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We consider two models of deterministic active particles in an external potential. In the limit where the speed
of a particle is fixed, both models nearly coincide and can be formulated as a Hamiltonian system, but only
if the potential is time-independent. If the particles are identical, their interaction via a potential force leads
to conservative dynamics with a conserved phase volume. In contrast, the phase volume is shown to shrink
for non-identical particles even if the confining potential is time-independent.

Active particles possess an internal energy source,
which maintains motion with a preferable speed.
Applications of this concept include living organ-
isms (from cells to birds) but also many engi-
neered devices like robots and drones. If the
“speed control” is perfect, an active particle
moves with a constant speed, and the external
forces (from the environment or from other parti-
cles) can only influence the direction of the veloc-
ity. We focus on this overactive limit and demon-
strate that the dynamics of an overactive parti-
cle in a static external potential is Hamiltonian.
However, if the potential is time-dependent, or
there is an interaction of nonidentical particles,
the dynamics is no more Hamiltonian but dissi-
pative.

I. INTRODUCTION

Active, or self-propelled particles, are elementary mod-
els of the dynamics out of equilibrium. Their study is rel-
evant not only for living systems but also for many setups
in physics and engineering, where there is an energy flux
supporting a directed motion of the agents. Large ensem-
bles of active particles constitute active matter, showing
many interesting patterns of behavior1–3. However, in-
teresting effects are also observed within a small number
of particles placed in a complex environment4,5. In many
cases, noise is essential in the dynamics, and one speaks
on Brownian active particles6,7.

This paper focuses on a less explored case of purely
deterministic active particles. Such a noise-free case is
probably less relevant for living systems but can be real-
ized with engineered objects like robots and drones. We
will show that even the dynamics of one active particle
in an external potential is non-trivial.

In the literature, there are two basic models of deter-
ministic active dynamics; both are based on adding active
forces to the standard mechanical equations of motion.

a)Electronic mail: pikovsky@uni-potsdam.de

We will introduce these models in Section II. Remark-
ably, both models beget the same limit if the activity
that fixes a particle’s speed becomes very strong. We re-
fer to this situation as the overactive limit and explore it
in detail in Section III. Noteworthy, a single overactive
particle in a static external potential is a Hamiltonian
system8. However, the Hamilton function is so peculiar
that one cannot extend the Hamiltonian description to a
non-stationary potential and to the interaction of several
particles. We show that, under certain conditions, the
dynamics in these cases becomes dissipative (Section IV).
We conclude the paper by discussing possible extensions
in Section V.

II. TWO MODELS FOR ACTIVITY AND THEIR
OVERACTIVE LIMITS

This section will present two models for active deter-
ministic particles from the literature and demonstrate
that they have the same form in the overactive limit.
In this paper, we consider the simplest two-dimensional
setup.

A. Self-propelled particles

We consider a two-dimensional motion of a particle

with mass M under generic external force f⃗ that obeys
equations

˙⃗r = v⃗ , (1)

M ˙⃗v = ε−1(V 2 − v2)v⃗ + f⃗(r⃗, t) , (2)

and call this case a “self-propelled particle”. Here, an
“internal active force” is introduced6,9,10, which acts to
keep the speed of the particle as close as possible to the
preferred speed V . Parameter ε defines the characteris-
tic time scale at which this preferred speed is settled, it
has dimension L2M−1T−1. Note that for ε = ∞, the
active force vanishes, and the particle obeys the second
Newton’s law. One can see that a steady state v⃗ = 0

is possible at the positions where the external force f⃗
vanishes, but is always unstable because, at small ve-
locities, the active force corresponds to negative linear
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friction. Below we consider only situations where f⃗ is a
potential force, so the only non-conservative force is one
∼ ε−1. Practically, it can be realized as a driving force in
a device moving almost without friction, e.g., in a drone.
Close to the preferred velocity V , the adjustment of the
speed is proportional to the linear deviation from the de-
sired value, which appears to be a reasonable property of
realistic speed-control schemes. However, the behavior
of self-propulsion in (2) at small velocities looks not so
realistic for drones. But because we will use these equa-
tions mainly in the regime v ≈ V , this drawback is not
so relevant.
It is convenient to introduce the speed v(t) = |v⃗| and

the velocity direction (unit vector) n⃗(t) = v⃗/|v⃗| of the
particle. Then equations for these variables follow from
(2):

v̇ =
1

Mε
(V 2 − v2)v +

f⃗ · n⃗
M

, (3)

˙⃗n =
f⃗ − n⃗(f⃗ · n⃗)

Mv
. (4)

Below we will focus on the case of strong activity, i.e.,
on the case where ε is small. Then the equations can be
simplified by assuming that the fast variable v is enslaved
by other two variables r⃗, n⃗. If we write v = V + εv1(r⃗, n⃗)
and substitute this in (3), we obtain in order ε0

v1(r⃗, n⃗) =
f⃗ · n⃗
2V 2

.

Substitution of this to (4) yields

˙⃗n =
f⃗ − n⃗(f⃗ · n⃗)

MV (1 + εf⃗ n⃗(2V 3)−1)
≈ f⃗ − n⃗(f⃗ · n⃗)

MV
(1− ε

f⃗ · n⃗
2V 3

),

(5)
where in the last transformation, we keep the leading
order in ε.
Two equations (1) and (5) describe the dynamics of a

self-propelled particle for a strong activity. This result
allows for going to an overactive limit ε → 0, resulting
in the system

˙⃗r = V n⃗ ,

˙⃗n =
f⃗ − n⃗(f⃗ · n⃗)

MV
.

(6)

B. Overdamped particles

In the literature, also another model for deterministic
active dynamics has been suggested:

˙⃗r = v⃗ , (7)

M ˙⃗v = −γv⃗ + F⃗ + f⃗(r⃗, t) . (8)

Together with the external force f⃗ as above, one intro-

duces linear friction ∼ γ and an internal active force F⃗ .

Notice, that the self-propelled case above corresponds to

choosing F⃗ = g(v)v⃗ (i.e., the internal force is directed
along the velocity and depends on it only), so one can

combine friction and F⃗ in one velocity-dependent term
like in (2).

However, one supposes that F⃗ does not depend on
the velocity explicitly. Furthermore, one takes the over-
damped limit M → 0. In this limit, v⃗ is the fast variable,
and it relaxes to the slow manifold, on which it is enslaved

by forces F⃗ and f⃗ :

˙⃗r = v⃗ = γ−1(F⃗ + f⃗) .

The next step is to specify the active force F⃗ . One
assumes that there is an intrinsic unit vector m⃗ which
governs the direction of the active force and the ampli-
tude of the force is constant

F⃗ = F0m⃗ .

One has to complement this with an equation for m⃗. In
Refs. 11–14 it was assumed that this vector rotates to-
ward the direction of the velocity:

˙⃗m =
1

δ
(m⃗× ˙⃗r)× m⃗ .

Here parameter δ, which has dimension of length, defines
the characteristic time for the alignment of the direction

of the force. Substituting here ˙⃗r = γ−1(F0m⃗ + f⃗), one
gets

˙⃗m = (δγ)−1(f⃗ − m⃗(f⃗ · m⃗)) .

Summarizing one has a system

˙⃗r = γ−1F0m⃗+ γ−1f⃗ , (9)

˙⃗m =
f⃗ − m⃗(f⃗ · m⃗)

δγ
. (10)

These equations are very similar to (6) but with an
additional force term in (9). First, we notice that F0/γ is,
according to (8), the speed of the particle in the absence
of external forces. Thus, it is natural to denote V =
F0/γ. Second, the dimension of the quantity δγ is the
dimension of momentum. If we consider a limit in which
the quantities V and S = δγ remain constants, but δ → 0
and γ → ∞, F0 → ∞, then the system (9),(10) reduces
to

˙⃗r = V m⃗ ,

˙⃗m =
f⃗ − m⃗(f⃗ · m⃗)

S
.

(11)

This is almost the same as Eqs. (6). One difference is that
the characteristic momentum is defined as MV for a self-
propelled particle, and as S for an overdamped particle.
Another difference is that n⃗ in (6) is the direction of
the velocity, while m⃗ in (11) is an “internal” unit vector
determining the direction of the active force.
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III. HAMILTONIAN DYNAMICS OF THE OVERACTIVE
PARTICLES

A. Hamiltonian formulation of the equations of motion

We have seen that in a limit where the speed of an
active particle is fixed, both models lead to similar equa-
tions (6),(11). Below we focus on the case where the

external force has potential f⃗ = −∇u(r⃗), taking for def-
initeness Eqs. (6). Then the basic equations in the over-
active limit are

˙⃗r = V n⃗ , (12)

˙⃗n =
−∇u+ n⃗(∇u · n⃗)

MV
. (13)

Let us show that these equations can be written as a
Hamiltonian system with the Hamiltonian

H(p⃗, r⃗) = V |p⃗|−MV 2 exp

[
− u(r⃗)

MV 2

]
= 0 . (14)

The Hamiltonian equations of motion read

˙⃗r =
∂H

∂p⃗
= V

p⃗

|p⃗| , (15)

˙⃗p = −∂H

∂r⃗
= − exp

[
− u

MV 2

]
∇u . (16)

We now take into account that because the Hamil-
ton function vanishes, |p⃗|= MV exp[− u

MV 2 ], so that
we can introduce the unit vector n⃗ according to n⃗ =
(MV )−1 exp[ u

MV 2 ]p⃗. A straightforward calculation of the

derivative of this vector yields ˙⃗n = (MV )−1(∇u · n⃗)n⃗ −
(MV )−1∇u. Thus, the resulting system is exactly (6).

It is convenient to introduce an angle θ determining
the direction n⃗ = (cos θ, sin θ) of the velocity, so that the
equations for the overactive particle can be written as

ẋ = V cos θ ,

ẏ = V sin θ ,

θ̇ =
1

MV

(
−∂u

∂y
cos θ +

∂u

∂x
sin θ

)
.

(17)

We stress here that the variables x, y, θ are natural for
numerical simulations, but they are not canonical ones.
Noteworthy, the Hamiltonian description of an overac-

tive particle in a two-dimensional potential is fully analo-
gous to the Hamiltonian representation of the ray dynam-
ics in geometric optics (and in the other wave fields)15. In
the latter case the Hamiltonian reads H = |p⃗|−n(r⃗) = 0,
where n(r⃗) is the refraction index. We see that for the
overactive particles, the effective refraction index is re-
lated to the potential as n(r⃗) ∼ exp[−u(r⃗)]. We also
mention another approach to the dynamics of active par-
ticles, where an analogy with ray optics has been recently
established16.
Interestingly, the Hamiltonian (14) differs from the one

in a standard description of mechanical particles: its

value can be only zero, other “energy levels” are not pos-
sible. This corresponds to the fact, that equations (17)
do not have an additional parameter which could corre-
spond to the level of total energy. In other words, one
does not have a family of energy-dependent trajectories,
but just one trajectory. This property is well-known in
the context of Hamiltonian optics17. If one starts with
a Lagrange function, then its Legendre transform, which
is the Hamilton function, vanishes. Both in optics and
in the present context of overactive particles, this feature
can be attributed to the fact that particles (photons in
optics) have a fixed predefined velocity, in contradistinc-
tion to usual mechanical particles.

B. Case of small velocity

It is instructive to consider the case of small velocity
V , which leads to a separation of time scales. As one
can easily see from (17), in this case, the coordinates x, y
are slow variables, and the angle θ is a fast variable. By
introducing a direction β, opposite to the gradient of the
potential, ∂xu = − cosβ|∇u|, ∂yu = − sinβ|∇u|, we can
write the fast dynamics as5,18

θ̇ =
|∇u|
MV

sin(β − θ) .

One can see that the fast motion redirects the particle’s
velocity toward the local steepest descent θ → β. After
this, the particle slowly moves along the steepest descent
toward a minimum of the potential. However, close to
the minimum, the value of |∇u| becomes small, and the
scale separation is no longer valid. Close to a minimum,
a potential can be generally represented as a harmonic
one. Therefore, studying the dynamics in a harmonic
potential is especially relevant for slow particles.

C. Motion in a harmonic potential

Here we demonstrate that an overactive dynamics of a
particle in a simple harmonic potential exhibits a typical
for the Hamiltonian dynamics picture of a divided phase
space with chaotic and quasiperiodic trajectories. (For
the dissipative dynamics of deterministic active particles
far from the overactive limit in a harmonic and other
confining potentials, see Refs. 6, 9, 10, 12, and 14.) We
demonstrate this with numerical simulations of the dy-
namics in a harmonic potential

u(x, y) = MV 2U0
x2 + 2y2

2
, (18)

where parameter U0 has dimension L−2. It is convenient
to introduce dimensionless variables X,Y, T according to

x = U
−1/2
0 X, y = U

−1/2
0 Y, t = U

−1/2
0 V −1T, (19)
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FIG. 1. Poincare map for Eqs. (20). Poincaré section: X = 0,
dX/dT > 0. There is one chaotic domain (red dots) and do-
mains with quasiperiodic dynamics (dots with different col-
ors).

so that equations (17) take the form

dX

dT
= cos θ ,

dY

dT
= sin θ ,

dθ

dT
= −2Y cos θ +X sin θ .

(20)

Solving Eqs. (20) we determined the Poincaré map
(Fig. 1). Here, although we solve equations in the natural
coordinates X,Y, θ, we plot the canonical dimensionless
coordinates Y, PY = sin θ exp[−Y 2] to ensure that the
phase volume in the Poincaré section is conserved. Note
that the allowed domain of values of PY is bounded by
a Gaussian curve, depicted in Fig. 1 with black dotted
lines.

D. Statistical validity of the overactive limit

In our derivation of the overactive limit in Section II,
we assumed that the internal active force is much
stronger than the external force acting on a particle. For
a harmonic potential, the external force is unbounded, so
the question arises if the overactive limit can be violated
in the course of the dynamics. Such trajectories indeed
correspond to the symmetry axes of the potential (18):
y = 0, θ = 0, π and x = 0, θ = π/2, 3π/2. The motion
along these axes is one-dimensional, so a particle in the
overactive limit moves straightforwardly with a constant
velocity and enters the domains where the external force
becomes very large. In these domains, corrections to the
overactive dynamics should be considered.
The simplest case is the overdamped dynamics

Eqs. (9),(10). The one-dimensional dynamics along the

x-axis in a potential u = SV (ax2 + by2)/2 reduces to
ẋ = V (1−δax), with a stable steady state at x = (δa)−1.
In the case of a self-propelled particle (Eqs. (1),(2)),

the one-dimensional dynamics along the x-axis, in the
potential u = MV 2(ax2+by2)/2, reduces to the Rayleigh
equation Mẍ− ε−1(V 2 − ẋ2)ẋ+MV 2ax = 0, which de-
scribes relaxation oscillations with the amplitude xmax ∼
ε−1. In both cases, the overactive limit becomes violated
in the full equations, and the particle either stops or turns
around at large distances from the minimum of the po-
tential.
Remarkably, such events are practically not observed

in the direct simulations of the two-dimensional dynam-
ics. Indeed, as we argue below, the one-dimensional tra-
jectories described above are transversally unstable, and
their appearance is, therefore, extremely unprobable.
To see this, we take a harmonic potential u =

MV 2(ax2+ by2)/2, so that the overactive dynamics (17)
reduces to

ẋ = V cos θ, ẏ = V sin θ,

θ̇ = V (−by cos θ + ax sin θ) .

A trajectory x∗(t) = V t+x0, θ
∗(t) = y∗(t) = 0 escapes

to infinity. Let us consider a small transversal perturba-
tion y, θ in a vicinity of this trajectory:

ẏ = V θ , θ̇ = V (−by + a(V t+ x0)θ) .

This linear system can be reformulated as a single equa-
tion for y

ÿ − V (aV t+ ax0)ẏ + bV 2y = 0 . (21)

One cannot solve this linear equation explicitly, but for
large t if one keeps the dominating term ∼ aV t only, then

ÿ − aV 2tẏ = 0

has a solution

y = C1erfi

(
V

√
a

2
t

)
+ C2,

where erfi is the imaginary error function which asymp-
totically grows as ∼ t−1 exp

[
V 2at2/2

]
. Thus one expects

y in the full equation also to grow with the same asymp-
totics. This is illustrated in Fig. 2, where we show that
solutions of the dimensionless version of (21) after a tran-
sient indeed grow ∼ exp[const · t2].
This very strong transversal instability of the escap-

ing solutions makes their appearance in numerical sim-
ulations of the overactive dynamics (6) extremely un-
probable. To illustrate this, we performed a statisti-
cal analysis of solutions of equations (20) in the chaotic
regime, and calculated a dimensionless maximal observed
force |F | =

√
X2 + (2Y )2 over a long (time interval

Tmax = 5 · 105) trajectory. The histogram of these max-
imal values for 2000 runs is shown in Fig. 3. In no run,
a value exceeding 9.5 has been observed. This indicates
for a “statistical validity” of the overactive limit.
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(b)

|θ|
,|Y

|

T 2

|Y |;Y (0) = 1− θ(0) = 1
|θ|; Y (0) = 1− θ(0) = 1
|Y |; θ(0) = 1− Y (0) = 1
|θ|; θ(0) = 1− Y (0) = 1

FIG. 2. Evolution of solutions of Eqs. (21) where we for-
mally consider all parameters and variables as dimensionless
and set V = a = X0 = 1. Panel (a): b = 2, a = 1; panel
(b): b = 1, a = 2. We show |Y |, |θ| as functions of T 2, for
two different initial conditions (Y (0) = 1, θ(0) = 0) and
(Y (0) = 0, θ(0) = 1). At large time the solutions follow the
asymptotics ∼ exp[const · T 2].

 6  6.5  7  7.5  8  8.5  9  9.5

|F |

FIG. 3. A histogram of the maximal values of the force in
runs of duration 5 · 105.

IV. CONSERVATIVE AND DISSIPATIVE DYNAMICS IN
TIME-DEPENDENT POTENTIALS AND FOR
INTERACTING PARTICLES

Unfortunately, the Hamiltonian formulation of the dy-
namics of an overactive particle is restricted to a single
particle in a time-independent potential. Already an in-
clusion of an explicit time dependence in the potential
u(x, y, t) does not allow to build Hamiltonian equations
according to the derivation presented in Section III (be-
cause the value of the Hamilton function in this formula-
tion is fixed, the potential cannot depend on time explic-
itly). Therefore we present below an approach to char-
acterize the conservativity/dissipativity of the dynamics
based on the analysis of the phase volume divergence.
Below in this section we use the equations for a self-
propelled particle (6); as discussed above, these results
can be directly applied also to an overdamped particle
governed by Eqs. (11).

A. Phase volume conservation

According to the Liouville theorem, the phase volume
of a Hamiltonian system is conserved instantaneously.
This result is valid, however, only for the phase vol-
ume expressed in the canonical variables. For the same
system expressed in other, non-canonical variables, the
phase volume is conserved not instantaneously but on av-
erage in time. We illustrate this with the basic example
above of a single particle in a time-independent poten-
tial. In the natural variables, the equations are written
as a three-dimensional system (17). It is straightforward
to calculate the divergence rate α of the phase volume
W :

α(t) = W−1 dW

dt
= ∂xẋ+ ∂y ẏ + ∂θ θ̇ =

(MV 2)−1(uy sin θ + ux cos θ) =

= (MV 2)−1(uy ẏ + uxẋ) = (MV 2)−1 du

dt
.

(22)

One can see that the instantaneous divergence of the
phase volume fluctuates, but its time average over a
long time interval vanishes for a statistically stationary
regime:

⟨α(t)⟩T =
1

T

∫ T

0

α(t′)dt′ =
uT − u0

MV 2T
→

T→∞
0 .

We will adopt the phase volume conservation on aver-
age as a measure for the conservativity of the dynamics.
Below we will check several situations, where the Hamil-
tonian formulation is impossible, for conservativity.
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B. Time-dependent potential

If the potential has an explicit time dependence
u(x, y, t), then relation (22) is modified as

α(t) = (MV 2)−1

(
du

dt
− ∂u

∂t

)
and one cannot conclude that the time average of α van-
ishes. We performed numerical simulations for a particle
in a potential

u(x, y, t) = MV 2U0
(1 + Γ cos(ω′t))x2 + 2(1 + Γ sin(ω′t))y2

2
.

After a transformation to dimensionless variables (19),
we solved the corresponding non-autonomous equations
numerically. The average value of α vs. the amplitude of
time-modulation is shown in Fig. 4 for several values of

the dimensionless frequency ω = U
−1/2
0 V −1ω′. One can

see that ⟨α(t)⟩T gradually decreases with Γ. This allows
for a conclusion that the dynamics of an overactive par-
ticle motion in a time-dependent potential is dissipative.

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

〈α
〉

Γ

ω = 0.5

ω = 1.0

ω = 1.5

FIG. 4. Dependence of the average divergence rate on the
level of time-modulation for different ω. Dimensionless time
of averaging Tmax = 106.

C. Interacting particles

Above, we concentrated on the dynamics of an over-
active particle in an external potential. Here we ex-
plore interaction between the particles, defined by a time-
independent two-particle potential U(r⃗1, r⃗2) (for numer-
ical explorations of complex patterns appearing in pop-
ulations of interacting active particles far from the over-
active limit, see Refs. 13, 19–21). For simplicity, we con-
sider just two particles, so an extension for a population
with pairwise interactions is obvious. The equations of

motion for particles 1, 2 read

ẋ1,2 = V1,2 cos θ1,2 ,

ẏ1,2 = V1,2 sin θ1,2 ,

θ̇1,2 =
1

M1,2V1,2

(
− ∂U

∂y1,2
cos θ1,2 +

∂U

∂x1,2
sin θ1,2

)
.

(23)
In general, parameters M,V for two particles are differ-
ent. Similar to Eq. (22), we calculate the divergence of
the total phase volume:

α(t) =
∑

m=1,2

(
∂ẋm

∂xm
+

∂ẏm
∂ym

+
∂θ̇m
∂θm

)
=

=
∑

m=1,2

(MmV 2
m)−1

(
ẋm

∂U

∂xm
+ ẏm

∂U

∂ym

)
.

(24)

One can see that the divergence reduces to a total
derivative of the interaction potential only in the sym-
metric case where M1V

2
1 = M2V

2
2 : then, similarly to

(22),

α(t) = (MV 2)−1 dU

dt
.

In this case, the long-time average of the divergence van-
ishes, and the dynamics is conservative. In the asym-
metric case, M1V

2
1 ̸= M2V

2
2 , we cannot generally expect

conservativity.
To check this prediction, we considered populations

(up to ten units) of particles in a harmonic external po-
tential (18). Particles interact according to a potential,
which in dimensionless coordinates (19) (where we use
the mean mass M̄ and the mean velocity V̄ ) reads

Uij(R) =

{
D|(R/σ)2 − 1|7 R < σ ,

0 R ≥ σ ,
(25)

with some constant D. Here R =√
(Xi −Xj)2 + (Yi − Yj)2 is the distance between

particles, and parameter σ determines a distance at
which the repulsive force disappears. The dimensionless
force is calculated as

F⃗ij =

{
± 7D

σ2 ((R/σ)2 − 1)6(R⃗i − R⃗j) R < σ ,

0 R ≥ σ .

We notice here that quite often, one introduces a re-
pulsive force via a truncated Lennard-Jones potential
(see8,22,23). However, to have a good performance of
the Runge-Kutta fourth-order integration method, it
is preferable to have maximally smooth potential; this
property is ensured by choosing power 7 in (25).
Calculations of the average divergence ⟨α(t)⟩T for sev-

eral interacting particles are presented in Fig. 5. In
these simulations, we either considered particles with
equal masses and a uniform spread of velocities Vm =
V̄ (1 − 1

2∆V , . . . , 1 + 1
2∆V ); or particles with the same
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FIG. 5. Particles with potential interaction (parameters σ =
1, D = 104, time of averaging 105.) Red open markers: rate
vs ∆M for ∆V = 0; blue filled markers: rate vs ∆V for ∆M =
0. Squares: two particles, circles: five particles; triangles:
10 particles. Lines: fits according to the square law ⟨α⟩ ∼
∆2. All the rates are scaled by the particle number (i.e.,
convergence rate per particle).

velocities and a uniform spread of masses Mm = M̄(1−
1
2∆M , . . . , 1 + 1

2∆M ). One can see that for ∆M = ∆V =
0, the phase volume is conserved, while the break of the
particle’s identity leads to convergence of this volume.
The rate appears proportional to the square of the dis-
order levels ∼ ∆2

M ;∼ ∆2
V . The scaling with the number

of particles ⟨α(t)⟩T ∼ N is only approximate, because
due to the fixed external potential, in a larger popula-
tion, the particles are, on average, closer packed, and the
interaction forces have a larger contribution to the phase
volume changes.
Finally, we mention here that in the context of over-

damped particles governed by Eqs. (11), non-identity
means that parameters S1,2 and V1,2 for the two particles
are different.

V. CONCLUSION

Summarizing, we have demonstrated that two popu-
lar models for the deterministic active particles nearly
coincide in the overactive limit. In this limit, the par-
ticle’s speed is constant (perfect “cruise control”), and
external forces govern the direction of the motion. These
equations can be reformulated as a Hamiltonian system
for motion in a static potential. The Hamilton dynamics
is the same as in the ray optics. This is not surpris-
ing because light propagates with a constant speed and
cannot be stopped but deviates due to inhomogeneities
of the refraction index. In this sense, overactive parti-
cles behave like photons. Because for a two-dimensional
motion, there are two degrees of freedom, one generally
expects chaotic and regular domains in the phase space.

We illustrated these types of dynamics for a particle in
a harmonic potential; other confining potentials are ex-
pected to demonstrate similar features. The overactive
limit is based on the assumption that the internal ac-
tive force is much stronger than external forces. For a
harmonic potential, the external force is unlimited, and
there indeed exist trajectories that climb toward large
values of the potential where the external force becomes
large. We show that such trajectories are strongly (in
fact, faster than exponential) unstable, so in calculations,
such events where the overactive limit could be violated
practically do not appear.
An interesting feature of the overactive dynamics is

that the Hamilton formulation appears to be valid for
static external potentials only. Straightforward attempts
to write a time-dependent Hamilton function in the case
of a time-dependent potential and to formulate a many-
body Hamilton function in the case of interacting parti-
cles failed. Thus, to characterize the conservativity of the
dynamics, we focused on the conservation of the phase
volume (which is ensured for Hamiltonian systems). We
have shown analytically, that the phase volume is, on av-
erage, conserved for one particle or for interacting iden-
tical particles in an external static potential. Performed
numerical analysis demonstrated that the phase volume
converges for one particle in a time-dependent potential
or for interacting nonidentical particles in a static po-
tential. An interesting question (a subject of ongoing
research) is whether this non-conservativity can lead to
observable effects like synchronization.
Finally, we mention two generalizations of the pre-

sented approach to be reported elsewhere. First, we re-
stricted the presentation to the 2-dimensional dynamics;
the 3-dimensional case can be treated within the same
framework. The second generalization includes the effect
of chirality; in this case, a free overactive particle moves
with a constant speed on a circular orbit. Preliminary
calculations show that this motion in a static potential
can also be formulated as a Hamiltonian system.
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Charles Reichhardt, Giorgio Volpe, and Giovanni Volpe, “Ac-
tive particles in complex and crowded environments,” Reviews
of Modern Physics 88, 045006 (2016).

5Fernando Peruani and Igor S Aranson, “Cold active motion: how
time-independent disorder affects the motion of self-propelled
agents,” Physical Review Letters 120, 238101 (2018).

6Udo Erdmann, Werner Ebeling, Lutz Schimansky-Geier, and
Frank Schweitzer, “Brownian particles far from equilibrium,” The
European Physical Journal B-Condensed Matter and Complex
Systems 15, 105–113 (2000).

7Pawel Romanczuk, Markus Bär, Werner Ebeling, Benjamin Lind-
ner, and Lutz Schimansky-Geier, “Active brownian particles:
From individual to collective stochastic dynamics,” The Euro-
pean Physical Journal Special Topics 202, 1–162 (2012).

8Igor S. Aranson and Arkady Pikovsky, “Confinement and col-
lective escape of active particles,” Phys. Rev. Lett. 128, 108001
(Mar 2022), https://link.aps.org/doi/10.1103/PhysRevLett.
128.108001.

9Udo Erdmann, Werner Ebeling, and Vadim S Anishchenko, “Ex-
citation of rotational modes in two-dimensional systems of driven
Brownian particles,” Physical Review E 65, 061106 (2002).

10Udo Erdmann and Werner Ebeling, “On the attractors of two-
dimensional Rayleigh oscillators including noise,” International
Journal of Bifurcation and Chaos 15, 3623–3633 (2005).

11Khanh-Dang Nguyen Thu Lam, Michael Schindler, and Olivier
Dauchot, “Self-propelled hard disks: implicit alignment and
transition to collective motion,” New Journal of Physics 17,
113056 (nov 2015), https://dx.doi.org/10.1088/1367-2630/

17/11/113056.
12Olivier Dauchot and Vincent Démery, “Dynamics of a self-
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22M. Rex and H. Löwen, “Lane formation in oppositely charged
colloids driven by an electric field: Chaining and two-dimensional
crystallization,” Phys. Rev. E 75, 051402 (2007).

23Arkady Pikovsky, “Transition to synchrony in chiral active par-
ticles,” J. Phys. Complexity 2, 025009 (2021).

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
72

12
5




