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We consider an ensemble of phase oscillators in the thermodynamic limit, where it is described by a
kinetic equation for the phase distribution density. We propose an Ansatz for the circular moments of the
distribution (Kuramoto-Daido order parameters) that allows for an exact truncation at an arbitrary number
of modes. In the simplest case of one mode, the Ansatz coincides with that of Ott and Antonsen [Chaos 18,
037113 (2008)]. Dynamics on the extended manifolds facilitate higher-dimensional behavior such as
chaos, which we demonstrate with a simulation of a Josephson junction array. The findings are generalized
for oscillators with a Cauchy-Lorentzian distribution of natural frequencies.
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A description of complex systems in terms of a few
relevant variables (order parameters) is an indispensable
tool in the theoretical analysis of equilibrium and non-
equilibrium dynamics. In many cases, such a reduction is
possible close to a bifurcation point, where a separation of
timescales can be employed to derive closed equations for a
few order parameters. In this context, a seminal break-
through has been achieved by Ott and Antonsen (OA) [1]
for populations of coupled oscillators. They found an exact
low-dimensional reduction of the underlying kinetic equa-
tions in terms of the leading Kuramoto order parameter; this
reduction is valid globally and is not restricted to a vicinity
of a synchronization transition. One refers to the configu-
ration described by OA as the OA manifold. Since its
discovery, the OA Ansatz has been adopted in numerous
studies of complex systems out of equilibrium, such as
Josephson junctions [2–4], theta neurons and QIF neurons
[5–10], optomechanical arrays [11], Kuramoto-Battogtokh
chimeras [12–16], etc.
This Letter extends the OA approach by constructing a

hierarchy of global exact finite-dimensional reductions for
the same setup. It is suitable for all the above-mentioned
applications of OA. This hierarchy includes the OA
manifold as the zero-order case. Although our variables
are not the order parameters of the ensemble, the latter can
be easily calculated. Taking an array of Josephson junctions
as an example, we demonstrate that in our approach the
chaotic collective dynamics, which are impossible within
the OA manifold, are straightforwardly recovered.
We consider an ensemble of identical phase oscillators

φnðtÞ, with common complex-valued forcing hðtÞ and
common real-valued frequency ωðtÞ:

_φn ¼ ωðtÞ þ Im½2hðtÞe−iφn �: ð1Þ

In the thermodynamic limit, where the number of oscil-
lators goes to infinity, it is natural to describe the system

with the phase density distribution Pðφ; tÞ, which obeys the
kinetic equation

∂
∂t Pþ ∂

∂φ ½ðω − ihe−iφ þ ih�eiφÞP� ¼ 0: ð2Þ

It is convenient to express the density in terms of Fourier
modes Zn ¼ heinφi, which are the circular moments of
the distribution: Pðφ;tÞ¼½1=ð2πÞ�½−1þP∞

n¼0ZnðtÞe−inφþ
c:c:�. These moments have a clear physical meaning—they
are the Kuramoto-Daido order parameters [17,18], charac-
terizing order (synchronization level) in the population. A
global coupling in the population is described by these
order parameters (mean fields) via a dependence of the
driving terms h, ω, on Zn. For example, in the seminal
Kuramoto-Sakaguchi model [19], frequency ω is constant
and h ∝ Z1; for coupled Josephson junctions, parameter h
is fixed but ω depends on Z1 [2–4].
The equations for Zn (with Z0 ≡ 1 by definition),

resulting from the kinetic equation (2), read

1

n
_Zn ¼ iωZn þ hZn−1 − h�Znþ1; n ≥ 1: ð3Þ

For the analysis below we introduce the moment
exponential generating function (EGF) Fðk; tÞ, defined
by the series

Fðk; tÞ ¼
X∞
n¼0

ZnðtÞ
kn

n!
; Fð0; tÞ≡ 1: ð4Þ

The infinite system (3) can then be recast as a partial
differential equation (PDE) for Fðk; tÞ
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∂
∂t F ¼ iωk

∂
∂kF þ hkF − h�k

∂2

∂k2 F: ð5Þ

Below we derive a hierarchy of finite-dimensional
representations of the dynamics. We will first represent
all the approaches on the basis of the EGF (4), exploring
possible solutions of Eq. (5). After that, we will show what
these representations mean in terms of the moments Zn.
The seminal OA Ansatz [1] corresponds to an exponen-

tial EGF

Fðk; tÞ ¼ ekQðtÞ; ð6Þ

this yields the OA equation for the complex variable QðtÞ:

_Q ¼ iωQþ h − h�Q2: ð7Þ

We now consider two new Ansätze that each gene-
ralize the exponential solution (6) to an arbitrarily high-
dimensional manifold.
Ansatz 1: Since the PDE (5) is linear, we can extend the

OA Ansatz (6) to an arbitrarily large sum of exponentials:

Fðk; tÞ ¼
XM
m¼1

β0;mekQmðtÞ; ð8Þ

where β0;m are complex constants, satisfying the normali-
zation condition

XM
m¼1

β0;m ¼ 1: ð9Þ

A substitution of Eq. (8) in (5) yields a system of M
identical equations of form (7) for the complex variables
QmðtÞ. This is the first family of finite-dimensional in-
variant manifolds.
Ansatz 2: First, we represent the EGF (4) as a product of

an exponential (6) and a leftover function which we denote
by Gðk; tÞ:

Fðk; tÞ ¼ ekQðtÞGðk; tÞ; Gð0; tÞ≡ 1: ð10Þ

Next, we suppose that the variable Q satisfies the OA
equation (7). Substituting Eqs. (10), (7) in Eq. (5) then
reveals a PDE for Gðk; tÞ:

∂
∂t G ¼ ½iωk − 2h�Qk� ∂∂kG − h�k

∂2

∂k2G: ð11Þ

Equation (11) has trivial solutions G ¼ 1 and G ¼ ekβ,
which do not provide new solutions of the original
problem. To find nontrivial solutions, let us repre-
sent the function G as an infinite series Gðk; tÞ ¼P∞

r¼0 βrðtÞðkr=r!Þ, where βr are complex variables

(β0 ≡ 1). Substituting this into Eq. (11) begets an infinite
set of equations for βr:

1

r
_βr ¼ iωβr − 2h�Qβr − h�βrþ1; r ≥ 1: ð12Þ

Because an equation for βr does not contain βr−1 on the rhs
(only terms ∼βr; βrþ1 are present), any truncation βr>R ¼
0 ∀ R ∈ N is invariant. The interesting finite-dimensional
solutions are therefore those where Gðk; tÞ is a polynomial
and the EGF has the following form:

Fðk; tÞ ¼ ekQðtÞ XR
r¼0

βrðtÞ
kr

r!
: ð13Þ

The Q variable evolves according to Eq. (7) and the βr
variables according to R equations (12), where βRþ1 ¼ 0.
This is the second family of finite-dimensional invariant
manifolds.
Combining Ansätze 1 and 2: The two Ansätze (8) and

(13) can be combined due to the linearity of Eq. (5),
yielding

Fðk; tÞ ¼
XM
m¼1

ekQmðtÞ
XRm

r¼0

βr;mðtÞ
kr

r!
; ð14Þ

with normalization (9). The finite-dimensional set of
equations for

P
M
m¼1ð1þ RmÞ complex variables Qm; βr;m

reads

_Qm ¼ iωQm þ h − h�Q2
m; ð15aÞ

1

r
_βr;m ¼ iωβr;m − 2h�Qmβr;m − h�βrþ1;m: ð15bÞ

This combines both approaches and constitutes the
extended family of finite-dimensional reductions, which
is the main result of this Letter.
We now establish relations between the new variables

Qm; βr;m and the moments Zn. For the OA case, Eqs. (6)
and (4) yield Zn ¼ Qn. Similarly, for Ansatz 1 (8),
Zn ¼

P
M
m¼1 β0;mQ

n
m. Less trivial is the expression for

moments corresponding to the Ansatz 2 (13). A factoriza-
tion of an EGF with an exponential term (10) has already
been explored in mathematical literature [20,21], where this
factorization has been shown to correspond to a so-called
modified binomial transform

Zn ¼
XR
r¼0

�
n

r

�
βrQn−r: ð16Þ

Combining both expressions, we obtain a general repre-
sentation for the moments in terms of new variables:
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Zn ¼
XM
m¼1

XRm

r¼0

�
n

r

�
βr;mQn−r

m : ð17Þ

We stress here that the derivation of the hierarchy above is
not based on any restrictions or assumptions. Indeed, one
can prove by direct calculations [22] that expressions (17)
and (15) solve the original system (3).
In the Supplemental Material [22] we additionally relate

our approach to circular cumulants, which have been
recently suggested for describing the vicinity of the OA
manifold [23,24]. In contradistinction to the variables
Qm; βr;m above, the hierarchy of cumulants cannot be
truncated beyond the first one [25].
It is instructive to look at the phase distributions

corresponding to different finite-dimensional invariant
subspaces. Using moments (17) to calculate the density,
we can express PðφÞ as a sum of elemental real-valued
contributions corresponding to individual variables βr;m:

PðφÞ ¼ −
1

2π
þ
XM
m¼1

XRm

r¼0

Pr;mðφÞ; ð18Þ

where

Pr;mðφÞ ¼
1

2π

�
βr;me−irφ

ð1 −Qme−iφÞrþ1
þ c:c:

�
: ð19Þ

Observe that for Qm ¼ 0 these simply reduce to Fourier
modes. Because of the constant −½1=ð2πÞ� term in Eq. (18),
modes Pr;mðφÞ can be interpreted as densities only up to a
constant offset, even if the mean value is nonzero.
Only terms with r ¼ 0 contribute to normalization (9).

They correspond to constants β0;m and have a mean value of
Re½β0;m�=π, which can be positive or negative. All other
contributions have zero mean. The case with r ¼ 0 and
real-valued β0;m ∈ R, corresponds to an offset wrapped
Cauchy-Lorentz distribution (WCLD). A single WCLD
represents the OA formulation, and recently superpositions
of several WCLDs were also considered in Refs. [24,26].
The case with r ¼ 0 and complex β0;m ∈ C, is an offset
Kato-Jones distribution (KJD) [27], which is an asymmet-
ric generalization of the WCLD. Notice that a single
complex β0;m is not permitted by condition (9), which
means that a single KJD is not invariant under evolution
(for a single moment in time it can be represented with two
modes: β0;1 þ β0;2 ¼ 1, Q1 ¼ 0). Remarkably, a super-
position of KJDs has recently been derived for a seemingly
unrelated case of multiharmonic coupling [28]. Modes (19)
with r > 0 typically have r local maxima, and to the best of
our knowledge, have not been studied before. In Fig. 1 we
depict some examples of modes (19); for more see the
Supplemental Material [22] where we also express them
in terms of real quantities only (absolute values and
arguments).

The overall distribution (18) has to be non-negative and
normalized, thus imposing restrictions on Qm; βr;m varia-
bles. While normalization is ensured by condition (9), non-
negativity presents conditions that are not easily expressed
in general (see special cases in Supplemental Material [22],
including the case of a single KJD [27]).
On the found finite-dimensional manifolds, one can start

with proper initial conditions in terms of variables Qm; βr;m
and follow the finite-dimensional dynamics according to
Eqs. (15). The inverse problem—how to determine whether
a given initial distribution (e.g., given by its order param-
eters Zn) lies on a low-dimensional manifold—is more
difficult, because one needs to invert the infinite systems of
Eqs. (17). In the case of just Ansatz 2, binomial transform
(16) can be inverted,

βr ¼
Xr
n¼0

�
r

n

�
Znð−QÞr−n; ð20Þ

but the choice ofQ is generally not obvious. However, for an
initial distribution with a finite number of nonzero
order parameters: Zn>Nðt¼0Þ¼0 we can set Qðt ¼ 0Þ ¼ 0
in Eq. (20) and obtain a finite number of modes
βrðt ¼ 0Þ ¼ Zrðt ¼ 0Þ. Thus, the evolution of anN-moment
distribution can be describedwithN equations of system (12)
plus one equation for Q (7). However, finite-N distributions
as a class are not invariant under evolution, since the number
of nonvanishing moments Zn becomes infinite immediately
when Q ≠ 0.
Because Fourier modes form a base, we conclude that

for any initial distribution one can find an approximative

FIG. 1. Examples of elemental density contributions Pr;mðφÞ
(19), for Qm ¼ 0.2, depicted in polar coordinates. The first row
corresponds to real-valued βr;m and its first entry is an offset
WCLD which [for full density (18)] corresponds to the OA
manifold. The second row corresponds to purely imaginary βr;m
and its first entry is an offset KJD with mean zero since βr;m has
no real component. All other entries have zero mean by
definition. In each subplot, different curves represent different
absolute values of the corresponding variable jβr;mj. Bold black
circle represents zero and the gray disc inside holds negative
values (origin is −0.25). Thin outer circle marks the 1=ð2πÞ value,
representing a uniform normalized distribution for reference.
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finite-dimensional description based on the Fourier
approximation of the initial condition. One might formulate
the problem of efficiently approximating a given distribu-
tion with a finite number of general modes (19); however,
this problem lies beyond the scope of this Letter.
Up to now we considered a population of identical

oscillators (1). In typical situations however, one or several
parameters of the oscillators and of the coupling are
distributed. Most popular are models with a distribution
of natural frequencies ω, although other cases have also
been considered in the literature [29–32]. For definiteness
let us consider a distribution of frequencies gðωÞ. All the
expressions above are valid for a distribution Pðφ; tjωÞ,
conditioned on a particular value of ω: one has ZnðtjωÞ,
QmðtjωÞ, βr;mðtjωÞ, etc. Global order parameters are
obtained by averaging the latter over ω. For example,
in the Kuramoto model with coupling via the first
global order parameter, the latter is defined as Z1ðtÞ ¼R
Z1ðtjωÞgðωÞdω. This expression, together with a set of

equations (15) conditioned under set values of ω, consti-
tute a set of integro-differential equations describing the
problem.
A particular simplification of this system is possible for a

Cauchy-Lorentzian distribution of frequencies gðωÞ ¼
ð1=πÞfγ=½ðω − ω0Þ2 þ γ2�g. In this case, one can integrate
over gðωÞ assuming analyticity of variables Qm; βr;m in the
upper complex ω half-plane, and the integration (using
residue theorem) results in a value at the pole ω ¼ ω0 þ iγ.
Here the argumentation is essentially the same as
used by OA [1]. As a result, one obtains an exact finite-
dimensional description in terms of global variables
QmðtÞ ¼ Qmðtjω0 þ iγÞ, Br;mðtÞ ¼ βr;mðtjω0 þ iγÞ [which
via (17) relate to global moments Zn]:

_Qm ¼ ðiω0 − γÞQm þ h − h�Q2
m;

1

r
_Br;m ¼ ðiω0 − γÞBr;m − 2h�QmBr;m − h�Brþ1;m: ð21Þ

One can see that in finite representations Br>Rm;m ¼ 0, the
last term BRm;m does not contain driving, so one expects that
it eventually vanishes because of dissipation∼γ. Then, there
is no driving for the next to last BRm−1;m, and this term will
vanish as well, and so on for all Br>0;m (B0;m are constants).
What is left are the Qm variables, which are driven by the
same force h, and will therefore with dissipation eventually
converge limt→∞ðQm −QnÞ ¼ 0; ∀ m; n. Thus, one
expects the OA manifold Br>0;m ¼ 0;Qm ¼ Q;Zn ¼ Qn,
to be attractive in this situation, as has been already argued in
Refs. [26,33,34]. As a final note we mention that equa-
tions (21) are valid not only for a Cauchy-Lorentzian
distribution of frequencies, but also for oscillators driven
by Cauchy noise [28,35], where noise strength takes the
role of γ.

Now we perform a simple numerical simulation to
showcase the dynamics on an extended invariant manifold
and compare them to the dynamics on the OAmanifold. We
consider an array of overdamped Josephson junctions
coupled via a resistive load [36]. It is described by the
equations for the Josephson phases

_φn ¼ 1þ a sinðφnÞ þ
ϵ

N

XN
m¼1

sinðφmÞ: ð22Þ

The OA description of Eq. (22) yields only regular solu-
tions (because the dimension of the subspace is 2 [37]).
Below we show that already within the lowest-order finite-
dimensional reduction involving 2 complex variables,
chaotic regimes are possible. System (22) belongs to the
class (1) with ω ¼ 1þ ϵImhZ1i and h ¼ −ða=2Þ. On the
two-variable manifold of Ansatz 2 (13), the equations in
terms of Q; β1 ≡ β are

_Q ¼ iQð1þ ϵIm½Qþ β�Þ − a
2
ð1 −Q2Þ;

_β ¼ iβð1þ ϵIm½Qþ β�Þ þ aQβ: ð23Þ

In Fig. 2 we demonstrate chaotic behavior in this system for
a ¼ 1.5, ϵ ¼ −0.7 [Runge-Kutta 4th-order method with
time step 2 × 10−3 was used; see Supplemental Material
[22] for a corresponding simulation of a large finite
ensemble (22)]. Of the four Lyapunov exponents, two
are nonzero with values ≈� 0.01. For β ¼ 0 (i.e., on the
OA manifold) all the solutions are periodic.
There are other examples where the extended finite-

dimensional dynamics go beyond the ones possible in the
OA formulation. In the Supplemental Material [22] we

FIG. 2. Poincaré map (orange dots) for dynamics (23) of the
Josephson junctions array for a ¼ 1.5, ϵ ¼ −0.7 and initial
condition Z1ðt ¼ 0Þ ¼ 0.4, Zn>1ðt ¼ 0Þ ¼ 0. The section is made
according to the condition argðβÞ ¼ π, ðd=dtÞ argðβÞ > 0. Green
line: the trajectory on the OA manifold with the same initial Z1.
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present simulations for a two-population chimera [38].
There, on the OA manifold (which is known for such
populations of identical oscillators to be only neutrally
stable [26]) the dynamics of the asynchronous population
are periodic, while already the second-order dynamics yield
quasiperiodicity (cf. Refs. [23,24,39]).
Finally, we shortly discuss whether the exact invariant

manifolds survive the addition of independent Gaussian
white noise terms to the dynamics of the phases (as
mentioned above, for Cauchy white noise the invariant
manifolds remain valid). In this case, additional terms
appear in equations for moments (3) and in the PDE for the
EGF (5). An attempt of Ansatz 2 (10) results in an infinite
system for βr which, in contradistinction to system (12),
cannot be truncated, see Supplemental Material [22] for
details. Nevertheless, truncation might yield an appro-
ximative finite-dimensional description for ensembles
with noise; this is a subject of a forthcoming research
(for an approximation in terms of circular cumulants
see Ref. [24]).
Summarizing, we have generalized the finite-dimensional

description for populations of coupled oscillators due to
Ott andAntonsen [1] by constructing a family of exact finite-
dimensional invariant manifolds for the dynamics. Our
approach is as general and as restricted as that of OA [1]:
it is applicable to phase dynamics with harmonic forcing and
in the thermodynamic limit only, but can be generalized to
ensembleswith distributed frequencies (or other parameters),
to oscillators driven by Cauchy noise, etc. It is fully
applicable to systems previously analyzed in terms of the
OA reduction, such as Josephson junctions [2–4], theta
neurons and QIF neurons [5–10], and to Kuramoto-
Battogtokh chimera [12–16]. In situations where the OA
manifold is stable, the extended reductions describe relax-
ation to this manifold in an exact manner. This description is
applicable if the population is driven away from the OA
manifold, e.g., by a phase resetting. In situations where the
OAmanifold is only neutrally stable, the extended reductions
provide a family of exact equations beyond the OA Ansatz
(there is no condition of a small vicinity, like in the cumulant
description [23]). Although the analysis of general initial
distributions and determining whether or not they lie on one
of the finite-dimensional manifolds remains a challenging
problem, we have found an important and simple class of
initial states that do allow for an exact finite-dimensional
description: these are the states with a finite number of
nonvanishingmoments (Kuramoto-Daido order parameters).
There exists an alternative approach to a finite-dimen-

sional description of oscillator populations, the Watanabe-
Strogatz theory (WS) [40]. While its relation to the OA
theory has been clarified in the literature [3,39], a con-
nection to the present approach remains a subject for future
studies. As the WS theory generally predicts partial
integrability for populations of identical oscillators, we
can conclude that any high-dimensional dynamics within

the found invariant manifolds have a large number of
integrals of motion.
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