
Chaos EDITORIAL scitation.org/journal/cha

Introduction to Focus Issue: Dynamics of oscillator
populations

Cite as: Chaos 33, 010401 (2023); doi: 10.1063/5.0139277

Submitted: 19 December 2022 · Accepted: 23 December 2022 ·

Published Online: 11 January 2023 View Online Export Citation CrossMark

Arkady Pikovsky and Michael Rosenbluma)

AFFILIATIONS

Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany

Note: This article is part of the Focus Issue, Dynamics of Oscillator Populations.
a)Author to whom correspondence should be addressed: mros@uni-potsdam.de

ABSTRACT

Even after about 50 years of intensive research, the dynamics of oscillator populations remain one of the most popular topics in nonlinear
science. This Focus Issue brings together studies on such diverse aspects of the problem as low-dimensional description, effects of noise
and disorder on synchronization transition, control of synchrony, the emergence of chimera states and chaotic regimes, stability of power
grids, etc.
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I. INTRODUCTION

The study of coupled autonomous, self-sustained oscillators
is a traditional field in nonlinear sciences, pioneered by classical
works of Appleton and van der Pol. Remarkably, these early studies
essentially contributed to the development of chaos theory—after
Cartwright and Littlewood, during WWII, got interested in the
forced van der Pol equation, they could show in their 1945 paper
that this dynamical system possesses an infinite number of unsta-
ble periodic orbits. Later, Smale revealed the essence of this finding
by creating his horseshoe map. While electronic circuits were the
primary objects for experimental studies of self-sustained oscilla-
tions in the first few decades, many more examples later appeared
in physics (e.g., lasers, Josephson junctions, electrochemical oscilla-
tors) and life sciences (e.g., spiking neurons, pacemakers, circadian
rhythms). This development boosted studies of coupled oscillators.
The next step was done in the 1970s by Winfree and Kuramoto,
who combined ideas of nonlinear science and statistical physics by
considering the collective dynamics of large populations of oscil-
lators and demonstrating the emergence of a collective mode with
an increase in interaction strength, which can be interpreted as a
nonequilibrium phase transition. Since 1980s, this field has been
a flourishing realm of experimental, mathematical, and numerical
studies at the edge of nonlinear dynamics and nonequilibrium statis-
tical physics. We mention several articles and books reviewing main
achievements in this field.1–5

In recent years, the scientific community witnessed essen-
tial advancements in studies of oscillator populations. First, there

appeared novel applications, such as ensembles of cells with
genetically implemented artificial clocks,6 pedestrian dynamics,7

nanomechanical and spin-torque oscillators,8,9 power grids,10 and
other. Second, innovative theoretical approaches have been elab-
orated, providing a low-dimensional description of the collective
dynamics.11,12 The next important development was the inclusion of
a disorder in the coupling, thus extending the analysis from the sim-
plest case of all-to-all coupled ensembles to complex networks (see,
e.g., a Chaos Focus Issue on Patterns of Network Synchronization13).
Finally, several non-trivial unexpected phenomena, such as chimera
patterns14,15 and partial synchronization,16,17 have been observed. All
these achievements inspired us to organize the this Focus Issue. It
is clear that delivering innovative research that meets a deadline for
manuscript submissions is difficult; therefore, one should not con-
sider this issue as a comprehensive review (moreover, some topics,
such as the inverse problem of inferring interactions from observa-
tions of coupled oscillators, are missing; also, experiments definitely
deserve more place than they have in this issue). On the other hand,
the field is very vital, so even a “snapshot” of the contemporary
research presented in this Focus Issue gives a good impression of
current interests and trends.

II. THIS FOCUS ISSUE

Below, we tried to “classify” the contributions according to sev-
eral topics. However, this classification is necessarily simplified, as
many papers match several different keywords.
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A. Globally coupled populations

Several contributions address different aspects of the classi-
cal problem of the dynamics of globally coupled oscillators. Four
publications18–21 have much in common: (i) the starting point is the
model in the form of phase equations; (ii) the systems are treated
in the thermodynamic limit of infinitely many oscillators, where a
description via a probability distribution of the phases is adequate;
and (iii) all four papers focus on a finite-dimensional reduction of
the kinetic equation for the distribution density and the dynamical
properties resulting from such a reduction.

Campa18 considers the standard Kuramoto model, which, by
virtue of the Ott–Antonsen ansatz, can be reduced for an arbitrary
distribution of natural frequencies to a continuous set of differ-
ential equations for local order parameters, effectively coupled via
the integral over the frequency distribution. While in the case of a
Cauchy distribution of frequencies, the integral can be calculated
via the residue method (and the whole set is then reduced to one
Ott–Antonsen equation), for a Gaussian distribution, such a reduc-
tion is not possible. The paper suggests approximating a Gaussian
function with a constant divided by a polynomial. As a result, one
has a distribution with a finite number of poles allowing for the
application of a residue-based integration and the representation of
the dynamics by a finite set of modes; practically, the author takes
12 modes. Numerical simulations show that this approximation
works rather well, even for initial phase distributions with singu-
larities. We mention for an interested reader that yet another way
to approximate the Kuramoto model for a Gaussian distribution
of natural frequencies has been recently suggested by Pyragas and
Pyragas.22

The model treated by León and Pazó19 is practically iden-
tical to that of Campa:18 they analyze a population of globally
coupled phase oscillators with a Gaussian distribution of natural
frequencies. León and Pazó apply a moment-based scheme that
reduces the continuous set of equations to the doubly infinite set
of Fourier–Hermite modes. This set is then truncated, which results
in finite-dimensional dynamics. The paper explores the accuracy
of different truncation schemes; furthermore, these truncations are
applied to situations where exact solutions are not possible, like the
case of the Kuramoto model with a bimodal frequency distribu-
tion, and the enlarged Kuramoto model endowed with non-pairwise
interactions.

Medvedev et al.20 study a population of active rotators with the
Kuramoto-type coupling. Assuming the Cauchy distribution of the
natural frequencies, they apply the Ott–Antonsen ansatz and reduce
the problem to a second-order ordinary differential equation. Dif-
ferent regimes of the collective dynamics and the corresponding
bifurcations are identified.

Skardal and Xu21 consider a situation more complex than the
standard Kuramoto model: first, they include time delays in the cou-
pling, and second, they include coupling via the nonlinear functions
of the order parameters. (In terms of the phase dynamics, this cor-
responds to so-called high-order interactions that are not pairwise
but include triplets and quadruplets of the phases, cf. Ref. 23). The
reduction of the original system relies on the Ott–Antonsen equa-
tions. The main result of this contribution is the bistability between
weakly and strongly synchronized states that appears due to a
combination of effects of delayed and higher-order interactions. The

authors demonstrate their findings by analyzing bifurcations in the
low-dimensional dynamics and comparing them to the simulations
of large populations.

Two contributions of the Focus Issue explore the effects of
external control action. Sarkar and Gupta24 consider repeated ran-
dom resettings of the Kuramoto ensemble. At the resetting, the old
state of the system becomes forgotten, and a new state with pre-
scribed properties (e.g., with a particular value of the Kuramoto
order parameter) is created. Such resettings suppress synchrony if
the new order parameter is small and facilitate if it is large. For
the Lorentzian distribution of the natural frequencies, the authors
ensure that the state after reset is on the Ott–Antonsen manifold;
this allows for an exact solution of the dynamics between resettings.
For a Gaussian distribution of the natural frequencies, the evolution
of the population is followed numerically.

Toth and Wilson25 address a problem of desynchronizing
control in a large population of interacting neuronal oscillators.
Their study is motivated by the problem of deep brain stimulation
(DBS)—a medical procedure commonly used to treat Parkinson’s
disease and other neurological disorders. Following a popular line
of model studies (see, e.g., Refs. 26 and 27), the authors investigate a
feedback setup providing a phase-specific stimulation. The designed
control action is nearly periodic; i.e., the stimuli have a slowly vary-
ing amplitude and a phase offset. If the underlying model equations
are unavailable (and in a DBS application, they are undoubtedly
unknown), the authors suggest a strategy to identify the reduced
model of oscillating neurons from data.

B. Networks, disorder, and noise

Effects of disorder (e.g., in the form of random connectiv-
ity networks) and noise are essential in most applications of the
oscillations dynamics. In this Focus Issue, oscillator models of differ-
ent complexity are presented: phase oscillators,28–31 one-dimensional
models of neural oscillations,32 as well as higher-dimensional ordi-
nary differential equations with limit cycles.33,34

Hong and Martens28 consider a random network of phase oscil-
lators, where couplings between units are symmetric but can take
one of two prescribed values—a positive or a negative one. In this
way, one models a system with attractive and repulsive interactions.
In the thermodynamic limit, they analyze stability of the decoherent
state, both for deterministic oscillators and for noise-driven ones.
The transition to synchrony is demonstrated to be discontinuous in
the noise-free case and continuous in the presence of noise.

Gkogkas et al.29 contribute a general mean-field theory for
a noise-driven Kuramoto-type model on a random network. The
approach uses a continuous thermodynamic limit of random con-
nection graphs, formulated in terms of so-called graphons and
graphops. Such an approach is expected to work well for dense
networks, where mean-field calculations appear to be justified. For-
mulation of the generalized Fokker–Planck equation allows for a
derivation of a stability criterion for the disordered state, where the
network’s properties enter via the spectrum of the graphon operator.
Calculations of the incoherence–coherence transitions of large finite
networks support these exact results.

Kassabov et al.30 study a standard Kuramoto model with iden-
tical oscillators and random coupling (Erdős–Rényi random graphs
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with probability p that two oscillators interact). In such a system,
for large p, one observes synchronization for almost all initial con-
ditions, while other stable configurations can also appear for small
values of p. The authors quantify this observation by proving that a
network of n units is globally synchronizing (i.e., converges to an all-
in-phase state for almost all initial conditions) with the probability
larger than 1 − 4/n provided that p � n−1(log n)

2.
Lacerda et al.31 analyze the effect of the complex network

structure on the synchronization of sine-coupled phase oscillators.
They generate networks of different topologies with high, inter-
mediate, and low values of assortativity and clustering coefficient.
Next, using an optimization algorithm, they generate different fre-
quency patterns that are correlated with connectivity and quantify
them by the total dissonance metric for neighborhood similarity;
they obtain what they denote as similar (natural frequencies of
adjacent nodes are close), dissimilar (frequencies of adjacent nodes
are different), and neutral natural frequency patterns. The study’s
main finding is that low values of assortativity and clustering coef-
ficient are generally favorable for phase locking of the network
elements.

Di Volo et al.32 analyze the dynamical regimes observed in
a balanced network of identical quadratic integrate-and-fire neu-

rons with sparse connectivity for homogeneous and heterogeneous

in-degree distributions. This model is rather similar to the theta-

model formulated in terms of the phase dynamics but is more suit-

able for spike-coupled neurons. The theoretical description relies

on a mean-field model based on a self-consistent Fokker–Planck

equation. While analytical predictions are possible in some cases,

an approximate description based on the truncation of a hierarchy
of equations for circular cumulants is developed to treat a broader
class of situations. The authors discuss in detail the roles of connec-
tivity and structural heterogeneity of the network on the appearance
of coherent oscillations.

Khramenkov et al.33 address the problem of power grid stabil-
ity; in particular, they investigate whether an addition of a transmis-
sion line enhances the network stability or reduces it (the reduction
of the entire grid stability because of adding a connection is known
as the Braess paradox). The primary considered example treats a
power grid as a network of second-order active rotators, with a
tree-like three-element motif at the periphery. The authors con-
sider two scenarios for the stability loss. In the first, previously
known scenario, the synchronous mode disappears, while in the
novel scenario, the stability reduction is due to the emergence of an
asynchronous mode. The authors derive the necessary conditions
for the stable operation of the grid.

Emelianova et al.34 investigate the phenomenon of disordered
quenching in an array of bistable oscillators. For the model, they
take the Bautin oscillator, i.e., a version of a Stuart–Landau system
with more complex amplitude dynamics. These oscillators have a
stable fixed point and a stable limit cycle for the chosen param-
eters, separated by an unstable limit cycle. With increasing of the
coupling strength, the system becomes quenched. The authors show
analytically the existence of stable regimes with amplitude disorder
for identical oscillators. Furthermore, they demonstrate numerically
that the disordered oscillation quenching holds for rings and chains
of systems with nonidentical natural frequencies.

C. Chimera states, chaos, and complex coupling

Many recent studies of coupled oscillators treat the effects of
symmetry breaking in the form of chimera states and of chaotic
dynamics. In this Focus Issue, several contributions address these
issues dealing either with large populations35,36 or with small sets.37–39

Bi and Fukai 35 investigated the role of amplitude dynam-
ics in the emergence of chimera states in nonlocally cou-
pled Stuart–Landau oscillators. The oscillators are arranged in a
one-dimensional array (with periodic boundary conditions) with
symmetric nonlocal coupling. In the weak coupling regime, the
dynamics reduce to the previously studied case of chimeras for
phase oscillators. For strong coupling, the amplitude effects become
essential; here, the authors report on novel amplitude-mediated
multicluster chimera states.

Clusella et al.36 start with quadratic integrate-and-fire neu-
rons (the same objects as in Ref. 32) but re-formulate the model
as phase oscillators. The resulting Kuramoto-type model combines
electrical and chemical couplings of neurons in one term possess-
ing a phase shift, which depends on the relation between different
coupling channels. Two coupled populations of neurons can be
described within the Ott–Antonsen ansatz as a three-dimensional
system possessing stable asymmetric solutions, where one popu-
lation is synchronous while another one is partially synchronous.
Such a chimera regime is demonstrated to be less probable for large
couplings.

Chimera states are not possible in globally coupled identical
phase oscillators but can appear due to a breakup of the per-
mutation symmetry, like in Ref. 36. Burylko et al.37 analyze the
smallest possible network, where permutation symmetry can be bro-
ken, composed of four phase oscillators. They demonstrate how
the breakup of full symmetry leads to weak chimera states, where
different oscillators have different frequencies. Moreover, these
states exhibit a period-doubling cascade resulting in the chaotic
dynamics.

Grines et al.38 explore chaotic dynamics in a population of five
identical phase oscillators coupled via a biharmonic function. The
system, described by four ordinary differential equations, exhibits
Shilnikov spiral attractors, with two Lyapunov exponents indistin-
guishable from zero in numerical studies. The authors explain the
observed phenomenon by analyzing a three-dimensional Poincaré
map. They show that chaos develops near a codimension-three
bifurcation, where the fixed point of the map has the triplet
of unity multipliers. The authors relate the observed dynamics
to those of the normal form of this bifurcation, known as the
Arneodó–Coullet–Spiegel–Tresser system.

Coupling between oscillators is often modeled via additional
terms in the equations for the oscillating systems. It can, however,
happen that coupling requires separate additional equations. Gold-
sztein et al.39 revisit such a situation in the context of the classical
Huygens problem of coupled clocks. They analyze behavior of two
metronomes on a common support, where the motion of the sup-
port is governed by dynamical equations, incorporating dry friction
terms (this type of friction is not covered by previous studies).
The analysis of this new model reveals different synchronous and
asynchronous states, including in-phase and anti-phase locking, as
well as suppression of oscillation amplitude so that one or both
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metronomes no longer engage their escapement mechanisms. The
authors also present experiments supporting theoretical findings.

III. CONCLUSION

Early studies on coupled oscillators focused on synchroniza-
tion due to increasing interaction strength, typically in a setup of
few units. The seminal works by Winfree and Kuramoto extended
the consideration to the realm of (infinitely) large oscillator ensem-
bles. Subsequent research over several decades accounted for more
complicated setups, such as complex networks, delayed or nonlinear
interaction, etc., and revealed different non-trivial collective dynam-
ical states. To a large extent, the actual progress is due to approaches
providing a low-dimensional description of large systems. However,
there are still many unexplored theoretical and applied problems,
and we foresee that this branch of nonlinear science will remain an
active field in the coming years. The 18 papers of the Focus Issue
certainly do not cover all the current developments but reflect the
main trends, and we hope that this issue will be of interest both for
experts in the field, as well as for those outside of it, who want to
have a look at a concise set of current hot topics.
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