(a),
where it is shown how the points A1 and A2 (and also R1 and R2)
are connected via a heteroclinic cycle. The points A1 and R1 merge
at a tangent bifurcation (this is a codimension-one bifurcation of
a saddle-saddle fixed point possessing a homoclinic orbit26) on the
curve c = c1(α,µ, ε), see Fig. 6(b), and disappear above it. One can
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FIG. 6. Illustration of the attractor–repeller collision. (a) Separated chaotic attractor and chaotic repeller at c4(α,µ, ε) < c < c1(α,µ, ε). A1, A2 and R1, R2 are fixed
and period-2 saddle points belonging to the attractor and to the repeller, respectively (we show here every second iteration of the map, thus, both the fixed point and the
period-2 point of the original system look like fixed points). (b) On the curves c = c1(α,µ, ε) and c = c4(α,µ, ε) one of pairs of periodic orbits, say A1 and R1, merges
due to a tangent bifurcation [this situation is depicted in panel (b)], and disappears beyond it. Beyond the first such bifurcation, the attractor and repeller are no longer
separated.

see that in region 3, beyond the first tangent bifurcation, trajecto-
ries going from the former attractor to the former repeller become
possible. We will further explore this in Sec. V.

C. Eyelet intermittency

The transition from regime 1 to regime 3, described in
Sec. IV B, often called attractor–repeller collision, has been stud-
ied in Refs. 8, 27, 28. The basic observation is that at the ini-
tial stage of this transition (i.e., where the regime 3 has just
appeared), the rotation number ρ grows very slowly,8,27,28 namely, as
log(ρ) ∼ −1−1/2, where 1 is the deviation of parameter c from it
critical value (in the situation above 1 = c − c1). We illustrate this
statistical law in Fig. 7, where we show the rotation number in a
double logarithmic scale. The reason for such a slow growth of the
rotation number lies in the transversal instability of the trajectory
connecting former attractor and repeller beyond the first tangent
bifurcation at c = c1. Indeed, for a circle map beyond the tangent
bifurcation, the characteristic time τ to perform a full rotation scales
as τ ∼ 1−1/2. Thus, in the full system, one can observe such a rota-
tion only if a chaotic trajectory spends at least this time in a small
vicinity (say, of size δ) of the saddle periodic orbit in the driving
system (1a)–(1b), which is responsible for the tangent bifurcation.
Because this periodic orbit is a saddle with the unstable Lyapunov
exponent λu, an initial point should be in the vicinity of size δe−λuτ

of the periodic orbit in order to remain in this vicinity for time τ .
The probability for this is ∼ δ e−λuτ , thus one needs T ∼ δ−1 eλ

uτ

iterations of the original system to perform one rotation. This yields

the estimation of the rotation number ρ ∼ T−1 ∼ δ e−λu1−1/2
, from

which the expression for the rotation number near the criticality fol-
lows (see also Ref. 29 for a similar expression for a circle map with
noisy, not chaotic, driving). Although a trajectory connecting attrac-
tor and repeller is rather unprobable close to the transition point c1

in a “free run,” such a trajectory can be explicitly constructed, as we
will discuss in Sec. V.

We conclude this section with a discussion of validity of the
approach to the attractor–repeller collision by virtue of following
bifurcations of periodic orbits embedded in chaos. We are not aware
of rigorous results proving that indeed such a collision is mediated
by the periodic orbit which first undergoes saddle-node bifurca-
tion. However, the diagram shown in Fig. 5 indicates that there are
parameter regions where cycles with low periods bifurcate definitely
prior to cycles with higher periods. Thus, one hardly expects that
a non-periodic orbit can bifurcate prior to the low-periodic cycles.
On the other hand, such a case cannot be excluded in general. A
search for a situation where a chaotic transition is mediated by a
non-periodic orbit appears to be a challenging timely problem in
the theory of chaotic transitions.

FIG. 7. Dependence of the rotation number on the parameter c close to critical-
ity. Other parameters: ε = 0.4,α = 1.5,µ = 0.1, c1 = arcsin(ε)/π − µ sinα.
For the calculation of the rotation number, a trajectory of length 5 × 109 was
explored. The dotted straight line has a slope−0.58, which slightly deviates from
the theoretical prediction 0.5.
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V. HETERODIMENSIONAL CYCLES

In this section, we study the intermediate situation (type 3
above) in more detail. Here, the attractor and the repeller over-
lap (this means that at least one pair of periodic orbits already
disappeared via a tangent bifurcation), and this topological object
possesses still many saddle periodic orbits from both former attrac-
tor and repeller. Let us call them for brevity A-orbits and R-orbits,
respectively. These saddle orbits have different dimensions of sta-
ble and unstable manifolds: A-orbits have a two-dimensional sta-
ble and one-dimensional unstable manifolds (one stable and one
unstable directions from the Anosov map (1a)–(1a), and one sta-
ble eigenvector in the x-direction), R-orbits have a one-dimensional
stable and two-dimensional unstable manifolds (here, the eigenvec-
tor in the x-direction is unstable). This situation is sometimes called
unstable dimension variability (UDV),30–32 it has been discussed in
mathematical literature2,4,33–38 and in applications.39–41

A characteristic feature of this regime is the existence of het-
erodimensional cycles1,6,7 consisting of pairs of heteroclinic trajec-
tories connecting A-orbits with R-orbits: one of these trajectories
lies in the transversal intersection of two-dimensional manifolds
of A- and R-orbits, while another one passes through a non-
transversal (codimension-1) intersection of one-dimensional man-
ifolds of these orbits. The main goal of this section is to provide
a numerical evidence for the existence of such cycles in the inter-
mediate case 3. For simplicity, we restrict ourselves to the simplest
case where the A- and R-orbits have period two, while the pair of
fixed points A1 and R1 which used to belong to the attractor and
repeller, respectively, already disappeared via a tangent bifurcation
(cf. Fig. 6).

In this case, it is more convenient to consider the second iter-
ation of the map. Then, the period-2 points A2 and R2 in map
(1) becomes fixed points. The corresponding fixed point of the
twice-iterated Anosov map (1a)–(1b) is denoted P2. The fixed point

of the Anosov map is denoted P1. The cycle that we will construct,
starts at A2. Then, the (t, s)-values become close to the fixed point
P1 and, at these iterations, x-values move from the former attrac-
tor to the former repeller through the narrow tunnel [region T
in Fig. 8(a)] located on the place where the fixed points A1 and
R1 existed before the tangent bifurcations. After this, the trajec-
tory comes asymptotically close to R2. We sketch this trajectory in
Fig. 8(a).

For the numerical construction of the cycle described above,
we choose the following values of parameters: µ = 0.8, ε = 0.4,
α = 1.5. Indeed, for these values of the parameter, the Möbius
map (1c) at the point P1 is conjugated to a rotation (i.e., parameters
are taken beyond the tangent bifurcation of the corresponding fixed
points A1 and R1), but the A2- and R2-points still exist. In Fig. 5, this
situation occurs near α ≈ π/2 above the blue curve corresponding
to the tangent bifurcation of the fixed points A1 and R1 but below
other curves corresponding to the tangent bifurcations of periodic
points of higher periods (the adopted parameter value α = 1.5 is
marked with a dashed cyan line in Fig. 5).

The strategy for this numerical construction consists of two
stages. First, we compute a driving one trajectory in the Anosov
map (1a)–(1b) as a homoclinic trajectory for the point P2 which
comes very close to the fixed point P1. At the next stage, we use this
trajectory as the driving in the Möbius map (1c) in order to construct
the full heteroclinic cycle connecting points A2 and R2.

• First, on the (t, s)-plane, we find intersection points h1 and h2 of
the unstable manifold Wu(P2) with the stable manifold Ws(P1),
and of the unstable manifold Wu(P1) with the stable manifold
Ws(P2), respectively, see Fig. 8(b). This is a straightforward task,
because all the manifolds are straight lines. Thus, we construct
two heteroclinic connections P2 → P1 and P1 → P2.

FIG. 8. (a) Illustration for the numerical construction of a heterodimensional cycle connecting the points A2 and R2. Despite the points A2 and R2 this cycle also consists of
two orbits (marked by black square dots). One (trivial) orbit belongs to the transversal intersection of two-dimensional manifolds W s(A2) and W

u(R2), along this orbit only
variable x varies (so it looks like a vertical line in the figure). Another (nontrivial) orbit passes through the non-transversal (codimension-1) intersection of one-dimensional
manifoldsW u(A2) andW

s(R2) inside a narrow tunnel T . The points P1 and P2 are the fixed and the period-2 points in the Anosov map (1a)–(1b); the heteroclicnic points h1
and h2 belong to the intersection W

u(P2) ∩ W s(P1) and W
s(P2) ∩ W u(P1), respectively. (b) Heteroclinic cycle connecting the points P1 and P2. This construction is used

to find a homoclinic orbit to the point P2 in the Anosov map (1a)–(1b). This homoclinic orbit of the Anosov map is then used as a driving trajectory for numerical construction
of the heterodimensional cycle.
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• Then, we find a homoclinic trajectory of the Anosov map
(1a)–(1b) P2 → P2 which passes close to the constructed het-
eroclinic cycles. For this goal, on the unstable manifold Wu(P2),
we take a small segment [h1 −1, h1] where the point h1 −1

lies between the points P2 and h1. We iterate this segment for-
ward in time (say, we use K iterations), until the iteration of the
point h1 comes sufficiently close to the point P1. Similarly, on
the stable manifold Ws(P2)we take a small segment [h2 −1, h2]
where the point h2 −1 lies between the points P2 and h2. We
iterate it backward in time (again K times) until the iteration
of h2 comes close to the point P1. This ensures that the corre-
sponding images of the segments [h1 −1, h1] and [h2 −1, h2]
intersect at some point Dk, which is as close to the point P1 as
we want (increasing K we can impose Dk to be arbitrarily close
to P1).

• Iterations of the point Dk in the Anosov map (1a)–(1b) give
a homoclinic orbit to the point P2, which comes very close to
the fixed point P1 and, thus, spends a large time in the vicinity
of this point. We will use it as a driving force for the Möbius
map (1c).

• In the next step, we find a point (tA, sA, xA) on the unstable man-
ifold Wu(A2) very close to the point A2. For this, we take a point
(tA, sA) which is very close to the point P2 and, at the same time,
belongs to the trajectory of Dk. Then, we select several values xi

close to the x-coordinate of the point A2, and iterate the points
(tA, sA, xi) backward in time. The (t, s)-values converge to the
point P2, while values of x either grow or decrease except for
those that belong to Wu(A2). Taking more x-values between
the neighboring points which, by these backward iterations, go
along different branches (up and down) of the stable manifold
Ws(A2) in the x-direction, we can find a point (tA, sA, xA) on the
unstable manifold Wu(A2) with desired accuracy. In the same

way, we find a point (xR, tR, sR) lying on the one-dimensional
stable manifold of the point R2.

• Finally, we iterate the points (tA, sA, xA) and (xR, tR, sR),
respectively, forward and backward in time until their (t, s)-
coordinates reach the point Dk. Generally at this point, the
resulting x-coordinates xA and xR do not coincide. However,
varying one of the parameters in map (1) (we have varied
parameter c), we can find a value at which xA = xB. This com-
pletes the construction of heteroclinic connection between one
dimensional manifolds Wu(A2) and Ws(R2) of a particular het-
erodimensional cycle. The constructed trajectory is illustrated in
Fig. 9.

• Note that the intersection of two-dimensional manifolds
Wu(R2) and Ws(A2) providing the second heteroclinic con-
nection between the points A1 and A2 exists always. Thus,
the described procedure gives a numerical evidence for the
existence of heterodimensional cycles.

In fact, according to the described above procedure, many
heterodimensional cycles could be constructed, because there are
(infinitely) many different homoclinic orbits to the point P2, pass-
ing close to the point P1 in the Anosov map. This is, however, not
needed, because according to theory developed in Ref. 7, the exis-
tence of a (general) heterodimensional cycle implies the existence of
many such cycles in a vicinity of parameters values. Our calculations,
thus, confirm that at the attractor–repeller collision described by
map (1), the heterodimensional dynamics appear. Remarkably, such
a regime disappears when the “last” periodic orbits on the attractor
and the repeller disappear via a tangent bifurcation (i.e., the system
enters regime 2 in the classification of Sec. IV A). This is a particular-
ity of the Möbius map, which has only fixed points but not isolated
periodic orbits of higher periods.

FIG. 9. Illustration of the constructed heteroclinic orbit. Parameters: ε = 0.4, α = 1.5,µ = 0.08, c = 0.071 124 956 712 020 02. One can see that in variables t, s (red and
green markers) this trajectory is a homoclinic trajectory to the period-2 cycle (epochs n < 5 and n > 20), which passes close to the fixed point t = s = 0 (epoch 10 . n

. 15). During the stay of the (t, s) trajectory close to the fixed point, variable x (blue markers) varies from x ≈ 0.2 (position of the attractor) to x ≈ 0.4 (position of the
repeller).
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VI. VARIABILITY OF THE FINITE-TIME LYAPUNOV
EXPONENTS

One of the implications of the heterodimensional dynamics is
a strong variability of the Lyapunov exponent. Indeed, consider a
situation where the attractor and the repeller overlap and they pos-
sess periodic orbits with different stability in the x-direction. Then
a trajectory which visits vicinities of these periodic orbits will have
positive and negative finite-time Lyapunov exponents, depending
on whether this trajectory is close to unstable or to stable in x-
direction periodic orbits, respectively. This means that the spread
of the finite-time Lyapunov exponents is large and includes positive
values, although the average Lyapunov exponent is negative.

To test this property of the heterodimensional dynamics
in our system, we calculated finite-time Lyapunov exponents

λN = 1
N

∑k=n+N−1
k=n log

dxk+1
dxk

for time intervals up to N = 100.

According to a general scaling of finite-time Lyapunov exponents,42

the probability to have positive values scales as P(λN > 0)
∼ exp[−Nγ ] with some positive exponent γ . We illustrate this
scaling in Fig. 10 for several values of parameter c. At this point,
we would like to justify the chosen range of the time intervals N.
According to the theory, one should take N as large as possible for
the asymptotic exponential decay of probability above to hold. On
the other hand, reliable estimation of very small probabilities is com-
putationally challenging, because it requires very long time series.
Figure 10 shows that the chosen range of values of N appears rea-
sonable, because in this full range the dependence of the probability
on N appears as exponential with a good precision. Furthermore, we
show in the inset the dependence of this exponent on parameter c.
One can see that close to the attractor–repeller collision this expo-
nent is large, corresponding to a very small probability to visit the
domain of the former repeller. This exponent is small in the domain
where the invariant measures of the attractor and the repeller nearly
coincide (values of |c| close to 0.5).

FIG. 10. Illustration of the scaling P(λN > 0) ∼ exp[−Nγ ] for several values
of parameter c for ε = 0.4, µ = 0.1, α = 1.5. Markers: calculated probabilities;
lines: exponential fit of the data points. The inset shows the exponent γ as a
function of parameter c. For small values of c, where the attractor and the repeller
are separated, this exponent is not defined because the finite-time exponents are
all negative for large enough N.

VII. CONCLUSION

The main goal of this paper was to show that robust heterodi-
mensional dynamics naturally appears beyond the attractor–repeller
collision in a chaotically driven circle map. We have considered a
particular model where the driving system is a hyperbolic Anosov
torus map, and the circle map is a Möbius map. Since both subsys-
tems are easily invertible, the attractor and the repeller can simply
be followed as the limiting sets of forward and backward itera-
tions, respectively. We traced the collision via tangent bifurcations
of the periodic orbits embedded in chaos. Furthermore, we con-
structed nontrivial heterodimensional cycles inside the overlapped
attractor and repeller as trajectories, connecting remaining, not yet
bifurcated periodic orbits from the former attractor and repeller.
This allows the application of a general theory about the persis-
tence of heterodimensional dynamics.7 The demonstrated relation
of the attractor–repeller collision to the concept of heterodimen-
sional dynamics is the main contribution of this study compared to
previous explorations of this transition.8,27,28

We also explored properties of the Lyapunov exponent in the
driven circle map. This exponent is always negative, which is not
surprising for separated attractors and repellers and for a situation
close to the attractor–repeller collision. However, we demonstrate
that the Lyapunov exponent is also negative, although small in abso-
lute value, in a situation where all periodic orbits in the system have
disappeared via a tangent bifurcation. Here, due to peculiar prop-
erties of the Möbius map, on every periodic orbit of the driving
Anosov map the Lyapunov exponent of the driven map vanishes.
Nevertheless, on average the Lyapunov exponent remains negative.
Another interesting property of the Lyapunov exponent is that in the
case of heterodimensional dynamics, finite-time Lyapunov expo-
nents in the x-direction can be positive. This is because the unstable
(in the direction of the circle map) periodic orbits belong to the
chaotic set. We confirm that the probability of observing a positive
time-N exponent decreases exponentially with N.
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APPENDIX: PROPERTIES OF A MÖBIUS MAP

It is convenient to define a Möbius map as a map of a circle
ψ → ψ̄ = M(ε,8,9)ψ , where 0 ≤ ψ < 2π ,

ei(ψ̄−8) =
ε + ei(ψ−9)

εei(ψ−9) + 1
. (A1)

Using identity exp[iα] =
(

1 + i tan α

2

) (

1 − i tan α

2

)−1
, we can

rewrite the map in a real form as

tan

(

ψ̄ −8

2

)

=
1 − ε

1 + ε
tan

(

ψ −9

2

)

. (A2)

This form is, however, not convenient for the numerical computa-
tion of the rotation number. If we first rewrite (A1) as

ei(ψ̄−8) = ei(ψ−9) 1 + ε e−i(ψ−9)

1 + ε ei(ψ−9)
,

then another representation

ψ̄ = ψ +8−9 − 2 arctan
ε sin(ψ −9)

1 + ε cos(ψ −9)
(A3)

follows, which corresponds to Eq. (1c).
For the next calculations, yet another reformulation

ψ̄ = M(α, z)ψ = eiα z + eiψ

1 + z∗eiψ
(A4)

is suitable, where z = ε exp[i9] and α = 8−9 . A direct applica-
tion of (A4) shows that a composition of two Möbius maps is again
a Möbius map,

M(α2, z2)M(α1, z1) = M(α1 + α2 + Q, Z),
(A5)

Z =
z1 +

(

z2 e−iα1
)

1 + z∗
1 (z2 e−iα1)

, eiQ =
1 + z∗

1

(

z2 e−iα1
)

1 + z1 (z2 e−iα1)
∗ .

Finally, we show that a Möbius map can be transformed (in a
certain range of parameters) to a circle shift. The transformation
itself is a Möbius transformation with certain complex parameter
s = κ exp[iξ ],

eiψ =
s + eiφ

1 + s∗ eiφ
. (A6)

Substituting this into (A4), one can show that the transformation for
φ has the form φ̄ = φ +2, provided

κ = ε−1

(
√

sin2 α

2
− ε2 − sin

α

2

)

, ξ =
π

2
−
α

2
−9 . (A7)

One can see that such a transformation is possible if ε <
∣

∣sin α

2

∣

∣, oth-
erwise the Möbius transformation has a stable and an unstable fixed

points. The rotation number is

2 = 2 arctan

(

tan
α

2

√

1 −
ε2

sin2 α

2

)

. (A8)

This conjugation to a circle shift means that the Möbius map has
only one Arnold tongue ε ≥

∣

∣sin α

2

∣

∣, outside of which the rota-
tion number is a smooth function of parameters as follows from
relation (A8).
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