
Chapter 6
Non-pairwise Interaction in Oscillatory
Ensembles: from Theory to Data Analysis

Arkady Pikovsky and Michael Rosenblum

Abstract In this chapter, we briefly review several cases when non-pairwise inter-
action naturally appears in oscillatory networks. First, we analyze globally coupled
ensembles of phase oscillators. We demonstrate that nonlinear high-order mean-
field coupling is equivalent to a hypernetwork with non-pairwise interactions of the
population elements. Next, we consider small networks of limit-cycle oscillators.We
show that pairwise interaction in the state variables description results in non-pairwise
interaction on the level of phase dynamics, if one goes beyond the first order in the
weak-coupling phase reduction. Finally, we discuss the implications for recovery of
the network connectivity in terms of the phase dynamics from observations.

6.1 Introduction

Phase reduction is widely and efficiently exploited to investigate dynamics of inter-
acting self-sustained oscillators [1, 2]. The main results of this approach can be
summarized as follows. Consider a unit with frequency ω driven by a force with
close frequency ν ≈ ω. If the forcing is weak enough so that deviations of the state
space trajectory from the limit cycle are small, then in the first approximation in the
forcing amplitude, the dynamics of the phase is decoupled of that of the amplitudes,
and obeys the equation

φ̇ = ω + Q(φ,ψ), (6.1)

where φ,ψ are the phases of the oscillator and the force, respectively, and Q is the
coupling function. If the norm of Q is much smaller thanω, another approximation—
averaging over the oscillation period—provides a description in terms of phase dif-
ferences:
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φ̇ = ω + Q̄(ψ − φ). (6.2)

In a particular case when the forcing F(t) of the oscillator is scalar and independent
of the state of the oscillator, one can write the phase equation (6.1) in the Winfree
form [3]:

φ̇ = ω + S(φ)F(t), (6.3)

where S(φ) is the phase sensitivity function, also known as the phase response curve.
A generalization to large oscillatory networks typically implies that interaction is

pairwise and additive. Another standard assumption is that the form of the coupling
function is the same for all pairs. The simplest case of equally strong sine-like
coupling represents the famous Kuramoto-Sakaguchi model [4, 5]:

φ̇k = ωk + ε

N

N∑

j=1

sin(φ j − φk + β), (6.4)

where ε is the interaction strength, N is the population size, k is the oscillator index,
and β is a phase shift. In terms of the complex order parameter Z = N−1 ∑N

k=1 e
iφk ,

often called the mean field, the model reads

φ̇k = ωk + εIm
(
Zei(−φk+β)

)
. (6.5)

Numerous generalizations of the Kuramoto model [6–8] also rely on the assumption
of pairwise interaction. In this Chapter, we go beyond this assumption and consider
general mean-field coupled systems. We demonstrate that higher-order mean-field
coupling naturally results in the interaction of oscillatory triplets, quadruplets, etc. In
this sense the network of the interactions is hypernetwork. Furthermore, we show that
such high-order interaction naturally appears in the phase description of pairwise- but
non-weakly coupled oscillators. Finally, we discuss the implication for data analysis,
namely for the reconstruction of the network connectivity from observations.

6.2 Theory of Higher-Order Mean-Field Phase Coupling

6.2.1 General Nonlinear Mean-Field Coupling

Here we follow [9, 10] and outline a general approach to nonlinear mean-field cou-
pling in the context of phase dynamics. To simplify the presentation, we assume
that there are M populations of oscillators, each population labeled by index
n = 1, . . . , M . All elements of a population have the same natural frequencies ωn;
all other properties of the oscillators are assumed to be identical across populations.
The dynamics of the phase in the first-order approximation in coupling is, according
to (6.3)
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φ̇n[a] = ωn + εFnS(φn[a]), (6.6)

where φn[a] denotes the phase of the ath oscillator within the nth population, S(φ) =∑
p sp exp[i pφ] is the phase sensitivity function, and Fn is the force from all other

oscillators acting on elements φn[a] [11]. The equations are valid if parameter ε is
small. We assume amean-field coupling, what means that the force F is a function of
complexmeanfields of the populations. These complexmeanfields (a.k.a.Kuramoto-
Daido order parameters) are defined as

Z (n)
k = 〈eikφn [a]〉∣∣a = N−1

n

Nn∑

a=1

eikφn [a] (6.7)

where averaging is over all Nn units in population n. We assume that the force Fn

can be represented as power series in Z (n)
k :

Fn =
∑

k,m

h(n)
k,m Z

(m)
k +

∑

k,m,l,s

g(n)

k,m;l,s Z
(m)
k Z (s)

l +
∑

k,m;l,s; j,r
d(n)

k,m;l,s; j,r Z
(m)
k Z (s)

l Z (r)
j + . . .

(6.8)
where we explicitly write linear, quadratic, and cubic terms. Substitution of (6.8)
and (6.7) in (6.6) already yields equations with coupling terms containing complex
combinations of phase variables. However, not all of these terms are really relevant
and lead to essential effects; to reveal important terms one has to performan averaging
over the basic oscillation period.

To perform averaging, it is convenient to introduce slow phases according to
ϕn = φn − ωnt . (For brevity, we omit the index for individual oscillators.) Complex
order parameters z(n)

k for these variables are also slow. They are expressed in terms
of original order parameters (6.7) as follows

z(n)
k = 〈eikϕn 〉∣∣ = Z (n)

k e−ikωn t . (6.9)

The equations for the slow phases read

ϕ̇n =ε
∑

p

spe
ipϕn eipωn t

[ ∑

k,m

h(n)
k,mz

(m)
k eikωmt +

∑

k,m,l,s

g(n)

k,m;l,s z
(m)
k z(s)

l ei(kωm+lωs )t+

+
∑

k,m;l,s; j,r
d(n)

k,m;l,s; j,r z
(m)
k z(s)

l z(r)
j ei(kωm+lωs+ jωr )t + . . .

]
.

(6.10)

One can see that some terms on the r.h.s. contain explicit time dependence - these
are fast terms. Other terms either do not depend explicitly on time, or contain a
small frequency mismatch in the exponent—these are slow terms. It is convenient
to work with exact resonances, therefore one shifts slightly natural frequencies (by
terms of order ε), so that the combinations of these modified frequencies (like kωm +
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pωn) vanish exactly. Due to these modifications, small terms ∼ εδωn appear in the
dynamics. Averaging means omitting fast terms, what leads to generic averaged
phase coupled equations

ϕ̇n = εδωn + ε
∑

p;k,m
sph

(n)
k,mz

(m)
k exp[i pϕn]
(kωm + pωn)+

ε
∑

p;k,m,l,s

spg
(n)

k,m;l,s z
(m)
k z(s)

l exp[i pϕn]
(kωm + lωs + pωn)+

ε
∑

p;k,m;l,s; j,r
spd

(n)

k,m;l,s; j,r z
(m)
k z(s)

l z(r)
j exp[i pϕn]
(kωm + lωs + jωr + pωn) + . . .

(6.11)
where 
(ω) = 1 if ω = 0 and 
(ω) = 0 otherwise.

Below we discuss different cases leading to pairwise and multiple couplings of
the network elements in the phase approximation.

6.2.2 One Population of Oscillators

The simplest case is when there exist only one population of oscillators. In the
context of Eq. (6.11) this means that all frequencies ωn are equal (or nearly equal,
as mentioned above, small frequency differences can be straightforwardly included
in the consideration by adding deviations from the central frequency to the r.h.s.).
The famous Kuramoto setup [12] belongs to this class. Below, to describe it, we omit
index n.

6.2.2.1 Linear Coupling

In the case of linear coupling only terms ∼ hZ are present in (6.8). The function

(kω + pω) picks up from the sum in (6.11) only terms with p = −k. In this case
the phase dynamics corresponds to a famous Kuramoto-Daido model [13]

ϕ̇ = ε
∑

k

s−khkzk exp[−ikϕ]. (6.12)

Substitution here of the definition of the order parameters (6.9) reveals terms
ϕ̇[a] ∼ exp[ik(ϕ[b] − ϕ[a])], where a and b are indexes of different oscillators in
the population. This means that the couplings are pairwise.

6.2.2.2 First Harmonic Phase Sensitivity Function

In some cases, like e.g., the Stuart-Landau oscillators, the phase sensitivity function
contains only the first harmonics of the phase, i.e., in (6.11) index p takes values
±1 only (the term p = 0 would lead to a phase-independent frequency shift). Let us
consider two cases.
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Coupling via the main Kuramoto order parameter

In this case nonlinear terms in (6.11) contain only z1. It is easy to see that the terms
with quadratic nonlinearity vanish, and the only non-trivial, phase-dependent terms
with qubic nonlinearity are ∼ z21z

∗
1e

−iϕ and its complex conjugate. Together with
linear term in (6.11) this yields a Kuramoto model with nonlinearly corrected cou-
pling: acting mean field is modified z1 → z1 + α|z1|2z1, with a complex param-
eter α. This model has been introduced in [14] and studied in more details in
[15], for experimental realization see [16, 17]. The cubic nonlinearity in the order
parameter leads to terms in the phase coupling containing four phases (quadru-
plets): ϕ̇[a] ∼ exp(i(ϕ[b] + ϕ[c] − ϕ[d] − ϕ[a])). If both linear and cubic terms
are present, the coupling is a combination of pairs and quadruplets.

Coupling contains many order parameters

In this case already the quadratic terms in (6.11) contribute, provided the rela-
tions k + l = ±1 hold. The simplest case is where k = 2, l = 1. This corresponds
to the coupling term ∼ z2z∗

1e
−iϕ . This coupling is organized in triplets ϕ̇[a] ∼

exp(i(2ϕ[b] − ϕ[c] − ϕ[a])).

6.2.2.3 Second-Harmonic Phase Sensitivity Function

This case is described by the phase sensitivity function possessing the terms p = ±2
only. The simplest resonance here is provided by the quadratic terms in (6.11) satis-
fying condition k + l + p = 0. One can see that the main complex order param-
eter (k = l = 1) will contribute; the coupling term is ∼ z21e

−iϕ . In terms of the
phases, the coupling is arranged in triplets ϕ̇[a] ∼ exp(i(ϕ[b] + ϕ[c] − 2ϕ[a])). The
dynamics of populations of oscillators with this triplet coupling has been studied in
details in [18].

6.2.3 Several Populations of Oscillators

Here we consider a situation where several populations of oscillators with different
frequencies ωn interact. The novel aspect compared to the above-studied case is
interaction across populations. Because the resonance conditions have to be fulfilled,
essential are relations between the basic frequencies.

6.2.3.1 Incommensurate Basic Frequencies

Let us start with the simplest case of two populations with incommensurate fre-
quencies ω1 and ω2. This means that nontrivial resonances (i.e., resonances with
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nonvanishing p, k, l, s) in Eq. (6.11) are impossible in linear and quadratic terms.
The first possible nontrivial term appears in the third order; it corresponds to the con-
dition kω1,2 + lω2,1 − sω1,2 − pω2,1 = 0. The simplest term of this form with k =
l = s = p = 1 corresponds to the quadruplet coupling ϕ̇1,2[a] ∼ exp(i(ϕ1,2[b] +
ϕ2,1[c] − ϕ2,1[d] − ϕ1,2[a])). This is in fact a non-resonant coupling because it does
not depend on the values of the frequencies. In the case of three incommensu-
rate frequencies, the lowest-order term involving all three populations would be a
six-plet ϕ̇1,2,3[a] ∼ exp(i(ϕ1,2,3[b] + ϕ2,3,1[c] + ϕ3,1,2[d] − ϕ3,1,2[e] − ϕ2,3,1[ f ] −
ϕ1,2,3[a])). Effects of such a nonresonant interaction in several globally coupled
populations have been explored in [9].

6.2.3.2 Commensurate Basic Frequencies

The simplest case of resonance between two populations is ω2 = 2ω1. Inspecting
Eq. (6.11) one can see that there is already a possibility for nontrivial interaction
via linear in order parameters terms. This corresponds to the phase coupling terms
ϕ̇1[a] ∼ exp[i(ϕ2[b] − 2ϕ1[a])], ϕ̇2[a] ∼ exp[i(2ϕ1[b] − ϕ2[a])]. Such a coupling
has been treated in [10, 19]. Additionally, there can exist quadratic in the order
parameters resonant terms corresponding to triplet couplings ϕ̇1[a] ∼ exp[i(ϕ2[b] −
ϕ1[c] − ϕ1[a])], ϕ̇2[a] ∼ exp[i(ϕ1[b] + ϕ1[c] − ϕ2[a])].

The next nontrivial case is of three populationswith basic frequencies in resonance
ω3 = ω1 + ω2. In this case there is no linear (pairwise) couplingbetweenpopulations,
and the first nontrivial terms are triplets ϕ̇1[a] ∼ exp[i(ϕ3[b] − ϕ2[c] − ϕ1[a])],
ϕ̇2[a] ∼ exp[i(ϕ3[b] − ϕ1[c] − ϕ2[a])], ϕ̇3[a] ∼ exp[i(ϕ1[b] + ϕ2[c] − ϕ3[a])]. The
dynamics of three resonant populations has been studied in [20].

6.3 Multiple Effective Phase Coupling Appearing in Higher
Orders of Phase Reduction

Section6.2 discussed how couplings, nonlinear in the mean-field order parameters,
result in hypernetworks with triplets, quadruplets, etc., of interacting phases. These
nonlinear terms may be intrinsic for the problem, like in physical situations dis-
cussed in [14] and experimentally implemented in [16, 17]. Here we demonstrate
that such terms also appear in high orders in the phase reduction from the original
nonlinear equations having only pairwise linear interactions. Here we only sketch
the derivation; for the complete analysis, we refer the reader to Ref. [21].

We consider interacting nonlinear oscillators with variables yk possessing stable
limit cycles y0k(t) = y0k(t + Tk). For each of these cycles a phaseϕk can be introduced,
satisfying ϕ̇k = ωk = 2π/Tk . The phases are functions of the variables ϕk = k(yk),
but only on the limit cycle the variables y are unique functions of the phases. In the
basin of attraction of the limit cycles one has to account for amplitude deviations δy.
We write the system of coupled oscillators as
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ẏk = Fk(yk) + ε
∑

m �=k

Gmk(ym, yk), (6.13)

so that only pairwise couplings are present. For the phases, the equations read

ϕ̇k = d

dt
k(yk) = ωk + ε

∂k

∂yk

∑

m �=k

Gmk(ym, yk). (6.14)

This equation is, of course, not a closed equation for the phases, and one solves it
iteratively in powers of ε. In parallel, one also represents the deviations from the
limit cycle δyk in powers of ε.

In the first order in the small parameter ε, one can neglect the deviations δyk , then
the coupling terms

∂k

∂yk

∣∣∣∣
y0k

Gmk(y0m, y0k)

depend on two phases ϕk, ϕm and one obtains pairwise interactions in the phase
dynamics in form of Eqs. (6.1). In this order ∼ ε also δyk can be represented as a
sum of terms depending on two phases only.

In the second order in the small parameter ε, when one substitutes the expres-
sions of the first approximation δyk = ε

∑
Qkm(ϕk, ϕm) in (6.14), one obtains terms

containing three phases ϕk, ϕm, ϕl , i.e., an effective triplet interaction. In higher-
order approximations in ε also the quadruplet, etc., interactions appear in the phase
dynamics equations. One can complete this analysis in an exceptional case of the
Stuart-Landau oscillators, where the phases and their derivatives are known explic-
itly. Reference [21] derives phase equations for three Stuart-Landau units organized
in a chain, 1 ↔ 2 ↔ 3. As expected, already the second-order phase approximation
provides the terms depending on the phases of all three oscillators. Thus, on the level
of the phase dynamics, unit 1 interacts with unit 3, though there is no direct link
between them, and the simple motif 1 ↔ 2 ↔ 3 becomes a hypernetwork.

For general oscillators, the high-order phase reduction can be performed only
numerically. The interested reader can find the corresponding techniques for com-
putation of phases and instantaneous frequencies in Ref. [21]. For three van der Pol
oscillators, also coupled in a 1 ↔ 2 ↔ 3 motif, the analysis yields phase reduction
equations in different orders, similar to the theoretical findings. Like in the Stuart-
Landau systems, the second-order reduction already represents a hypernetwork, with
the coupling terms depending on three phases. Contrary to the Stuart-Landau case,
the phase dynamic equations for the van der Pol model also contain the terms with
the phases’ sums.
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6.4 Non-pairwise Interactions in the Network
Reconstruction Problem

Reconstruction of the coupled oscillatory models from data is an efficient tool for
experimental studies of interacting rhythmical objects. A particular example is the
recoveryof brain connectivity frommultichannelmeasurements of brain activity [22–
24]. Another example is the analysis of mutual influences of the cardiac, respiratory,
and brain rhythms [25–27]. In this approach, one assumes that the registered time
series represent outputs of interacting self-sustained oscillating units. These series
allow for estimating of phases and instantaneous frequencies of all oscillators. Typ-
ically, one computes these quantities exploiting the Hilbert transform. Finally, one
uses these estimates to construct the observed network’s phase dynamics model and
exploits this model to quantify the strength and directionality of all connections.
For technical details of phase estimation and equation reconstruction, we refer to
Refs. [27–29]. An essential issue is that the described approach yields the effective
phase connectivity that generally differs from the structural connectivity. The latter
is determined by physical connections between the oscillators, while the former rep-
resents the approximately equivalent phase model’s connections. Belowwe illustrate
that the difference is precisely due to the appearance of the non-pairwise interaction
on the level of phase reduction.

This approach’s main idea is that the dynamics of N interacting oscillators are
represented by a torus in the N -dimensional space if the coupling is not too strong.
Since the coupling function Q (cf. Eq. (6.1)) is 2π -periodic with respect to its argu-
ments, it can be written as an N -dimensional Fourier series, and the coefficients of
this series can be determined by fit.

Consider a simple motif of three pairwise coupled oscillators, described by
Eqs. (6.13). Our goal is to determine the network structure, i.e., to quantify all
connecting links’ strength. While doing this, we shall distinguish between direct
or indirect links. It is convenient to quantify first all incoming connections to one of
the units and then repeat it for other network elements. Without loss of generality,
we can consider the first oscillator. Its phase equation reads:

φ̇1 = ω1 + Q(φ1, φ2, φ3), (6.15)

where Q does not contain the constant term. The simplest and straightforward
approach, used in many studies, is to perform a pairwise analysis of the network.
It means that to quantify the link 1 ← 2, we neglect the third unit entirely and
reconstruct the equation in the form φ̇1 = ω1 + Q(φ1, φ2) with a two-dimensional
coupling function Q(φ1, φ2). Then we compute the norm of the coupling function
‖Q‖ and use it as a measure of the action exerted by the second oscillator on the first
one. To emphasize, that this quantity comes from a pairwise analysis, we denote it
as P1←2.

However, this estimation may yield spurious effective phase connections. Indeed,
suppose three oscillators are organized in a chain, 1 ↔ 2 → 3. Because ϕ1 is corre-
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lated with ϕ2 and ϕ2 acts on ϕ3, pairwise analysis for ϕ1, ϕ3 will yield spurious non-
zero coupling for the 1 → 3 link. Only the full phase dynamics given by Eq. (6.15)
would reveal the absence of a direct connection between the nodes 1 and 3 and the
presence of indirect coupling 1 → 2 → 3. Indeed, as argued in the previous section,
the second-order phase approximation yields the terms depending on all three phases.
It means that the reconstructed from data coupling function Q in Eq. (6.15) generally
contains Fourier components depending on all three phases, and these components
describe the indirect connection 1 → 2 → 3. The direct (pairwise) interaction can
be quantified by its total strength

T1←2 =
⎡

⎣
∑

k,l �=0

∣∣Fk,l,0

∣∣2
⎤

⎦
1/2

, (6.16)

where Fk,l,m are Fourier coefficients of Q(φ1, φ2, φ3) and the summation is per-
formed over the terms which do not depend on the third phase ϕ3. Correspondingly,
the joint action of the second and third oscillators on the first one, i.e., the triplet
interaction, that appears in the higher-order approximation can be quantified by the
triplet norm

T j←2,3 =
⎡

⎣
∑

k,l,m �=0

∣∣Fk,l,m

∣∣2
⎤

⎦
1/2

, (6.17)

where summation is performed over terms depending on three phases. Numer-
ical experiments in Refs. [30] demonstrate that coefficient P1←2 that describes
direct, structurally existing, connections scales linearly with coupling strength ε,
see Eq. (6.15). On the contrary, the scaling of T j←2,3 reveals high-order dependence
on ε, in full agreement with the theory outlined in the previous section.

Extension of the connectivity analysis through partial norms to the case of N > 3
oscillators seems to be straightforward; in Sect. 6.5 we provide such an example.
However, reconstruction of the coupling function for more than three variables
requires very long data sets. As shown in [29], the triplet analysis performed for
moderate lengths of time series, can eliminate this difficulty. Suppose the goal is
to quantify the link j ← k. The solution is to consider all possible N − 2 triplets
of oscillators j, k,m, where m = 1, 2, . . . , N , m �= j, k. For each triplet one recon-
structs the coupling function Q j (ϕ j , ϕk, ϕm), ignoring all other phases, and computes
the partial norm T (m)

j←k like in Eq. (6.17). The minimal value of these estimates yields
the final triplet-based measure of the binary (pairwise) effective phase connectivity
T j←k = minm T (m)

j←k . We illustrate this approach to reconstruction of phase dynamics
hypernetworks by an example of N = 5 and N = 9 randomly coupled van der Pol
oscillators [29]:

ẍk − μ(1 − x2k )ẋk + ω2
k xk = ε

∑

l

σkl(xl cos�kl + ẋl sin�kl). (6.18)
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The data was generated in many runs, and then the coupling structure was recon-
structed by estimating the strength of all links as already discussed. For each run, the
random frequenciesωk were taken from the uniform distribution 0.5 < ω < 1.5. The
asymmetric connection matrix σkl composed of zeros and ones was also randomly
generated, with four incoming connections. Another coupling parameter�was taken
from a uniform distribution 0 ≤ � < 2π . The results, presented in Figs. 4–7 of
Ref. [29] demonstrate that the phase dynamics reconstruction using hypernetworks
provides enhanced separation between truly existing and absent structural connec-
tions. For application of this approach to a hypernetwork with triplet interactions of
12 phase oscillators see Ref. [31].

6.5 Example of Phase Dynamics Reconstruction
in a Network with Triplet Couplings

Here we consider a simple example of a hypernetwork of oscillators with triplet
coupling. It consists of four FitzHugh-Nagumo units [32], and the force acting on a
unit is a product of observables of two other units:

u̇1 = u1 − u31
3

− v1 + 0.9 + 0.4εu2u3,

v̇1 = 0.35(u1 − 0.8v1 + 0.7),

u̇2 = u2 − u32
3

− v2 + 0.8 − 0.6εu1u3 + 0.7εu3u4,

v̇2 = 0.5(u1 − 0.8v1 + 0.7),

u̇3 = u3 − u33
3

− v3 + 1.1 + 0.8εu1u2 − 0.3εu2u4,

v̇3 = 0.42(u1 − 0.8v1 + 0.7),

u̇4 = u1 − u31
3

− v1 + 1 + 0.5εu2u3,

v̇4 = 0.45(u1 − 0.8v1 + 0.7).

(6.19)

This configuration is schematically presented in Fig. 6.1. It should be noted, that
although the coupling looks like a pure triplet one, because the interaction terms are
products of the corresponding variables (cf. [33]), in fact the pairwise coupling is
also present, because average values of observables ui are generally nonzero. Thus,
if one separates these average values by writing ui = ui + ũi , then, e.g., the forcing
for the first unit will be written as u2u3 + u2ũ3 + u3ũ2 + ũ2ũ3, i.e. with terms which
can be effectively considered as a pairwise coupling.

For the model (6.19) we performed numerically the phase reduction analysis, as
described above in Sect. 6.3 and in Ref. [21], for a range of values of the coupling
parameter 0.001 ≤ ε ≤ 0.05. We have looked for the phase dynamics equations in
the form
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Fig. 6.1 A schematic
representation of
network (6.19), with two
triplet couplings

2

4

3

1

ϕ̇s = ωs +
∑

jklm

[
A(s)
jklm cos( jϕ1 + kϕ2 + lϕ3 + mϕ4) + B(s)

jklm sin( jϕ1 + kϕ2 + lϕ3 + mϕ4)
]

(6.20)
In the reconstructionwe took into account all termswith | j, k, l,m| ≤ 2. To represent

the strengthof each couplingmode,wecalculatedC (s)
jklm =

[
(A(s)

jklm)2 + (B(s)
jklm)2

]1/2
.

Altogether, for each oscillator this gives 310 coupling terms.
After finding the coupling modes, we sorted them according to dependence on ε.

We performed a fit C ∼ ε p, and interpreted terms with |p − 1| < 0.1 as linear in ε,
and those with |p − 2| < 0.1 as quadratic in ε. We present the dependencies on ε of
all these terms for oscillators 1 and 2 in Fig. 6.2.

It is instructive to see, which effective phase coupling terms appear in the first and
the second orders in the coupling strength ε. Here are all 34 first-order terms for the
oscillator 1, sorted in descending order in their strength:

(1, 1, 1, 0), (1,−1, 1, 0), (1, 1,−1, 0), (1,−1,−1, 0), (1, 1, 0, 0), (1,−1, 0, 0),

(1,−1,−2, 0), (1, 1, 2, 0), (1, 1,−2, 0), (1,−1, 2, 0), (1, 0,−1, 0), (1, 0, 1, 0),

(1,−2, 1, 0), (1, 2,−1, 0), (1, 2, 1, 0), (1,−2,−1, 0), (2, 1, 1, 0), (2,−1,−1, 0),

(2, 1,−1, 0), (0, 1, 1, 0), (0, 1,−1, 0), (2,−1, 1, 0), (1, 0, 0, 0), (1, 2, 0, 0),

(1, 0,−2, 0), (1,−2, 0, 0), (1, 0, 2, 0), (2, 1, 0, 0), (1, 2,−2, 0), (1,−2,−2, 0),

(1, 2, 2, 0), (2, 1,−2, 0), (0, 1, 0, 0), (2,−1,−2, 0).

(6.21)

One can see that the largest terms describe triplet coupling 1 ↔ 2 ↔ 3 ↔ 1 and
the pairwise couplings. There is no term that includes the phase of oscillator 4. Such
terms appear in the second order in ε. Altogether, there are 63 terms:

(1, 2, 0, 2), (1, 2,−2, 2), (1,−2, 0,−2), (1,−2, 2,−2), (1, 0,−2,−2), (1, 2,−2,−2),

(1, 0, 2, 2), (1,−2, 2, 2), (1, 2,−1, 2), (1,−2, 1,−2), (1, 2, 1, 2), (1,−2,−1,−2),

(1,−2, 1,−1), (1, 2,−1, 1), (1,−2,−1,−1), (2, 2, 2, 0), (1, 2, 1, 1), (1, 2, 2, 1),

(1,−2,−2,−1), (1, 0, 0, 1), (1, 0, 0,−1), (1, 0, 1, 1), (1,−2,−2,−2), (1, 2, 1,−1),

(1, 2, 2, 2), (1, 0,−1,−1), (1,−2,−1, 1), (1,−1, 2, 2), (1, 0,−1, 1), (1, 2, 0, 1),

(1,−2, 0,−1), (1, 2,−2,−1), (1, 0, 1,−1), (1,−2, 2, 1), (1, 2, 2,−1), (1, 0,−2, 1),

(1,−1,−2,−2), (1, 0, 2,−1), (1, 0,−2,−1), (1, 1, 2, 2), (1, 0, 2, 1), (2,−2, 0,−2),

(1,−2,−2, 1), (1, 0, 0,−2), (1, 0, 0, 2), (2, 2,−2,−2), (0, 2, 0, 2), (1,−2, 0, 1),

(0, 0, 2, 2), (0, 2,−2,−2), (1,−2,−2, 2), (1,−1,−2, 1), (2, 2, 1, 1), (1, 0,−2, 2),

(1, 1,−2, 1), (1, 2,−1,−1), (2,−2, 1,−2), (1,−2, 0, 2), (1, 0, 1, 2), (1, 0, 1,−2),

(1, 0,−1,−2), (1,−2,−1, 2), (0, 0, 1,−1).
(6.22)
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Fig. 6.2 Scaling of coupling terms with ε for oscillators 1 (panel (a)) and 2 (panel (b)). The
dashed and the dotted lines show scalings ∼ ε and ∼ ε2, respectively. The corresponding coupling
coefficients are depicted with filled circles and open squares

Thirty-three of them include all four phases and therefore describe effective quadru-
plet coupling.

The second oscillator participates in two triplet couplings, and therefore the num-
ber of phase interaction terms in the first and in the second order is larger, 65 and 69,
respectively. The first-order terms are
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(0, 1, 1, 1), (0, 1,−1, 1), (0, 1,−1,−1), (0, 1, 1,−1), (1,−1,−1, 0), (1, 1,−1, 0),

(1,−1, 1, 0), (1, 1, 1, 0), (0, 1, 0,−1), (0, 1, 0, 1), (1,−1, 0, 0), (1, 1, 0, 0),

(0, 1, 2, 1), (0, 1,−2,−1), (0, 1, 2,−1), (0, 1,−2, 1), (1,−1,−2, 0), (1, 1, 2, 0),

(1,−1, 2, 0), (1, 1,−2, 0), (0, 2,−1, 1), (0, 0, 1,−1), (0, 1, 1, 0), (1, 0,−1, 0),

(0, 2, 1,−1), (0, 0, 1, 1), (1, 0, 1, 0), (0, 1,−1, 0), (0, 2,−1,−1), (1,−2,−1, 0),

(1,−2, 1, 0), (0, 1, 1, 2), (1, 2,−1, 0), (1, 2, 1, 0), (0, 1,−1, 2), (0, 1, 1,−2),

(0, 1,−1,−2), (0, 2, 1, 1), (1, 0, 0, 0), (0, 2, 0,−1), (0, 1, 0, 2), (0, 1, 0, 0),

(1, 2, 0, 0), (0, 1, 2, 2), (0, 1,−2, 2), (1, 0, 2, 0), (1,−2, 0, 0), (0, 1, 2,−2),

(1,−2, 2, 0), (2,−1,−1, 0), (0, 2, 2,−1), (2, 1,−1, 0), (0, 1, 0,−2), (1, 0,−2, 0),

(1, 2, 2, 0), (2,−1, 1, 0), (0, 0, 2,−1), (2, 1, 1, 0), (1, 2,−2, 0), (0, 1, 2, 0),

(0, 1,−2, 0), (0, 2,−1, 0), (0, 2,−1,−2), (2,−1,−2, 0), (2, 1,−2, 0)
(6.23)

and the second-order terms are

(1,−2, 2,−2), (1, 2, 0, 2), (1, 2,−2, 2), (1,−2, 0,−2), (1,−2,−1, 1), (1,−2,−1,−1),

(1,−2, 1,−2), (1, 0, 2, 2), (1, 2,−2,−2), (1,−2, 2, 2), (1, 2,−1, 2), (0, 2,−2, 0),

(1, 0,−2,−2), (1,−2, 0, 1), (1,−2,−1,−2), (1,−2, 2, 1), (1, 2, 1, 1), (1,−2,−2,−1),

(1, 2, 0, 1), (1,−2,−2, 1), (1, 0, 0, 1), (1,−2, 2,−1), (1, 0, 2, 1), (1,−2, 0,−1),

(1, 2, 1, 2), (1, 2, 0,−1), (1, 2,−2, 1), (1, 0,−2, 1), (1, 2,−2,−1), (1, 0, 1, 1),

(1, 2, 2, 1), (2, 2, 0, 0), (2,−2,−2, 0), (1, 0, 0,−1), (1,−2, 1,−1), (1, 0, 2,−1),

(1, 2, 2, 2), (1, 0,−2,−1), (1, 0, 1,−1), (1, 0,−1, 1), (1, 2, 2,−1), (1, 1, 0, 1),

(1, 2, 1,−1), (1, 1, 2, 1), (1, 2,−1,−1), (2, 2,−2, 0), (1,−1, 2, 1), (1,−2, 1, 1),

(1, 0,−1,−1), (1, 1,−2,−1), (1,−1, 2,−1), (1,−2, 0, 2), (1,−2,−1, 2), (1, 1, 2,−1),

(1,−1, 1, 1), (1, 2, 1,−2), (1, 0, 0, 2), (1, 0, 1, 2), (1,−1,−2, 1), (2, 2,−2, 2),

(1, 1, 0,−1), (2,−2, 2,−2), (1, 1, 1,−1), (2, 2, 1,−1), (2, 0, 1,−1), (2, 0,−2,−2),

(2, 2, 1, 2), (2, 2,−2,−2), (2, 2, 2, 2)
(6.24)

6.6 Conclusions

This mini-review demonstrates that hypernetworks naturally appear in the phase
dynamics description of ensembles of coupled oscillators. There are two main sce-
narios. First, the hypernetworks arise due to nonlinear mean-field coupling. Second,
simple pairwise connections on the level of state variables result in hypernetworks of
phase oscillators in the process of high-order phase reduction. This fact is significant
for a practical problem, namely, to determine the network connectivity frommeasure-
ments. Fitting a hypernetwork of phase oscillators to experimental data essentially
improves the recovery of the structural connectivity.
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