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Phase reduction is a general approach to describe coupled oscillatory units in terms of their phases, assuming
that the amplitudes are enslaved. The coupling should be small for such a reduction, but one also expects
the reduction to be valid for finite coupling. This paper presents a general framework allowing us to obtain
coupling terms in higher orders of the coupling parameter for generic two-dimensional oscillators and arbitrary
coupling terms. The theory is illustrated with an accurate prediction of Arnold’s tongue for the van der Pol
oscillator exploiting higher-order phase reduction.
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The description of coupled oscillators is one of
the basic problems in nonlinear dynamics. For
weak coupling, the units remain oscillating but
can adjust their phases. This adjustment results
in synchronization and many other effects related
to the phase dynamics. Representation in terms
of phases yields a simplified yet good quantita-
tive characterization of the oscillating systems.
To achieve this, one needs an accurate reduction
from the original equations of motion to the phase
dynamics equations, typically obtained approxi-
mately in the first order of the coupling strength.
In this paper, we provide, for two-dimensional
self-sustained oscillators, a theoretical perturba-
tive framework for an improved reduction, which
produces phase equations as expansions in the or-
ders of a small parameter describing coupling.

I. INTRODUCTION

Phase approximation is a powerful tool widely used to
analyze the dynamics of interacting self-sustained oscil-
lators1–8. This approach parametrizes each limit-cycle
system with only one variable, the phase, and thus re-
duces the dimensionality of the problem. Behind this
reduction lies the assumption that the amplitudes are
enslaved variables following the evolution of the phases.
In many cases, the reduced equations yield an analytical
solution, with the celebrated Kuramoto model being an
example. Even when one has to analyze the phase dy-
namics numerically, the approach greatly simplifies the
original problem because only one variable has to be fol-
lowed for each oscillator.

Technically, the reduction to the phase dynamics relies
on the smallness of the terms defining forcing or coupling
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of limit-cycle oscillators and, of course, on the proper
definition of the phase. In the first order in the small
parameter, one neglects the deviations of the amplitudes
from the limit cycle, so only information about the phase
in the vicinity of the limit cycle is needed (in the form
of a set of isochrons or as a phase sensitivity function).
However, one expects that the phase reduction is also
valid for finite perturbation as long as the dynamics lie
on an attracting high-dimensional torus spanned by the
phases of interacting limit-cycle oscillators. For this, one
needs to know the deviations of the amplitudes. Despite
the number of attempts to account for these deviations
and thus go beyond the first approximation in the cou-
pling strength7,9–19, the high-order phase reduction re-
mains challenging.

In this communication, we describe the derivation of
the high-order phase dynamics equations for generic two-
dimensional limit-cycle oscillators. Our technique relies
on the normal form phase-amplitude representation20 of
the dynamics of a two-dimensional oscillator near the
limit cycle. For an illustration of the normal form, con-
sider the Stuart-Landau oscillator

ȧ = (ζ + iη)a− (1 + iα)|a|2a ,

where a is a complex variable and ζ, η, α are parameters.
Writing a = ρeiθ, one easily checks that for ζ > 0 the
system has a stable circular limit cycle with radius

√
ζ.

The transformation21

φ(ρ, θ) = θ − ln(ρ/
√
ζ) , r = c(1− ζ/ρ2) , (1)

where c is any non-zero factor, recasts the systems to the
autonomous normal form20

φ̇ = η − αζ = ω , ṙ = κr (2)

in the whole basin of the limit cycle. Here φ is the phase,
ω is the frequency, and κ = −2ζ is the Floquet exponent.
Variable r quantifies deviation from the limit cycle; for
brevity, we will call r the amplitude (it is also known as
the isostable variable).

Essential for our analysis below is that for an arbitrary
smooth 2D system, there exists a smooth variable sub-
stitution, reducing this system to the normal form (2)
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near a periodic trajectory, see Theorem 3.23 in Ref. 20.
For higher-dimensional systems, the normal form can be
more complex (e.g., for degenerate eigenvalues and in the
case of resonances); this is a subject for future research.

In this communication, we exploit the perturbation
technique to derive the phase coupling functions as a se-
ries in powers of the coupling strength ε. Our procedure
is closely related to that of Gengel et al.17 but is not re-
stricted to the Stuart-Landau system. First, we outline
the derivation of the terms for a general system of M
coupled 2D units. Next, we explicitly write the terms up
to the order ε3 for two coupled oscillators and illustrate
the approach by an application to the paradigmatic van
der Pol model.

II. GENERIC MANY-BODY COUPLINGS

In this section, we sketch the derivation of the non-
trivial O(ε2) terms in the phase reduction for M gener-
ically coupled two-dimensional oscillators. Moreover, we
outline the procedure to derive terms of arbitrary order.

We start by writing general equations for two-dimen-
sional limit-cycle systems with states x1, . . . ,xM ∈ R2,
indexed by µ ∈ {1, . . . ,M}:

ẋµ = Gµ(xµ) + εSµ(x1, . . . ,xM ) . (3)

Here Gµ determines the autonomous evolution of oscil-
lator µ, and Sµ encodes the coupling of this unit to all
other oscillators. We assume that Gµ and Sµ are suf-
ficiently smooth functions in all arguments. Since all
systems exhibit stable limit cycles, for each uncoupled
unit there exists a smooth transformation to coordinates
φµ = Φµ(xµ) and rµ = Pµ(xµ) which obey linear normal
form equations for each oscillator20 (cf. Eq. (2)):

φ̇µ = ωµ , ṙµ = κµrµ , (4)

where ωµ is the frequency of the limit-cycle oscillation
and κµ < 0 is the real-valued Floquet exponent.

The transformation functions fulfill the following equa-
tions

ωµ = ∇xµΦµ ·Gµ , (5)

κµPµ = ∇xµPµ ·Gµ . (6)

Thus, the dynamics can be expressed in the phase-
amplitude variables as

φ̇µ = ωµ + εQµ(~φ,~r) , (7)

ṙµ = κµrµ + εFµ(~φ,~r) , (8)

where ~φ = (φ1, . . . , φM )> and ~r = (r1, . . . , rM )>. Here,
Qµ and Fµ are the coupling functions in terms of the
phases and the amplitudes:

Qµ(~φ,~r) =∇xµΦµ · Sµ(x1, . . . ,xM )|~φ,~r , (9)

Fµ(~φ,~r) =∇xµPµ · Sµ(x1, . . . ,xM )|~φ,~r . (10)

We remark that Eqs. (7-10) are equivalent to Eq. (3) as
long as all states xµ are in the domain of validity of trans-
formations x → (φ, r). One can argue that this domain
extends to the whole basin of attraction of the respective
limit cycle22. However, we do not rely on this since the
perturbation technique operates only in close vicinity of
the cycle. So far, there has been no dimension reduction,
and the new system has the same dimension 2M . We also
note that we use the normal form of all oscillators sep-
arately and do not perform the normal form analysis of
the coupled system23,24; thus, no resonant/non-resonant
conditions appear below.

We aim to derive a reduced model incorporating only
the phases φµ. We achieve that by assuming that for a
given (small) coupling strength ε, the dynamics, possibly
after a transient time, is restricted to a M -dimensional
torus fully parametrized by the phases. In other words,
we assume that, in the long-time evolution, the ampli-

tudes rµ = Rµ(~φ) are functions of phases. Then, we
write the asymptotic phase dynamics as

φ̇µ = ωµ + εQµ(~φ, ~R(~φ)) , (11)

where ~R = (R1, . . . , RM )>. Since for ε = 0 one has

Rµ(~φ) = 0, we expect that Rµ(~φ) are small for small ε.
Thus, we adopt a standard perturbation approach and
represent the unknown functions as power series in ε:

Qµ(~φ) =

∞∑
n=0

Qµ;n(~φ)εn , Rµ(~φ) =

∞∑
n=0

Rµ;n(~φ)εn . (12)

Although we expect that the expansion for Rµ starts with
a linear term ∼ ε, we start the formal expansion from
n = 0 for simplicity of notations; later, we will see that
Rµ;0 = 0.

Keeping for definiteness the terms up to the order ε3,
we can represent the phase dynamics as:

φ̇µ = ωµ +Qµ;0ε+Qµ;1ε2 +Qµ;2ε3 +O(ε4) . (13)

Here and in the following, we omit the functions’ argu-

ments ~φ.
To eliminate the amplitudes from the model, we need

an equation that determines Rµ; or, equivalently, a set
of equations that determine Rµ,n in different orders εn.
First, generally ṙ is expressed as

ṙµ =

M∑
ν=1

φ̇ν∂φνRµ . (14)

Equating Eq. (14) with the r.h.s of Eq. (8), substituting

φ̇ν by the r.h.s of Eq. (7) and rearranging terms yields

κµRµ −
M∑
ν=1

ων∂φνRµ = ε

(
M∑
ν=1

Qν∂φνRµ −Fµ
)
. (15)

We remark that we use a notation Qµ(~φ, ~R(~φ)) = Qµ(~φ)
and analogously for Fµ. Equation (15) with 2π-periodic
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boundary conditions defines Rµ, but is not immediately
solvable. Therefore, we use the expansion (12) intending
to obtain a set of equations to solve for Rµ;n consecu-
tively, starting with n = 1. By inserting Eq. (12) for Rµ,
an ε-expansion for F (analogous to Q in Eq. (12)), and
the term

Qν∂φνRµ =

∞∑
n=0

n∑
`=0

Qν;`∂φνRµ;n−`εn , (16)

which follows from the Cauchy product formula, into
Eq. (15), we obtain

∞∑
n=0

(
κµRµ;n −

M∑
ν=1

ων∂φνRµ;n

)
εn = ε

∞∑
n=0

Cµ;nε
n .

(17)

Here, Cµ;n is defined as

Cµ;n =

M∑
ν=1

n∑
`=0

Qν;`∂φνRµ;n−` −Fµ;n . (18)

By matching terms of the same power in ε in Eq. (17),
we obtain a set of equations determining all Rµ;n. First,
the terms of O(ε0) yield Rµ;0 = 0, reflecting that the am-
plitudes vanish asymptotically without coupling. Next,
by writing for clarity the arguments of the unknown
terms explicitly, we obtain

κµRµ;n(~φ)−
M∑
ν=1

ων∂φνRµ;n(~φ) = Cµ;n−1(~φ) (19)

for all n ≥ 1. This is an inhomogeneous linear partial
differential equation; the r.h.s. comes from the previous

order of expansion and is a known function of ~φ. Be-

cause the unknown functions Rµ;n(~φ) are 2π-periodic in
their arguments, we straightforwardly write the Green’s
function of the equation in the Fourier space, cf.17. The
solution reads:

Rµ;n = Ξµ[Cµ;n−1] , (20)

where the operator Ξµ is defined as

Ξµ[f ](~φ) =

∫ 2π

0

f(~φ− ~ϕ)

(2π)M

∑
~α∈ZM

e−i~α·~ϕ

κµ + i~α · ~ω d~ϕ (21)

and f is a 2π-periodic test function. Here, ~α · ~ω =∑M
ν=1 ανων denotes the scalar product, and same for ~α·~ϕ.

The operator Ξµ is linear and commutes with each ∂φν .
Noteworthy, the denominator in (21) does not vanish for
any ~α; thus, there are no small divisors in this perturba-
tion technique.

Equation (20) yields an expression for each Rµ;n. How-
ever, the functions Qν;m and Fν;m appearing in Cµ;n are
not directly available from the definitions of Q and F
given by Eqs. (9) and (10). To write an expression for

Rµ;n in terms of the original coupling functions, we ad-
ditionally need to express Q and F from Eqs. (7,8) as
expansions in powers of Rµ (these expansions are well-
defined because Rµ ∼ ε). We write

Qµ =

∞∑
n=0

∑
~k with

∑
ν kν=n

Qµ;~k

M∏
ν=1

Rkνν , (22)

where ~k = (k1, . . . , kM ) ∈ NM0 denotes a multi-index.
This expression is practical, since Qµ;~k can be obtained

from the derivative of Q with respect to r evaluated at
the limit cycle:

Qµ;~k =

(
M∏
ν=1

kν !∂kνrν

)
Q|~r=0 . (23)

We will use the same notation for Fµ:

Fµ =

∞∑
n=0

∑
~k with

∑
ν kν=n

Fµ;~k

M∏
ν=1

Rkνν . (24)

By inserting the ε-expansions of Rµ from Eq. (12) into
Eq. (22) we identify each Qµ;n (or Fµ;n) with an expres-
sion containing Rν;m and Qν;~k (or Fν;~k) by collecting

terms of the same power in ε. Substituting these expres-
sions in (18), we obtain the r.h.s. for determining the
amplitudes in the next order, etc. For the terms O(1),
we obtain

Qµ;0 = Qµ;(0,...,0) (25)

directly. This corresponds to the standard Winfree form
if the direction of the driving term Sµ is constant and
independent of the state of the system µ.

Next, the terms of O(ε) yield

Qµ;1 =

M∑
ν=1

Qµ;~eνRν;1 , (26)

where ~eν is 0 everywhere except for the ν-th place, where
it is 1. We obtain Cµ;0 from Eq. (18) as

Cµ;0 = −Fµ;0 = −Fµ;(0,...,0) (27)

and write according to Eq. 20:

Rµ;1 = −Ξµ[Fµ;(0,...,0)] . (28)

We finally obtain

Qµ;1 = −
M∑
ν=1

Qµ;~eνΞν [Fν;(0,...,0)] . (29)

Eq. (29) yields the first non-trivial term of the phase-
reduced model of generically coupled two-dimensional
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oscillators. We demonstrate the advantage of the cor-
responding O(ε2) phase model over the O(ε) model in
Sec. IV. We remind that we can analogously conclude

Fµ;1 = −
M∑
ν=1

Fµ;~eνΞν [Fν;(0,...,0)] . (30)

Now, we highlight that the procedure used to derive
Qµ;1 and Fµ;1 can be further exploited to derive Qµ;n
and Fµ;n by iterations for an arbitrarily large n. Assume
we have appropriate expressions for all functions up to
and including order n, i.e., Qµ;n and Fµ;n as well as Rµ;n.
We want to obtain the terms of next highest orderQµ;n+1

and Fµ;n+1 and Rµ;n+1. To start with the latter, we use
Eq. (20), which requires Cµ;n. We check in Eq. (18) that
Cµ;n requires only terms up to order n. Thus, we obtain
Rµ;n+1. To infer Qµ;n+1 and Fµ;n+1, we need to collect
the terms of O(εn+1) in Eq. (22). Those will contain
the accessible functions Qν;~k and Fν;~k and Rν;m where

m ∈ {1, . . . , n + 1} and ν ∈ {1, . . . ,M}. Thus, we also
obtain Qµ;n+1 and Fµ;n+1, what closes the iteration loop.

Though the evaluation of Qµ;n and Fµ;n becomes cum-
bersome very quickly, one can, in principle, continue to
derive them for an arbitrarily large n by repeating that
procedure. The required functions Qν;~k and Fν;~k can be

computed from the phase-amplitude transformation in
the vicinity of the limit cycle, which can be obtained nu-
merically (see Ref. 25 and appendix A). We will demon-
strate this procedure by deriving Qµ;2, and consequently
theO(ε3) phase model, for the special case of two coupled
oscillators in Sec. III.

III. HIGHER-ORDER COUPLING FUNCTIONS FOR
TWO COUPLED OSCILLATORS

For the case of two coupled oscillators, many expres-
sions simplify. The next term in the expansion for Q
reads

Qµ;2 = Qµ;(2,0)R
2
1;1 +Qµ;(1,0)R1;2

+Qµ;(1,1)R1;1R2;1 +Qµ;(0,1)R2;2 +Qµ;(0,2)R
2
2;1 .

(31)

To evaluate that, we require Rµ;2 and, thus, also Cµ;1.
Setting n = 1 in Eq. (18), we obtain

Cµ;1 = Q1;0∂φ1Rµ;1 +Q2;0∂φ2Rµ;1 −Fµ;1 . (32)

Replacing Rµ;1 (Eq. (28)), Qµ;0 (Eq. (25)), and Fµ;1
(analogous to Eq. (29)) yields

Cµ;1 = Q1;(0,0)Ξµ[∂φ1Fµ;(0,0)] +Q2;(0,0)Ξµ[∂φ2Fµ;(0,0)]

−Fµ;(1,0)Ξ1[F1;(0,0)]− Fµ;(0,1)Ξ2[F2;(0,0)] . (33)

Thus, we get

Rµ;2 = Ξµ[Q1;(0,0)Ξµ[∂φ1
Fµ;(0,0)]]

+Ξµ[Q2;(0,0)Ξµ[∂φ2
Fµ;(0,0)]]

−Ξµ[Fµ;(1,0)Ξ1[F1;(0,0)]]

−Ξµ[Fµ;(0,1)Ξ2[F2;(0,0)]] . (34)

We obtain Qµ;2 by inserting Rµ;1 (Eq. (28)) and Rµ;2
(Eq. (34)) into Eq. (31) as

Qµ;2 = Qµ;(2,0)(Ξ1[F1;(0,0)])
2

+Qµ;(1,0)Ξ1[Q1;(0,0)Ξ1[∂φ1
F1;(0,0)]]

+Qµ;(1,0)Ξ1[Q2;(0,0)Ξ1[∂φ2
F1;(0,0)]]

−Qµ;(1,0)Ξ1[F1;(1,0)Ξ1[F1;(0,0)]]

−Qµ;(1,0)Ξ1[F1;(0,1)Ξ2[F2;(0,0)]]

+Qµ;(1,1)Ξ1[F1;(0,0)]Ξ2[F2;(0,0)]

+Qµ;(0,1)Ξ2[Q1;(0,0)Ξ2[∂φ1
F2;(0,0)]]

+Qµ;(0,1)Ξ2[Q2;(0,0)Ξ2[∂φ2
F2;(0,0)]]

−Qµ;(0,1)Ξ2[F2;(1,0)Ξ1[F1;(0,0)]]

−Qµ;(0,1)Ξ2[F2;(0,1)Ξ2[F2;(0,0)]]

+Qµ;(0,2)(Ξ2[F2;(0,0)])
2 . (35)

This completes the derivation of the coupling function
for two oscillators up to order ε3.

IV. HIGHER-ORDER COUPLING FOR A DRIVEN
SYSTEM

We illustrate the general results of Sec. II for the sim-
plest case of a harmonically driven van der Pol oscillator

ẋ = y + ε cos(φ2) , (36)

ẏ = ay(1− x2)− x , (37)

φ̇2 = ω2 , (38)

where we set a = 1.4. In the following, we will refer to
it as the ’full model’. Here, x1 = (x, y) is the state of
the van der Pol oscillator, i.e., oscillator 1. Oscillator 2
represents a mere driving: since S2 = 0 here, the response
functions Q2 = F2 = 0 and the amplitude deviation
r2 = 0 of the second oscillator vanish.

Since S1 is independent of the state of oscillator 1
and constant in direction (because it enters only in
one Eq. (36)), we can factorize the coupling functions:
Q1(φ1, r1, φ2) = Z(φ1, r1) cos(φ2), where Z = ∇Φ ·
(1, 0)>, and F1(φ1, r1, φ2) = I(φ1, r1) cos(φ2), where
I = ∇P · (1, 0)>. Evaluated at the limit cycle r1 =
0, Z(φ1, 0) and I(φ1, 0) represent the standard phase
and amplitude response curves, and we denote them as
Z0(φ1) and I0(φ1) in the following. Moreover, we define
Z1(φ1) = ∂

∂r1
Z(φ1, r1)|r1=0. In Appendix A, we provide

details on how the system-specific functions Z0, Z1, I0 are
determined numerically.

Thus, the derivatives of the response functions Q1,
F1 with respect to r1 which are necessary for the O(ε2)
model read

Q1,(0,0)(φ1, φ2) = Z0(φ1) cos(φ2) , (39)

Q1,(1,0)(φ1, φ2) = Z1(φ1) cos(φ2) , (40)

F1,(0,0)(φ1, φ2) = I0(φ1) cos(φ2) , (41)

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
69

00
8



5

and we conclude

Q1;0(φ1, φ2) = Z0(φ1) cos(φ2) , (42)

Q1;1(φ1, φ2) = −Z1(φ1) cos(φ2)Ξ1[I0(φ1) cos(φ2)] . (43)

Operator Ξ1 is evaluated using a finite number of 17
Fourier modes to approximate I0. Since Ξµ resembles a
convolution, the evaluation in the Fourier space is essen-
tially a product of the Fourier modes. We now construct
the O(ε2) model

φ̇1 = ω1 +Q1;0(φ1, φ2)ε+Q1;1(φ1, φ2)ε2 , (44)

φ̇2 = ω2 , (45)

where ω1 and κ1 (required to evaluate the operator Ξ1)
are determined by the autonomous (ε = 0) periodic solu-
tion of the van der Pol oscillator. The coupling strength
ε and the driving frequency ω2 are free parameters.

In the following, we compare the O(ε) and O(ε2) mod-
els against the full model by determining the borders of
the Arnold tongue for a fixed ε numerically. For this, we
vary ω2, integrate the full model and both phase mod-
els, and compute their respective observed frequencies by
Ω = |ϕ(t0 + τ) − ϕ(t0)|/τ . For the phase models, ϕ is
an unwrapped phase ϕ = φ1, and for the full model ϕ is
unwrapped arctan(y/x).26 Fig. 1 demonstrates that the
derived O(ε2) phase model reproduces the effective fre-
quency of the full model more accurately than the O(ε)
model, as ε becomes larger.

For another test, we employed the driven SL model.
Here, all characteristics of the oscillator, such as ω1, κ1
as well as Z0, Z1, I0 can be obtained analytically since
the transformations to normal form (phase-isostable) co-
ordinates 1 are known. We chose a driving that contains
a first and a second harmonic term. In that way, the
O(ε2) phase model predicts the appearance of the 1 : 2
and 3 : 2 synchronization regions that are not present in
the O(ε) phase model. Numerics demonstrates a good
correspondence of these Arnold’s tongues to those in the
full model (not shown). Thus, higher-order corrections
not only increase the accuracy of the predictions but can
lead to novel features not captured by the leading order,
cf.27.

V. DISCUSSION

Summarizing, we presented a general framework for
performing phase reduction for limit-cycle oscillators in
higher orders of a small parameter that determines the
coupling and/or forcing. The approach exploits the
normal-form coordinates introduced separately for each
oscillator. According to the general theory of smooth
dynamical systems, these coordinates exist for arbitrary
two-dimensional oscillators with a limit cycle. The sit-
uation is more subtle in a higher-dimensional case and
will be considered elsewhere; see also28. While the nor-
mal coordinates are proven to exist, their practical im-
plementation needs a strongly nonlinear analysis of the
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phase model O(ε)

phase model O(ε2)

Figure 1. The ratio of the observed frequency Ω (see text)
and driving frequency ω2 vs ω2/ω1 for ε = 0.1 (a), ε = 0.2
(b) and ε = 0.3 (c). We show the results for the full model
(blue solid line), the phase models of order ε (green dashed
line), and ε2 (red dotted line). All models show the 1 : 1
synchronization region. For ε = 0.1 (a), all the curves almost
coincide. While the borders of the O(ε) model become shifted
relative to the full model as ε grows, the O(ε2) phase model
matches the full model almost perfectly even at the strongest
coupling ε = 0.3.

original equations, which can be performed numerically,
as outlined in appendix A. The resulting coupling terms
(Eqs. (25, 29) in generalM -dimensional case and Eq. (35)
for two coupled oscillators) are obtained through an iter-
ative procedure, the only nontrivial element of which is
solving a linear PDE for the amplitude deviations.

We stress that our approach applies to a generic cou-
pling, not only to a pair-wise one, as often assumed in the
analysis of oscillator populations. Of course, for pair-wise
couplings, some expressions can be potentially simpli-
fied. We notice that for a pair-wise coupling, the phase-
coupling terms remain pair-wise in the leading order, but
higher-order terms contain many-body (triplet, quadru-
plet, etc.) interactions; see discussion in Ref. 17. We
also stress that the present approach does not allow for
calculating the range of validity (in terms of the pertur-
bation strength ε) of the derived phase equations. One
can assume that the equations are valid as long as the
amplitudes are algebraic functions of the phases. This is
equivalent to the condition that an invariant torus exists
in the system’s phase space. This condition is also used
in a similar technique to obtain high-order phase equa-
tions28, which appeared after the present study had been
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Appendix A: Obtaining the normal form (phase-isostable)
transformation close to the limit cycle

To compute the phase-amplitude coupling functions Q
and F that are necessary for the construction of a phase
model, we need the phase-amplitude transformations Φ
and P , at least in the vicinity of the limit cycle. These
functions allow for representing the corresponding Jaco-
bian matrix A of the transformation as an expansion in
powers of r:

A =

(
∂xΦ ∂yΦ
∂xP ∂yP

)
=

∞∑
n=0

An
rn

n!
. (A1)

With that construction, the information for the n-th
derivative of Q and F with respect to r evaluated at
r = 0 is contained in the phase-dependent matrices
A1, . . . ,An. For the purpose of deriving an O(ε2) phase
model we need A0 and A1. We will detail their inference
from the dynamical model in the following.

First, we define the reverse transformation from the
phase and the amplitude to Cartesian coordinates x =
(x, y)> as X(φ, r) = (X(φ, r), Y (φ, r))> and write X as
an asymptotic expansion in r:

X(φ, r) =

∞∑
n=0

Xn(φ)
rn

n!
, (A2)

where Xn = (Xn, Yn)>. Its Jacobian matrix J reads

J =

(
∂φX ∂rX
∂φY ∂rY

)
=

∞∑
n=0

Jn
rn

n!
, (A3)

where

Jn =

(
∂φXn Xn+1

∂φYn Yn+1

)
. (A4)

Since J is the inverse of A, the equation 1 = AJ holds
and we conclude A0 = J−10 by setting r = 0. Moreover,

we obtain ∂rA = −A · ∂rJ · A by differentiating with
respect to r, ultimately leading to A1 = −A0J1A0 by
setting r = 0. Thus, to obtain the matrix elements of A1

and A0, we need J0 and J1, hence X0, X1 and X2.
The limit cycle X0 can be obtained by integrating the

system forward in time sufficiently long. This also yields
the period T = 2π/ω of the system. An arbitrarily chosen
point on the limit cycle X0(0) is assigned the phase φ = 0.

In the next step, we compute X1 and κ from the lin-
earization around the limit cycle. Using the autonomous
phase-amplitude dynamical equations φ̇ = ω, ṙ = κ we
find

ẋ = G(X(φ, r)) =

∞∑
n=0

(ω∂φXn + nκXn)
rn

n!
(A5)

by differentiating Eq. (A2) with respect to time t. By
evaluating ∂rG(X(φ, r)) at r = 0 we thus conclude

DG(X0(φ)) ·X1 = ω∂φX1 + κX1 , (A6)

where DG is the Jacobian of G defined by

DG =

(
∂xGx ∂yGx

∂xGy ∂yGy

)
. (A7)

Rearranging terms, we find ω∂φX1 = (DG(X0(φ))−κ1)·
X1 and given the transformation

u1(t) = eκtX1(ωt) (A8)

we arrive at the standard linearized dynamical equation
for small deviations around the limit cycle

u̇1 = DG(X0(ωt)) · u1 . (A9)

According to Floquet theory, Eq. (A9) is solved by

u1(t) = M(t) · u1(0) , (A10)

where M is the principal fundamental solution, that
we find by numerically integrating Eq. (A9) in the in-
terval 0 ≤ t ≤ T with initial conditions u1(0) ∈
{(1, 0)>, (0, 1)>}. The non-unity eigenvalue of the mon-
odromy matrix M(T ) is the Floquet multiplier eκT from
which we derive the real Floquet exponent κ < 0.

Thus, transforming back to X1 yields X1(φ) =
e−κφ/ωM (φ/ω) X1(0), φ ∈ [0, 2π). Since we require
X1(2π) = X1(0), the initial condition X1(0) has to be
an eigenvector of M(T ) corresponding to the non-unity
Floquet multiplier. We fix the scaling of the isostable
coordinate by choosing ||X1(0)|| = −1 inside the limit
cycle, where || · || denotes the standard Euclidean norm.

To find X2, we again employ Eq. (A5) to obtain

C(X0,X1) + DG(X0) ·X2 = ω∂φX2 + 2κX2 . (A11)

Here and in the following, we omit the notation of
argument φ for conciseness. The term C is defined
component-wisely as

Cx,y(X0,X1) = X>1 ·HGx,y
(X0) ·X1 (A12)
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where H is the Hessian matrix defined as

Hf =

(
∂2xf ∂y∂xf
∂x∂yf ∂2yf

)
. (A13)

We get the equation for X2 by rearranging terms as

ω∂φX2 = (DG(X0)− 2κ1)X2 + C(X0,X1) . (A14)

By introducing u2 as u2(t) = e2κtX2(ωt) , we derive its
dynamical equation as

u̇2 = DG(X0(ωt))u2 + C(X0(ωt),u1(t)) , (A15)

where we used Eq. (A8) to replace X1 by u1. Since X0

and u1 are known, this inhomogeneous linear ODE can
be solved with Floquet theory. In fact, we employ the
principal fundamental solution M(t) from Eq. (A10) to
write the general solution as

u2(t) = M(t)u2(0) + ũ2(t) . (A16)

Here, ũ2 is the special solution to Eq. (A15) with initial
condition ũ2 = 0. Thus, we obtain

X2(φ) = e−2κφ/ω (M(φ/ω)X2(0) + ũ2(φ/ω)) , (A17)

where the initial condition X2(0) = X2(2π) has to satisfy

X2(0) = (1− e−2κTM(T ))−1e−2κT ũ2(T ) (A18)

to ensure the 2π-periodicity. With X0, X1 and X2, we
construct J0 and J1, and thus compute A0 and A1.

For the case of a non-parametrically driven oscillator
with the driving term acting in x-direction, as presented
in Sec. IV, the response functions follow directly as Z0 =
(A0)11, Z1 = (A1)11 and I0 = (A0)21.
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