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ABSTRACT

Populations of globally coupled phase oscillators are described in the thermodynamic limit by kinetic equations for the distribution densities
or, equivalently, by infinite hierarchies of equations for the order parameters. Ott and Antonsen [Chaos 18, 037113 (2008)] have found an
invariant finite-dimensional subspace on which the dynamics is described by one complex variable per population. For oscillators with Cauchy
distributed frequencies or for those driven by Cauchy white noise, this subspace is weakly stable and, thus, describes the asymptotic dynamics.
Here, we report on an exact finite-dimensional reduction of the dynamics outside of the Ott–Antonsen subspace. We show that the evolution
from generic initial states can be reduced to that of three complex variables, plus a constant function. For identical noise-free oscillators, this
reduction corresponds to the Watanabe–Strogatz system of equations [Watanabe and Strogatz, Phys. Rev. Lett. 70, 2391 (1993)]. We discuss
how the reduced system can be used to explore the transient dynamics of perturbed ensembles.
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Large ensembles of globally coupled oscillators can be described
by means of kinetic equations for the evolution of the distribution
densities. These equations take the simplest form if the oscillators
are described by their phases only. Alternatively, one can write an
infinite set of ordinary differential equations for the set of order
parameters (Fourier modes of the distribution). For oscillators
driven by Cauchy white noise or for a Cauchy distribution of nat-
ural frequencies, the system of equations for the order parameters
(for coupling in the first harmonics of the phase) has a remarkable
property first discovered by Ott and Antonsen in 2008: it pos-
sesses an invariant manifold on which the dynamics reduces to
just one complex equation. In this paper, we extend this result by
showing that for arbitrary initial conditions the dynamics reduces
to that of three complex variables. In the noise-free case of identi-
cal oscillators, our equations are equivalent to the system derived
by Watanabe and Strogatz in 1993. The finite-dimensional reduc-
tion allows the exact calculation of transients to the attracting
Ott–Antonsen states, by solving a simple six-dimensional system
of equations.

I. INTRODUCTION

Ensembles of coupled oscillators is a popular object in studies
of complex systems, with a wide range of applications; from physi-
cal systems (lasers,1 Josephson junctions,2,3 chemical reactions4), to
engineering (pedestrians on a bridge5) and life sciences (neurons,6,7

nephron cells,8 genetic circuits9). A common theoretical approach
includes different levels of reductions and idealizations. If the units
are self-sustained periodic oscillators, and the coupling is weak,
one can perform a phase reduction, neglecting variations of the
oscillators’ amplitudes that appear in the higher orders in coupling
strength.10 As a result, each oscillator is described by just one vari-
able on a unit circle—the phase, which enormously simplifies the
analysis. Another idealization, which is appropriate for large ensem-
bles, is the thermodynamic limit of an infinite number of units. This
allows for a formulation of the evolution in terms of kinetic equa-
tions for the distribution of the phases. An important class of models
are those with global (or mean-field) coupling. Such models appear
naturally, e.g., for Josephson junctions with a common load and for
pedestrians on a bridge; in other cases (e.g., for neural ensembles),
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they are justified by a huge number of interconnections between the
units.

Among the setups for ensembles of globally coupled phase
oscillators, the paradigmatic Kuramoto model11 and its
generalizations12,13 are particularly popular. Here, one assumes a rel-
atively simple coupling, where the dynamics of the oscillator’s phase
depends only on the first harmonics of the phase itself. To define
the coupling, one introduces mean fields, which are the circular
moments of the phase distribution. Different setups with identical
deterministic units, as well as ones having different natural fre-
quencies and/or being driven by noise, have been considered in the
literature.

One of the striking properties of the Kuramoto-type models is
the possibility to reduce the dynamics to a finite-dimensional one.
Watanabe and Strogatz14,15 (WS) have demonstrated that ensembles
of identical, noise-free units can be exactly reduced to three dynam-
ical equations (plus constants of motion). Ott and Antonsen16 (OA)
found a particular family of phase distributions (wrapped Cauchy
distribution) that is invariant under the dynamical evolution. This
holds not only for identical units, but also for ones with a Cauchy
distribution of natural frequencies, and for ones driven by white
Cauchy noise.17,18 In contradistinction to WS theory, the OA reduc-
tion is not valid for arbitrary initial states—they should belong to the
OA invariant manifold. However, because there are arguments that
the OA manifold is attracting (although not in a trivial sense, see dis-
cussion in19–21), the OA equations correctly describe the asymptotic
in time regimes.

The goal of this paper is to fill, at least partially, the gap between
WS and OA theories. We will develop, in the thermodynamic limit, a
low-dimensional description of the Kuramoto-type phase ensembles
with Cauchy noise and/or Cauchy distribution of natural frequen-
cies, valid for arbitrary initial conditions. Of course, this reduction
contains WS and OA equations as particular cases.

The paper is organized as follows. In Sec. II, we formulate the
problem. In Sec. III, we introduce our basic tools (generating func-
tions) and define a family of finite-dimensional invariant manifolds
(these results have been also presented in a short communication22).
Section IV contains the main result—we show how the evolution
of generic states can be reduced to three complex variables plus
a constant function. Here, we also discuss different possibilities of
introducing these variables based on initial conditions. In Sec. V,
we demonstrate the stability of the OA manifold in the presence
of noise. In Sec. VI, we consider identical noise-free oscillators
and demonstrate that the dynamics reduces to the WS equations.
Section VII is devoted to the implications for the spectrum of the
Lyapunov exponents. In Sec. VIII, we discuss how our approach
allows for finding the evolution outside of the OA manifold. We
conclude and discuss possible further developments in Sec. IX.
Many technical details are shifted from the main text to appendixes.

II. PROBLEM FORMULATION

In this paper, we consider populations of phase oscillators,
subject to global coupling or to a global common force, in the ther-
modynamic limit of an infinite number of units. Consequently, the
proper description is in terms of the phase distribution functions.
Our theory is valid for a restricted class of systems: (i) important

is that the coupling/forcing is proportional to the first harmon-
ics of the phase only and (ii) the oscillators can differ from each
other only in additive terms in their phase dynamics, which are
either Cauchy-distributed white noise terms or Cauchy-distributed
frequency constants, or a combination of both. In this section, we
introduce these models.

A. Ensemble of phase oscillators with independent

Cauchy noise forces

We consider an ensemble of noisy phase oscillators coupled in
the first harmonic,

ϕ̇j = ω(t)+ Im
[

2h(t)e−iϕj
]

+ γ ξj(t). (1)

Here, ω is a combination of a natural frequency and a real-valued
additive force, and h(t) is a complex-valued force that includes the
first harmonic of the phase. Both these quantities can potentially
depend on the mean fields of the population, thus readily describ-
ing global coupling. There is no restriction on these forces, e.g., they
can include noise which is then the common noise for all elements of
the population (cf. Refs. 23 and 24). The term ξj(t) represents inde-
pendent, normalized Cauchy white noise forces, with γ being the
real and positive noise strength.17,18,25,26

We consider the thermodynamic limit of infinitely many oscil-
lators. In this case, it is natural to describe the state with the phase
density function P(ϕ, t) and express the original dynamics in terms
of the continuity equation, a partial differential equation (PDE)
where the Cauchy noise begets a term with a fractional derivative
on the right-hand side,

∂
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ϕ̇P
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one denotes an operator, which in the Fourier represen-

tation reduces to a multiplication with |n|α :
∣

∣

∣

∂

∂ϕ

∣

∣

∣

α

einϕ = −|n|αeinϕ ,

cf. Ref. 27. In this representation, the usual Gaussian noise cor-
responds to α = 2, while the Cauchy noise corresponds to α = 1
(other non-integer values of α describe different α-stable distribu-
tions).

The phase density is commonly expressed as a Fourier series,

P(ϕ, t) =
1

2π

(

1 +

∞
∑

n=1

Zn(t)e
−inϕ + c.c.

)

,

Zn(t) = 〈einϕ〉 =

∫ 2π

0

dϕ einϕP(ϕ, t).

(3)

Quantities Zn represent complex order parameters, also known as
Kuramoto–Daido order parameters.11,28 These circular moments of
the phase distribution are in fact the “mean fields,” which may gov-
ern the ensemble. In terms of these order parameters, the dynamics
is represented as an infinite set of ordinary differential equations
(ODE),

1

n
Żn = (iω − γ )Zn + hZn−1 − h∗Zn+1, n ≥ 1, (4)

(here it suffices to consider positive n only, so we replace |n| in the
noisy term by n). These equations have been discussed in Ref. 18 and
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represent the exact dynamics of system (1) in the thermodynamic
limit, without any approximation or assumption. Normalization of
the phase density implies Z0 ≡ 1.

B. Ensemble with a Cauchy distribution of natural

frequencies

Equivalent equations can also be derived to represent the case
of Cauchy distributed natural frequencies, the situation widely con-
sidered starting from the initial formulation by Kuramoto.10,29 In this
case, we consider the terms ξj in Eq. (1) as constants with a normal-

ized Cauchy distribution g(ξ) = π−1(1 + ξ 2)
−1

. The total additive
force ω(t)+ γ ξj can be interpreted as an instantaneous frequency
of oscillator j. If ω = ω0 is a constant, then ω0 + γ ξj is the natu-
ral frequency of oscillator j. Parameter γ describes the width of the
distribution of natural frequencies (as we will see below, this param-
eter plays the same role as the strength of the Cauchy noise above,
thus we use the same letter to describe it). In our further deriva-
tion, we follow the way presented recently in Ref. 21. One introduces
the parameter ξ into the distribution of phases P(t,ϕ; ξ), and the
equation for this distribution (2) then reads

∂

∂t
P
∣

∣

ξ
+

∂

∂ϕ

(

[

ω + γ ξ − ihe−iϕ + ih∗eiϕ
]

P
∣

∣

ξ

)

= 0, (5)

where we used compact notation P
∣

∣

ξ
≡ P(ϕ, t; ξ). Of interest are the

order parameters (circular moments), averaged over the additions
to the frequency ξ ,

Zn(t) =

∫ ∞

−∞

dξ

∫ 2π

0

dϕ einϕP
∣

∣

ξ
g(ξ). (6)

The main assumption allowing for explicit equations for these order
parameters is analyticity of the distribution P(ϕ, t; ξ) in the upper
halfplane of complex ξ . This assumption has been first introduced
by Ott and Antonsen in their seminal paper.16 The main reason
behind it is the possibility to calculate the integrals via residue
integration. Indeed, employing the residue theorem for a contour
closing the upper halfplane in (6) and taking the only pole at ξ = i,
one reduces (6) to Zn(t) =

∫

dϕ einϕP(ϕ, t; i). Now, let us multiply
(5) with einϕg(ξ) and integrate in ξ and ϕ. The only additional
integral to be calculated (again by virtue of the residue method) is

∫ 2π

0

dϕ

∫ ∞

−∞

dξ ξeinϕP
∣

∣

ξ
g(ξ) = i

∫ 2π

0

dϕ einϕP
∣

∣

i
= iZn.

This yields the system of equations

Żn = in(ω + iγ )Zn + nhZn−1 − nh∗Zn+1,

which coincides with (4).
We end this section with two remarks. First, the validity of

Eq. (4) for Cauchy independent noises is unconditional, while for
the Cauchy distributed constant additions to the frequency, an extra
assumption of analyticity has to be adopted; the validity of this
assumption is commonly assumed in the OA theory and its appli-
cations, but one can construct distributions of the phase which, at
least during some time interval, violate this assumption.30

The second remark is that if one has both Cauchy-distributed
constant and noisy additions to the frequency, with intensities γ1

and γ2, then one can use Eq. (4) with the total intensity γ = γ1 + γ2.

III. GENERATING FUNCTIONS AND

FINITE-DIMENSIONAL REDUCTIONS OF THE

DYNAMICS

A. Ordinary and exponential generating functions

In our treatment of the infinite system (4), we will make use
of generating functions, which are formal power series. We will use
both ordinary generating function (OGF), 31

F(k) =

∞
∑

n=1

fnkn,

and the exponential generating function (EGF)

F(k) =

∞
∑

n=0

fn
kn

n!
.

There is no simple relation between these functions for the same
sequence {fn}, and in different situations we will use different gener-
ating functions.

B. Finite-dimensional reductions of the infinite

system for circular moments

In this section, we briefly introduce the finite-dimensional
reductions described in our recent letter.22 First, we characterize
the state with complex order parameters Zn by introducing the
complex-valued EGF (because |Zn| ≤ 1, this series converges for
all k),

Z(k, t) =

∞
∑

n=0

Zn(t)
kn

n!
. (7)

Then, the dynamics (4) are recast as a single PDE (see Appendix A
for the derivation), which in contrast to Eq. (2) is generally complex
(prime denotes derivative with respect to k),

Ż = (iω − γ )kZ′ + hkZ − h∗kZ′′. (8)

The normalization condition is Z(0, t) = 1. The structure of this
equation allows for a particular solution with the exponential ansatz
Z(k, t) = ekQ(t), revealing a single ODE for the complex variable Q(t),

Q̇ = (iω − γ )Q + h − h∗Q2. (9)

This is commonly known as the Ott–Antonsen ansatz,16 which
reveals a two-dimensional invariant manifold in the infinite system
(4). In this case, higher circular moments are powers of the first
one: Zn = Qn. The distribution of the phases is the wrapped Cauchy
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distribution (a.k.a. Poisson kernel),

P(ϕ, t) =
1

2π

1 − |Q|2

|1 − Qe−iϕ |2
. (10)

We recently generalized this solution with an ansatz allowing
for an additional function,22

Z(k, t) = ekQ(t)B(k, t), (11)

in which case we obtain, in addition to (9), another PDE for the
newly introduced function B(k, t),

Ḃ =
(

iω − γ − 2h∗Q
)

kB′ − h∗kB′′. (12)

Although at first glance this equation is similar to Eq. (8), it does not
contain a term without k-derivative of B(k, t) and, thus, allows for
a more general dimensionality reduction. Namely, we expand the
function B(k) as an EGF (we will see below that coefficients βn grow
not faster than ∼constn; thus, this series converges for all k),

B(k, t) =

∞
∑

n=0

βn(t)
kn

n!
, (13)

(β0 ≡ 1 due to normalization), thus introducing new dynamical
variables βn(t), that describe the dynamics with an infinite set of
ODEs [plus one ODE (9) for Q],

Q̇ = (iω − γ )Q + h − h∗Q2 , (14a)

1

n
β̇n = (iω − γ − 2h∗Q)βn − h∗βn+1, n ≥ 1, (14b)

[see Appendix A for the relation of (12) to (14b)]. Notice how
the right-hand side of (14b) only contains terms proportional to
βn and βn+1, but no term with βn−1 is present. This means that
if the system is truncated at a finite number N of variables βn

(i.e., assuming that all higher terms vanish identically: βn≥N = 0),
the dynamics is exactly described by the first N equations of sys-
tem (14b) for all times. These truncations represent dynamically
invariant finite-dimensional manifolds. The βn variables relate to
the Kuramoto–Daido order parameters Zn via a modified binomial
transform (cf. Refs. 32 and 33),

Zn(t) =

n
∑

m=0

(

n

m

)

βm(t)
[

Q(t)
]n−m

,

βn(t) =

n
∑

m=0

(

n

m

)

Zm(t)
[

−Q(t)
]n−m

.

(15)

For example, the first three order parameters are expressed with the
newly introduced variables as

Z1 = Q + β1, Z2 = Q2 + 2Qβ1 + β2,

Z3 = Q3 + 3Q2β1 + 3Qβ2 + β3.

IV. REDUCTION OF THE DYNAMICS TO THREE

COMPLEX VARIABLES

As outlined in Sec. III, there are many finite-dimensional
invariant manifolds (with a finite number of additional variables βn)

beyond the OA two-dimensional manifold (which corresponds to
vanishing βn for n ≥ 1). However, as already mentioned in Ref. 22,
it is not excluded that different βn could be dependent. Below we
show that this is indeed the case, and the dynamics of the whole
(even infinite) hierarchy of variables βn(t) can be reduced to two
complex equations.

A. Six-dimensional reduction

We now introduce two new complex variables y(t), s(t) and
new dynamical equations,

Q̇ = (iω − γ )Q + h − h∗Q2, (16a)

ẏ = (iω − γ − 2h∗Q)y, (16b)

ṡ = h∗y. (16c)

Our goal below is to demonstrate that these equations are equiva-
lent to the infinite system (14) and, therefore, to the original system
(4). At this point, we would like to mention that Eqs. (16) look
like a skew system: variable Q appears on the r.h.s. of (16b), and
variable y appears on the r.h.s. of (16c), but variables y, s do not
appear on the r.h.s. of (16a). However, in most applications, one
describes a population with global coupling, where ω, h depend on
the order parameters Zn and, thus, on all dynamical variables Q, y, s
[cf. Eq. (23)].

To show how this system represents dynamics (14), we first
introduce additional auxiliary variables αn(t) by transforming βn(t),

βn(t) = yn(t)αn(t). (17)

We take the time derivative of this relation and divide both sides
by nβn

1
n
β̇n

βn

=
ẏ

y
+

1
n
α̇n

αn

,

and then insert the dynamics of βn (14b) and y (16b),

(iω − γ − 2h∗Q)− h∗ βn+1

βn

= (iω − γ − 2h∗Q)+

1
n
α̇n

αn

.

Notice how the majority of the terms cancel, including all the effects
of frequency ω(t) and noise γ . As a result, the dynamics of the
variables αn(t) simplifies to

1

n
α̇n = −h∗y αn+1. (18)

Now let us introduce the OGF of the variables αn(t),

A(k, t) =

∞
∑

n=1

αn(t)k
n, (19)

and express the dynamics (18) in terms of this OGF (see Appendix A
for the derivation),

Ȧ = −h∗y

[

A
′ −

1

k
A

]

. (20)

Next, we introduce yet another set of variablesµn. This time we
launch them not directly, but via an expression of the corresponding
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OGF M(k, t) =
∞
∑

n=1

µnkn in terms of A(k, t),

M(k)

k
=

A(k + s)

k + s
, (21)

where s is the variable in (16c). By taking the time derivative of
Eq. (21), we obtain

Ṁ(k)

k
=

Ȧ(k + s)

k + s
+ ṡ

[

A′(k + s)

k + s
−

A(k + s)

(k + s)2

]

.

Now we insert the dynamics of s according to Eq. (16c), as well as
the dynamics of A according to Eq. (20) and behold, the right-hand
side of this relation is zero. This means that the OGFM and the cor-
responding variables µn are constant in time: µ̇n = 0, Ṁ(k) = 0. In
other words, the variablesµn are integrals of motion. This completes
the proof that Eqs. (16) are equivalent to Eqs. (14).

The radius of convergence of the constant function M(k) is
determined by the asymptotic behavior of the coefficients µn. Below
we show that these coefficients initially coincide with the order
parameters Zn(0). Since they are bounded |Zn| ≤ 1, the radius of
convergence of M is at least one. During dynamical evolution, the
relevant argument of function M is s(t), and in all our simula-
tions we never observed it getting larger than one in absolute value:
|s(t)| < 1.

It is instructive to rephrase the relation (21), formulated above
in terms of OGFs, to the level of the variables (where it corre-
sponds to a modified binomial transform, see Appendix B for the
derivation),

µn =

∞
∑

m=n

(

m − 1

n − 1

)

αm(t)
[

s(t)
]m−n

,

αn(t) =

∞
∑

m=n

(

m − 1

n − 1

)

µm

[

−s(t)
]m−n

.

(22)

Notice that we do not write the time argument of µn because these
quantities are constants.

Using this relation, as well as how the variables αn(t) relate to
βn(t) (17), and then how βn(t) relate to the order parameters Zn(t)
(15), we can express the order parameters in terms of the constant
function M(k) and the three dynamic variables Q(t), y(t), s(t) (see
Appendix C for the derivation) for all times (here we omit the time
dependence in notation for convenience),

Zn = Qn −

n
∑

m=1

(

n

m

)

Qn−mym

m−1
∑

d=0

sd−m

d!
M

(d)(−s), (23)

where M(d) denotes the dth derivative of M with respect to k. In
particular, the first circular moment (the Kuramoto order parame-
ter) is expressed as

Z1 = Q − y
M(−s)

s
. (24)

Notice how at s = 0 one has to take the limit lim
ε→0

M(−ε)

ε
= −µ1.

For all moment expressions (23), we have to consider similar limits:

lim
ε→0

m−1
∑

d=0

εd−m

d!
M(d)(−ε) = −µm. When performing numerical inte-

gration, one thus requires an expansion of the above expression (23)
for small Q and small s,

Zn = yn

[

µn + nµn−1

Q

y
− nµn+1s

]

+ O(Q2, Qs, s2), (25)

we remind that µ0 ≡ 1 for normalization reasons. The need for
expansion (25) can also be avoided by considering a different
definition of the constant function (21), see Appendix E—it also
simplifies the expression for moments (23).

B. Initial conditions

The new set of variables Q, y, s,µn is not uniquely determined
by the initial order parameters Zn, and in this section we discuss pos-
sible variants of determining them. Different choices for the initial
conditions of Q, y, s,µn define the constant function M(k) differ-
ently. We first illustrate this with the simplest example of the OA
manifold.

1. Different choices of variables for OA initial

conditions

As discussed above, on the OA manifold the EGF reads
Z(k, t) = exp[kZ(t)] and the order parameter Z obeys Ż = (iω − γ )

Z + h − h∗Z2. Suppose, having a set of initial moments Zn(0)
= Zn(0), we want to introduce new variables Q,βn according to
(11). One can immediately see that a set βn(0) = βn(0) is admissible
if Q(0)+ β(0) = Z(0), in this case B(k, 0) = exp[kβ(0)]. Further-
more, relation (17) allows for different choices of y(0) and αn(0).
For any choice of y(0), we obtain αn(0) = αn, with α = β(0)/y(0).
It is easy to see that independently of the choice of β(0) and y(0),
the dynamics of the order parameters is the same. Indeed, in this
case M(k) = αk/(1 − αk) and the main order parameter accord-
ing to (24) is Z1 = Q + αy/(1 + αs). Calculation of the derivative
Ż1 from the general dynamical equations (16) yields the correct
equation Ż1 = (iω − γ )Z1 + h − h∗Z2

1, i.e., the system remains on
the OA manifold. In this specific case of pure OA dynamics, it is
natural to consider α = 0 such that M = 0 and the only relevant
equation is the OA equation (16a).34,35

2. Variant A: A simple choice of initial variables

Here, we present possibly the simplest choice of initial condi-
tions for Q, y, s,µn. We initially set Q and s to zero and set y to 1 so
that all the variable sets µn,αn,βn, and Zn coincide

Q(0) = 0,

y(0) = 1,

s(0) = 0,

µn = αn(0) = βn(0) = Zn(0).

(26)
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Then, the constant function can simply be determined by the initial
order parameters,

M(k) =

∞
∑

n=1

Zn(t = 0) kn. (27)

It is instructive to express this function in terms of the initial
distribution of the phases

M(k) =

∫ 2π

0

dϕ P(ϕ, 0)
keiϕ

1 − keiϕ
. (28)

As discussed above, this is not the only possible choice of ini-
tial conditions and in some cases might not be optimal. Notice that
for this choice, the OA manifold corresponds to the constants being
powers of Z1(0): µn = Zn

1(0), so they do not vanish, as is commonly
considered.34,35 In terms of the dynamics, the two descriptions are
equivalent.

Next, we list specific functions M(k) for some examples of the
initial states in this variant A of the initial conditions (26). We stress
here that a representation via an initial distribution density is valid
for the interpretation of the system with identical oscillators under
Cauchy white noise (Sec. II A). For the case of non-identical oscilla-
tors with a distribution of frequencies (Sec. II B), one should operate
with the order parameters directly.

• A uniform distribution P(ϕ, 0) = 1
2π

corresponds to M(k) = 0.
Here, all the moments vanish, which is a trivial invariant state of
the dynamics (2).

• A delta distribution of the phases P(ϕ, 0) = δ(ϕ − ϕ0) corre-

sponds to Zn = exp(inϕ0) and, thus, M(k) = eiϕ0 k

1−eiϕ0 k
.

• A wrapped Cauchy distribution P(ϕ, 0) = 1
2π

1−|µ|2

|1−µe−iϕ |2
with a

complex parameter µ ∈ C corresponds to M(k) =
µk

1−µk
. The

moments are powers of the parameterµ,µn = µn, which means
this state is on the OA manifold.16

• A Kato–Jones distribution36 P(ϕ, 0) = 1
2π
(1 + c µe−iϕ

1−µe−iϕ + c.c.)

with complex parameters c,µ ∈ C, corresponds to M(k)

= c µk
1−µk

. Its moments are described by a power series mul-

tiplied with a complex constant: µn = cµn, making it a
skewed/asymmetric generalization of the wrapped Cauchy dis-
tribution.

• Distributions with a finite number of moments P(ϕ, 0)

= 1
2π
(1 +

N
∑

n=1

µne−inϕ + c.c.) correspond to polynomials M(k)

=
N
∑

n=1

µnkn.

• Distributions with binomial moments µn =
(

n

m

)

µn for

m ≥ 1 correspond to rational functions M(k) =
(µk)m

(1−µk)m+1 .

Their phase density reads P(ϕ, 0) = 1
2π
(1 +

µme−imϕ

(1−µe−iϕ )
m+1 + c.c.).

• A half-uniform distribution

P(ϕ, 0) =

{

1
π

if ϕ ∈ (ϕ0,ϕ0 + π),

0 else,
(29)

corresponds to M(k) = 2i
π

arctanh(eiϕ0k). Here, odd moments

are fractions µ2n−1 = 2i
π

exp(i(2n−1)ϕ0)

2n−1
, and even ones are equal to

zero µ2n = 0, n ≥ 1.
• A sawtooth distribution P(ϕ, 0) = 1

π
(1 −

ϕ−ϕ0
π

+ b
ϕ−ϕ0
π

c) cor-

responds to M(k) = − i
π

log(1 − ei2ϕ0k2). Here, even moments

are fractions µ2n = 2i
π

exp(i2nϕ0)

2n
, and odd ones are equal to zero

µ2n−1 = 0, n ≥ 1.

In practice, the phase density can only be observed empiri-
cally and, therefore, it may not be clear how to choose M(k). In
such situations, it can always be approximated with a finite trun-

cation of its Taylor series M(k) ≈
N
∑

n=1

Zn(0)k
n, one only needs to

estimate the first few initial moments Zn(0). This just corresponds
to approximating the initial state with a finite Fourier representa-
tion. In Appendix F, we present a numerical example where we test
the convergence of such approximations.

We end this subsection with the following remark: if the initial
distribution of the phases is a weighted sum of “elementary” dis-
tributions P(ϕ, 0) =

∑

m cmPm(ϕ, 0) with real weights cm ∈ R that
add up to 1:

∑

m cm = 1 [additionally one should ensure that P(ϕ, 0)
≥ 0], then the constant generating function is the weighted sum
of the corresponding “elementary” generating functions M(k)
=
∑

m cmMm(k). In particular, in Refs. 21 and 37 a superposition
of several wrapped Cauchy distributions has been considered as an
initial state; in terms of the approach above this corresponds to
M(k) =

∑

m cm
κmk

1−κmk
, where complex parameters κm characterize

partial distributions.

3. Variant B: Initial conditions based on the OA

manifold

Often initial states that are close to the OA manifold are of
interest. Suppose that the order parameters are well described as
powers of a complex constant, with minor perturbations,

Zn(0) = Rn + εn. (30)

In this case, a different initial condition appears natural,

Q(0) = R,

y(0) = 1,

s(0) = 0,

µn = αn(0) = βn(0) =

n
∑

m=1

(

n

m

)

εm(−R)n−m,

(31)

and the constant function M(k) is expressed as

M(k) =

∞
∑

n=1

kn

n
∑

m=1

(

n

m

)

εm(−R)n−m. (32)

This function is small if values of εn are small. Notice, however, that
this “perturbation” approach is actually global, because smallness of
εn is not needed, and M(k) need not be small for this description to
be valid. Note that the definition of function M(k) depends on the
choice of initial conditions [cf. (27) and (32)], so the list of specific
M(k) functions in Sec. IV B 2 does not apply here. The moments are
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still described with Eq. (23) but for numerical integration one needs
to expand them beyond (25) for only small s (such expansions can
be avoided by considering an alternative constant function to M,
see Appendix E).

A simple specific example where the perturbation to the OA
manifold in (30) is one where only the first harmonic term is per-
turbed: εn = 0 for n > 1. In this case, M(k) = ε1

k

(1+Rk)2
and so

the first moment is given by Z1 = Q + ε1
y

(1−Rs)2
. The dynamics

follow (16).
We mention here that in some cases, an extension of the

set of variables might be appropriate. As an example, we show in
Appendix D the possibility to describe an initial state similar to (30)
with a system of four complex variables.

C. Finite ensemble numerical comparison

Here, we numerically compare the derived low-dimensional
dynamics (16), which is exact in the thermodynamic limit, with
a simulation of a finite ensemble. We take the example already
explored in Ref. 22: an array of overdamped noisy Josephson junc-
tions coupled via a resistive load.15 The equations for the Josephson
phases read

ϕ̇j = 1 + a sin(ϕj)+
ε

N

N
∑

n=1

sin(ϕn)+ γ ξj(t). (33)

In terms of the basic model (1), this corresponds to the choice
of ω, h : ω = 1 + ε Im[Z1] and h = − a

2
. We consider parameters

a = −0.7, ε = 1.5, and noise strength γ = 0.02. To highlight the
advantage of the new derivation, we consider the initial distribu-
tion of phases to be half-uniform (29), thus starting far from the OA
manifold, and also far from initial states that are easy to represent in
terms of the Q,βn hierarchy.22 For the finite ensemble, we consider
10 000 phases, which are initially randomly sampled in the interval
[0,π). For our exact reduction in the thermodynamic limit, we take
initial conditions from variant A (26): Q(0) = s(0) = 1 − y(0) = 0
and, therefore, the constant function M(k) = 2i

π
arctanh(k). The

comparison of the trajectories in Fig. 1 shows a very close match,
and we expect it to be even closer for larger ensembles. The discrep-
ancies appear to be only due to finite size effects, we stress that in the
limit of an infinitely large ensemble our reduction (16) is exact.

V. GLOBAL STABILITY OF THE OA MANIFOLD

Stability of the OA manifold has been discussed in Refs. 19
and 21. Here, we demonstrate how these results are reproduced in
our approach. To show the attractiveness of the OA manifold, it
is enough to demonstrate that the variable y tends to zero y → 0.
Indeed, for y = 0, we have from (17) βn = 0, n ≥ 1, and from (11) it
follows that the solution is on the OA manifold.

Let us introduce two new variables Y, S according to relations

y = (1 − |Q|2)Y, s = Q∗S. (34)

The equations for these variables read

Ẏ =

(

iω + hQ∗ − h∗Q − γ
1 + |Q|2

1 − |Q|2

)

Y, (35a)

FIG. 1. Comparison of the finite ensemble dynamics of 10 000 Josephson phases
(33) with the low-dimensional dynamics in the thermodynamic limit (16). In panel
(a), the first two circular moments are compared in the complex plane, and in
panel (b) their absolute values are compared as functions of time. Solid lines:
simulation of a finite ensemble; dotted lines (which practically overlap with solid
lines): solution of exact equations in the thermodynamic limit.

Ṡ =

(

iω + hQ∗ − h∗Q + γ
)

S +

(

h∗Q −
h∗

Q∗

)

(S − Y). (35b)

Here, we focus on the equation for Y and will use Eq. (35b) in Sec. VI.
From (35a), we obtain the following evolution of |Y|:

d|Y|

dt

1

|Y|
= −γ

1 + |Q|2

1 − |Q|2
≤ −γ . (36)

The latter inequality on the r.h.s. follows from the property
0 ≤ |Q|2 < 1. Indeed, the equation for the evolution of |Q|2 reads

d

dt
|Q|2 = −2γ |Q|2 + (hQ∗ + h∗Q)(1 − |Q|2)

and at |Q| = 1 the derivative d
dt

|Q|2 = −2γ is negative for γ > 0;
thus, this boundary is not reachable.

Integrating inequality (36) yields

|Y(t)| ≤ |Y(0)| e−γ t, (37)
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and consequently, since |y| ≤ |Y|,

|y(t)| ≤
|y(0)|

1 − |Q(0)|2
e−γ t, (38)

which means that |Y| and |y| vanish exponentially fast in time. This
proves the attractiveness of the OA manifold for system (4) for
γ > 0.

A. Example

Here, we illustrate the stability of the OA manifold numeri-
cally. We take the already explored example of Josephson junctions
(33), with the same parameters a = −0.7, ε = 1.5. In Ref. 22, it was
demonstrated that for γ = 0, the dynamics outside of the OA man-
ifold is chaotic. In Fig. 2, we again demonstrate chaotic behavior
in this system for γ = 0, and a transition to regular dynamics for
γ = 10−4 and γ = 2 × 10−4. The exponential decay of |y|, which is
bounded by (38), is evident at large times.

FIG. 2. Time series of the coupled Josephson junctions array (33) for three differ-
ent noise strengths; γ = 0 depicted with red, γ = 10−4 depicted with blue, and
γ = 2 × 10−4 depicted with green. (a) the norm of the first order parameter Z1;
(b) the norm of variable y. The initial conditions for all three cases are the same:
Q(0) = s(0) = 1 − y(0) = 0 (variant A) and constant functionM(k) = 0.4k,
which means the initial distribution has only one harmonic. In the case of no noise,
chaotic dynamics is observed, while in the noisy case there is an initial chaotic
stage which is followed by a clear exponential decay of the y variable. In panel
(b), the upper bound (38) for all three cases is shown with a dashed black line.

VI. NOISE-FREE CASE AND A RELATION TO THE

WATANABE–STROGATZ THEORY

Watanabe and Strogatz14,15 demonstrated that a population of
identical noiseless oscillators can be reduced to three real dynamical
variables plus constants of motion. To see that this case is included
in our theory, let us consider identical oscillators and no noise, thus
taking γ = 0.

It is instructive to start with Eq. (35). It is easy to see, that for
γ = 0, the manifold S = Y is invariant,

d

dt
(S − Y) =

[

iω + hQ∗ −
h∗

Q∗

]

(S − Y).

Using the definition of variables Y, S (34), the manifold is described
in terms of y and s as

Y =
y

1 − |Q|2
=

s

Q∗
= S. (39)

Since we initially set Q(0) = s(0) = 1 − y(0) = 0 for arbitrary
states, one can always set initial conditions on this manifold such
that Y(0) = S(0) = 1. Thus, two equations (35) reduce to one.
Moreover, because of (36), for γ = 0 the variable Y remains on
the unit circle for all times, and we can introduce an angle variable
θ(t) = arg(Y(t)). Its evolution follows from (35),

θ̇ = ω − i(hQ∗ − h∗Q). (40)

This angle variable θ just corresponds to the WS angle variable,
while Q is the WS order parameter.14,15 The two equations (16a)
(with γ = 0) and (40) then represent the exact evolution. We explic-
itly derive the equivalence with the WS approach in Appendix G.

In the WS theory, the relation between the original phases ϕj(t)
and constant phases ψj is given by the Möbius transform,15,38

eiϕj =
ei(ψj+θ) + Q

1 + Q∗ei(ψj+θ)
, ei(ψj+θ) =

eiϕj − Q

1 − Q∗eiϕj
. (41)

Our choice of the initial conditions Q(0) = θ(0) = 0 [it corre-
sponds to the “identity conversion” in terms of WS, cf. Eq. (5.10) in
Ref. 15] means that ψj = ϕj(0). Thus, because the integrals µn are
defined as µn = Zn(0), these quantities are the circular moments
of the transformed constant phase variables in the WS approach
µn = 〈einψ 〉.

Watanabe and Strogatz have shown that these transformations
are also valid for a finite number of oscillators, but this case is not
covered by our approach. We mention here that in the WS formal-
ism there is also a freedom in choosing the order parameter Q and
the phase variable θ ; this freedom is similar to the one discussed in
Sec. IV B.

VII. LYAPUNOV SPECTRUM

Our theory describes the dynamics outside of the OA manifold
and is, thus, suitable for the consideration of small perturbations
transversal to this manifold. Such perturbations define the Lyapunov
spectrum of the dynamics, together with the perturbations tangen-
tial to this manifold. The system of Eq. (14) is most suitable for this
analysis. The OA manifold corresponds to vanishing βn; therefore,
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Eq. (14b) defines the transversal perturbations. Since these equa-
tions are a skew system, each βn defines two Lyapunov exponents
(because βn are complex). One can straightforwardly derive from
(14b), omitting the skew term ∼ βn+1 on the r.h.s., the averaged
evolution for the magnitude of a perturbation,

1

2n

〈

d

dt
ln |βn|

2

〉

=
〈

−γ − h∗Q − hQ∗
〉

= 3.

Thus, the Lyapunov spectrum consists of the exponents within the
OA manifold [which are calculated using linearized equation (9)]
and of doubly degenerated values n3, n = 1, 2, 3, . . ..

VIII. RESPONSE OF THE OTT–ANTONSEN REGIME TO

A RESETTING

As has been already discussed in the literature19–21 and in Sec. V,
in the system of Eqs. (16) the OA manifold is attracting if γ > 0 (at
least in the weak sense, but because we follow only the moments
of the phase distribution, such an attraction is enough). In terms of
variables Q, y, s with a nontrivial constant function M(k), this cor-
responds to y → 0 as t → ∞ (see Sec. V). For the conservative case
γ = 0, see Sec. VI.

The approach above allows for calculating the evolution from
an arbitrary state to the OA manifold via solutions of (16). One
can reformulate such a problem as a resetting one: One starts with
the dynamics on the OA manifold; then an instant “resetting” to
a state outside of this manifold is performed. The evolution of
(16) then shows what will be the final state after re-attraction to
the OA manifold. A particular question of interest depends on the
type of attractors on the OA manifold. If there is only one global
attractor, then the trajectory returns to it. If this attractor is peri-
odic or quasiperiodic, the returning trajectory will be phase shifted
with respect to the unperturbed one (in the quasiperiodic case, one
expects phase shifts in every direction of independent oscillations).
Here, one speaks about a phase resetting or a phase response curve
(PRC).39,40 For a chaotic global attractor, generally one does not
expect a resetting to have a drastic effect (although for strange attrac-
tors with well-defined phase variables a phase resetting similar to the
periodic case can be defined;41 it can lead to phase synchronization
of chaos if periodically repeated42). In the case of multistability, the
most drastic effect of resetting would be a jump to another basin
of attraction so that the final state will be another attractor on the
OA manifold (in case of multistable periodic attractors one can
additionally follow the phase response43). Below we consider several
examples, for small and large resettings.

A. Perturbation theory in terms of an (infinitesimal)

PRC

Suppose we have a state on the OA manifold with a complex
order parameter R so that 〈einϕ〉 = Rn. Let us apply to all the phases
a transformation

ϕ → ϕ + εf(ϕ), (42)

where f(ϕ) =
∑

m fmeimϕ is a PRC function (given by its Fourier rep-
resentation) and ε � 1 is assumed to be small. Let us calculate the

circular moments just after a resetting, in order ε:

Zn =
〈

ein(ϕ+εf(ϕ))
〉

≈
〈

einϕ(1 + inεf(ϕ))
〉

= Rn + inε

∞
∑

m=−∞

fm
〈

ei(n+m)ϕ
〉

.

Since m can be negative, the calculation of the latter average is not a
simple expression because

〈

ei(n+m)ϕ
〉

=

{

Rn+m n + m ≥ 0,

(R∗)|n+m| n + m < 0,

therefore we restrict ourselves to the two simplest cases.

1. First harmonics resetting

In this case, f(ϕ) = f1e
iϕ + f ∗

1 e−iϕ . For n ≥ 1, we have
n + m ≥ 0 and, therefore, for both m = ±1 we can write

〈

ei(n+m)ϕ
〉

= Rn+m. Thus,

Zn = Rn(1 + inε(f1R + f ∗
1 R−1)), n ≥ 0.

Calculation of the EGF yields

Z(k, 0) = ekR(1 + iεk(f1R
2 + f ∗

1 )),

where we used
∑

n n xn

n!
= xex.

Let us now transform to variables Q, y, s and take Q(0) = R
(like in variant B, Sec. IV B 3). This means that the EGF B is

B(k, 0) = 1 + iεk(f1R
2 + f ∗

1 ).

We come to the conclusion that only one variable β1 is non-zero,
and the system can be directly and exactly solved with variables Q,β1

by virtue of Eqs. (14); there is no need to go to the full system (16).
Alternatively, one can consider only the first two equations of system
(16) and function M(k) = β1(0)k and then the third variable s does
not matter. If we rewrite Eqs. (14) in terms of variables (Z1,β1), we
obtain

Ż1 = (iω − γ )Z1 + h − h∗Z2
1 + h∗β2

1 ,

β̇1 = (iω − γ − 2h∗(Z1 − β1))β1.

One can see that the correction to the standard OA equation is
h∗β2

1 ∼ ε2. Thus, in the first order in ε, the inclusion of the addi-
tional variable β1 is irrelevant and the resetting is well described
within the OA equation.

2. Second harmonics resetting

In this case, f(ϕ) = f2e
i2ϕ + f∗2e−i2ϕ , and we have

∑

m fm
〈

ei(n+m)ϕ
〉

= f2
〈

ei(n+2)ϕ
〉

+ f∗2
〈

ei(n−2)ϕ
〉

. Thus, the term with n = 1 reads
f2R

3 + f∗2R∗, while all the higher-order terms n ≥ 2 can be written
in a unified way f2R

n+2 + f∗2Rn−2. Rewriting the term with n = 1 as
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f2R
3 + f∗2R−1 + [f∗2R∗ − f∗2R−1], we obtain

Zn = Rn + iεnRn[f2R
2 + f∗2R−2] + iεδn,1[f

∗
2R∗ − f∗2R−1],

where δn,1 is the Kronecker delta. This yields the following EGF:

Z(k, 0) = ekR(1 + iεk(f2R
3 + f∗2R−1))+ iεk[f∗2R∗ − f∗2R−1].

Now the EGF B(k, 0) is nontrivial, choosing Q(0) = R,

B(k, 0) = 1 + iεk(f2R
3 + f∗2R−1)+ iεke−kR[f∗2R∗ − f∗2R−1].

This allows for obtaining a closed expression for the constant func-
tion [for choice y(0) = 1, s(0) = 0] as

M(k) = iεk

[

f2R
3 + f∗2

R∗ + 2k + Rk2

(1 + Rk)2

]

.

After this, system (16) is to be solved.

B. Large resettings

Unfortunately, a transformation of the type (42) is hardly
tractable for large ε. Here, we discuss another way of resetting, which
leads to closed expressions even for large changes of the phases.
This approach is applicable to identical oscillators subject to Cauchy
white noise, but not for the distribution of natural frequencies.

Suppose, in the OA state with order parameters Zn = Rn, we
randomly choose a portion ε of all oscillators and reset them com-
pletely (this means that they “forget” their old states), cf. Ref. 44. We
consider two variants below.

1. Random resetting

Here, we assume that the new phases in the affected set become
uniformly distributed in the interval [0, 2π). These oscillators do
not contribute to new order parameters, which, thus, take the values
Zn = (1 − ε)Rn. This corresponds to an offset Cauchy distribution
or, specifically, a weighted superposition of the Cauchy distribu-
tion and the uniform distribution. If one uses variant A of ini-
tial conditions, then evolution starts from the initial values Q(0)
= s(0) = 0, y(0) = 1, and M(k) = (1 − ε)Rk/(1 − Rk) is deter-
mined via Eq. (27). Alternatively, adopting variant B, one can
start from the initial conditions Q(0) = R, y(0) = 1, s(0) = 0 and
then M(k) = −εRk/(1 + Rk) is determined via Eq. (32). Then, the
system evolves according to Eqs. (16).

However, due to the simplicity of this example, there is an even
easier way of treating this situation. Notice how moments can be
viewed as a superposition of two OA contributions, referred to as
Poisson kernels by Ref. 21,

Zn = (1 − ε)Q1 + εQ2, (43)

where initially Q1(0) = R and Q2(0) = 0. In this case, therefore, one
can evolve the system by considering two OA equations (9), which
only interact through the forcing h, and the solution maintains the
form (43) for all times.

2. Coherent resetting

Consider now that reset phases are not distributed uniformly
but rather take on another distribution P(res)(ϕ). If this distribution

is a wrapped Cauchy (which includes the uniform and the delta dis-
tribution), the setting can again be treated simply as a superposition
of the OA modes (a.k.a. Poisson kernels).45 However, the reset dis-
tribution can generally have a different form. Below we consider two
cases.

Case (i): Partially coherent resetting. Here, the reset phases
are distributed according to a single harmonic density: P(res)(ϕ)

= 1
2π

[1 + 2c cos(ϕ − ϕ0)], c,ϕ0 ∈ R. The reset distribution, there-

fore, has only one non-zero moment Z(res)
1 = ceiϕ0 , and the full

distribution after a portion ε of phases are reset is described by
Zn = (1 − ε)Rn + εceiϕ0δn,1. If using variant A initial conditions,
the variables initialize as Q(0) = s(0) = 0, y(0) = 1, and M(k)
= (1 − ε) Rk

1−Rk
+ εceiϕ0k according to Eq. (27). Alternatively if

choosing variant B, then Q(0) = R, y(0) = 1, s(0) = 0, and M(k)

= −ε
[

Rk
1+Rk

+ ceiϕ0 k

(1+Rk)2

]

according to Eq. (32). Then, the system

evolves following Eqs. (16). One could also treat this setting as
one OA mode and one general contribution described by full
equations (16), we provide such a description in Appendix D.

Case (ii): Fully coherent resetting. Here, the reset phases
take the same value ϕ0. The new order parameters are, thus, Zn

= (1 − ε)Rn + εeinϕ0 . Again both variants of initializing the vari-
ables after the reset are possible. In variant A, one sets Q(0) = s(0)

= 0, y(0) = 1 andM(k) = (1 − ε) Rk
1−Rk

+ ε eiϕ0 k

1−eiϕ0 k
is determined via

Eq. (27), while following variant B, we can set Q(0) = R, y(0) = 1,

s(0) = 0 and M(k) = ε (eiϕ0 −R)k

1−(eiϕ0 −R)k
is determined via Eq. (32). As

mentioned before, since the delta distribution is a special case of the
wrapped Cauchy, this case could also be described by just two OA
modes (43).

The expressions above can be readily extended to a setup where
several randomly chosen subpopulations of oscillators are reset with
different distributions. Such an approach has been discussed in
the context of application to de-synchronization of neurons for
Parkinson patients.46

3. Numerical example for large resettings

As an example, we consider a simple Kuramoto-type system
with a synchrony-asynchrony bistability.47 In this setup, ω = const
(and one can without loss of generality set this parameter to zero),
and force is

h = Z1 exp[iθ0 + iθ1|Z1|
2]. (44)

We set γ = 0.1, θ0 = 0.8π , and θ1 = 4. For these parameters, the
states with Z1 = 0 and |Z1| ≈ 0.948 are both stable. We start with
the latter state of a nearly synchronized ensemble and apply the
three types of resetting as described above. By solving the reduced
six-dimensional equations (16), we obtain the domain of parameters
ε,ϕ0 for which the resettings lead to a transition to the asynchronous
state Z1 = 0.

For the random resetting, there is no dependence on ϕ0, and
the corresponding domain is ε > 0.196 (above red line in Fig. 3).
For the coherent resetting, we consider two cases discussed above,
(i) and (ii), and their corresponding basins are depicted in Fig. 3
with blue and green domains, respectively. One can see that in all
three cases, a finite perturbation is needed to suppress synchrony.
For the coherent resettings, there is an optimal combination of ε
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FIG. 3. Switching domains for large resetting in the bistable system (44). Both
the synchronous and asynchronous regimes are stable. Starting from the syn-
chronous regime on the OA manifold, we reset an ε portion of phases according
to three example distributions: uniform (red domain), case (i) single harmonic den-
sity with amplitude c = 0.5 (blue domain), and case (ii) delta distribution (green
domain). The shaded regions mark areas that induce a switch to asynchrony.

and ϕ0; the coherent subpopulation should be phase shifted around
π relative to the phase of the mean field of the non-reset units. For
case (ii), we also see that if ε is too large, the reset units form a new
cluster and the synchrony remains.

IX. CONCLUSION

First, we summarize the approach and findings of this paper.
Our starting point is an infinite system of equations for the circu-
lar moments (order parameters). These equations contain damping
due to either Cauchy white noise or a Cauchy distribution of natural
frequencies. By virtue of several transformations, which are formu-
lated in terms of generating functions, we reduce this system to
three complex equations. Additionally, a complex-valued function
of one variable is defined, which remains constant during the evolu-
tion. The order parameters at each moment of time are represented
through this function and the three complex dynamical variables.

The original set of equations for the order parameters have the
same form in two situations: if the phase oscillators are subject to
a Cauchy white noise, and if the natural frequencies are Cauchy
distributed (but time-independent). Only in the former case there
is a simple unique correspondence between the order parameters
and the distribution of the phases. In the latter situation, one can
calculate the order parameters from the distribution of the phases
(under the assumption of analyticity of the density in the upper

complex plane of frequencies), but it appears impossible to recon-
struct this distribution from the order parameters without further
assumptions. Therefore, the results of the paper are fully applicable
to noisy ensembles, but some approaches (e.g., phase resetting) are
not suitable for the oscillators with distributed frequencies.

The theory includes both the WS description (noise-free iden-
tical oscillators) and the OA manifold (on which the dynamical
variable y vanishes). In the framework of our approach, one can sim-
ply demonstrate that the dynamical variable y(t) tends to zero, which
corresponds to the weak stability of the OA manifold discussed in
the literature. Therefore, our approach is an essential improvement
compared to OA theory, if a transient evolution from an initial state
outside of the OA manifold is important. In particular, it allows for
a calculation of the full basins of different attractors lying on the OA
manifold.

In this paper, we operated with the phase equations. In some
cases, it is convenient to transform the phase equations to other
variables (e.g., theta-neurons, equations that belong to class (1),6,7

can be transformed to the so-called quadratic integrate-and-fire
neurons48–50). An extension of the theory to quadratic integrate-and-
fire neurons will be presented elsewhere.51
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APPENDIX A: FROM THE DYNAMICS OF THE

MOMENTS TO THE PDEs FOR THE GENERATING

FUNCTIONS

Consider a sequence of variables {fn} (the only condition is that
the generating functions below do exist; because we apply the theory
to bounded circular moments, this appears to always be the case).
Also, in our case f0 ≡ 1.
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We distinguish between two types of generating functions:
exponential generating function (EGF) is defined as

F(k) =

∞
∑

n=0

fn
kn

n!
, (A1)

and ordinary generating function (OGF) is defined as

F(k) =

∞
∑

n=1

fnkn. (A2)

Here, we show how the dynamics of the variables fn, given by an
infinite set of ODEs, can be translated to the dynamics in terms of
generating functions F and F , given by a single partial differential
equation (PDE). Suppose the dynamics of fn is as follows:

ḟn = n
(

a fn−1 + b fn + c fn+1

)

, n ≥ 1, (A3)

where a, b, c are arbitrary complex quantities. Then, the PDE for the
EGF F reads

Ḟ = a kF + b kF′ + c kF′′. (A4)

In fact, in the case of an EGF F(k, t), any term fn+m for m ≥ −1 on
the right-hand side of (A3) just corresponds to a term of the form
kF(m+1) in Eq. (A4).

To prove this, it is sufficient to express derivatives of F as
formal series,

Ḟ =

∞
∑

n=0

ḟn
kn

n!
,

F =

∞
∑

n=0

fn
kn

n!
=

1

k

∞
∑

n=0

(n + 1) fn
kn+1

(n + 1)!

=
1

k

∞
∑

n=−1

(n + 1) fn
kn+1

(n + 1)!
=

1

k

∞
∑

n=0

n fn−1

kn

n!
,

F′ =

∞
∑

n=1

fn
kn−1

(n − 1)!
=

1

k

∞
∑

n=1

n fn
kn

n!
=

1

k

∞
∑

n=0

n fn
kn

n!
,

(A5)

F′′ =

∞
∑

n=2

fn
kn−2

(n − 2)!
=

1

k

∞
∑

n=2

(n − 1) fn
kn−1

(n − 1)!

=
1

k

∞
∑

n=1

n fn+1

kn

n!
=

1

k

∞
∑

n=0

n fn+1

kn

n!
,

F(m) =

∞
∑

n=m

fn
kn−m

(n − m)!
=

1

k

∞
∑

n=m

(n − m + 1) fn
kn−m+1

(n − m + 1)!

=
1

k

∞
∑

n=1

n fn+m−1

kn

n!
=

1

k

∞
∑

n=0

n fn+m−1

kn

n!
.

Notice that the sum index changes in the derivation, e.g., if we have
the summed terms proportional to n and the sum starts with index
“1”:

∑

n=1

n (· · · ), we can just add the zero term (since it vanishes)

and write the sum from index “0.” The way we have derived the
above expressions, the right-most forms of (A5) all correspond to

a sum starting at n = 0 and have a factor of kn

n!
; therefore, we can

just compare the terms under the sum to see that the dynamics (A3)
corresponds to the PDE (A4).

More generally, a term in the dynamics of the variables fn
having the form

ḟn = · · · + c n fn+m + · · · , m ≥ −1, (A6)

in terms of the EGF F(k, t), corresponds to the partial derivative in
the equation for F,

Ḟ = · · · + c kF(m+1) + · · · . (A7)

Now let us consider the OGF F(k, t). This generating function
is applicable to systems with only the homogeneous term fn and one
higher term fn+1 on the r.h.s., i.e., to the case a = 0 in (A3). Let us
write the relevant sums,

Ḟ =

∞
∑

n=1

ḟnkn,

kF ′ =

∞
∑

n=1

n fnkn,

(A8)

F
′ −

1

k
F =

∞
∑

n=1

n fnkn−1 − fnkn−1

=

∞
∑

n=1

(n − 1) fnkn−1 =

∞
∑

n=1

n fn+1k
n.

Again, by comparing the right-most expressions of (A8), we
can see that the dynamics

ḟn = b n fn + c n fn+1, (A9)

in terms of the OGF F , corresponds to

Ḟ = b kF ′ + c
[

F
′ −

1

k
F

]

. (A10)

APPENDIX B: TRANSFORMATION (21) IN TERMS OF

VARIABLES

We rewrite here relation (21) as

M(k)

k
=

A(k + s)

k + s
. (B1)

Expressed as an OGF series (with a different index for the right-hand
side), it reads

∞
∑

n=1

µnkn−1 =

∞
∑

r=1

αr(k + s)r−1.

Next, we expand the binomial term on the r.h.s.:

∞
∑

n=1

µnkn−1 =

∞
∑

r=1

αr

r−1
∑

d=0

(

r − 1

d

)

kr−d−1sd,
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gather together terms for which r − d − 1 = n − 1, and use the same
index n as on the l.h.s.,

∞
∑

n=1

µnkn−1 =

∞
∑

n=1

kn−1

∞
∑

m=n

(

m − 1

m − n

)

αmsm−n.

Now, it is clear that this transformation corresponds to (22)

µn =

∞
∑

m=n

(

m − 1

m − n

)

αmsm−n, (B2)

where the binomial coefficient
(

m−1

m−n

)

can also be written as
(

m−1

n−1

)

.

APPENDIX C: EXPRESSING MOMENTS Zn WITH THE

CONSTANT FUNCTION M(k )

The dth derivative in k of M(k) is expressed as

M
(d)(k) =

d!

kd

∞
∑

m=1

(

m

d

)

µmkm. (C1)

Next, using the binomial relation
(

m−1

n−1

)

= (−1)n−1
n−1
∑

d=0

(−1)d
(

m

d

)

and

the relation between αn and µn variables (22), we can write

αn = −

n−1
∑

d=0

sd−n

d!
M

(d)(−s). (C2)

Then, we can use relation (17) to express βn as

βn = −yn

n−1
∑

d=0

sd−n

d!
M

(d)(−s), n ≥ 1, (C3)

and we can use (15) to express the moments

Zn = Qn −

n
∑

m=1

(

n

m

)

Qn−mym

m−1
∑

d=0

sd−m

d!
M

(d)(−s). (C4)

For initial condition variant A: Q(0) = s(0) = 0, y(0) = 1, to
see that expression (C4) is correct initially at t = 0, we have to
evaluate the following limits:

lim
ε→0

m−1
∑

d=0

εd−m

d!
M

(d)(−ε) = −µm, (C5)

which confirm that Zn(0) = µn.

APPENDIX D: ALTERNATIVE PERTURBATION

AROUND THE OA MANIFOLD

There are different ways one can write states close to the OA
manifold. An alternative to the main text (30) is

Zn = (1 − ε)Zn + ε pn, |ε| � 1. (D1)

Notice that due to the linearity of Eq. (8), we can view this simply as
splitting the state into two parts: one on and one off the OA man-

ifold: Z(OA)
n = Zn and Z

(pert)
n = pn. Each of the two parts can then

be treated separately, the only thing connecting them is the force h.

We know that the part on the OA manifold requires only one com-
plex equation (16a) by considering M(OA) = 0, while the rest can be
treated as before with the full set of three equations (16) and the sim-
plest general initial conditions (26). The complete dynamics is then
written as

Ż = (iω − γ )Z + h − h∗Z2,

Q̇ = (iω − γ )Q + h − h∗Q2,

ẏ = (iω − γ − 2h∗Q)y,

ṡ = h∗y,

(D2)

where the perturbations Z
(pert)
n = pn express with Q, y, s via Eq. (23).

Global order parameters are simply the weighted sum of both
contributions, e.g., the first order parameter is expressed as Z1

= (1 − ε)Z + ε
(

Q − yM(−s)
s

)

, where M =
∞
∑

n=1

pn(t = 0)kn. Notice

that this perturbation description is actually global, ε does not need
to be small.

APPENDIX E: ALTERNATIVE CONSTANT FUNCTION

N (k ) =
M(−k)

−k

Instead of transformation (21), we can consider the following

N (k) =
A(s − k)

s − k
=

M(−k)

−k
. (E1)

The OGFN (k) is also a constant function in time, its time derivative
yields

Ṅ (k) =
Ȧ(s − k)

s − k
+ ṡ

[

A′(s − k)

s − k
−

A(s − k)

(s − k)2

]

= 0.

The benefit of this function is that it simplifies the expression for
Kuramoto–Daido order parameters (23),

Zn = Qn

[

1 −

n
∑

m=1

(

n

m

)(

−
y

Q

)m
N (m−1)(s)

(m − 1)!

]

, (E2)

the first three moments explicitly,

Z1 = Q + yN (s),

Z2 = Q2 + 2QyN (s)− y2
N

′(s),

Z3 = Q3 + 3Q2yN (s)− 3Qy2
N

′(s)+ y3 N
′′(s)

2
,

and no expansions for small s like (25) are needed.
If we consider this function N (k) as the OGF of some variables

νn, we now have to also consider the zeroth term,

N (k) =

∞
∑

n=0

νnkn, (E3)

(notice n starting from 0). Constant quantities νn express with µn as

νn = (−1)nµn+1. (E4)
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Considering variant A initial conditions (26): Q(0) = s(0)
= 0, y(0) = 1, these quantities can be determined as

νn = (−1)nZn+1(0), (E5)

and so the constant function N (k) can be expressed as

N (k) =

∞
∑

n=0

(−1)nZn+1(0)k
n. (E6)

APPENDIX F: APPROXIMATING M(k )WITH A FINITE

SERIES

For empirically observed phase densities, it might not always
be clear how to determine the constant function M(k), but one can
always estimate the first few moments Zn(0) numerically and then

approximate the function with a series: M(k) ≈
N
∑

n=1

Zn(0)k
n. Here,

in Fig. 4, we show an example of that. We consider the bistable
system (44) and just like in Fig. 3 compute the switching domain
for resetting with a δ-distribution. Several different truncations
of the series are considered: N = 1, 2, 3, 4, and the corresponding
domains are depicted in Fig. 4. We see a fast convergence of the
approximations.

FIG. 4. The switching domains for resetting the bistable system (44) with a
δ-distribution, for different approximations the constant functionM(k) (the black
region corresponds to the green region in Fig. 3). The considered approx-
imations are truncations of its Taylor series at different numbers of terms:

MN =
N
∑

n=1

Zn(0)k
n.

APPENDIX G: RELATION TO THE

WATANABE–STROGATZ THEORY

In this appendix, we demonstrate explicitly that the derived
equations coincide with the Watanabe–Strogatz equations for
identical oscillators. Our basic equation for the oscillator dynamics
(1) in the noise-free case reads

ϕ̇ = ω + Im[2he−iϕ] = ω + 2Im[h] cosϕ − 2Re[h] sinϕ.

Watanabe and Strogatz [Eq. (5.3) in Ref. 15] write this equation in
slightly different notations

ϕ̇ = F + G cosϕ + H sinϕ,

so that F = ω, G = 2Im[h], H = −2Re[h]. After a transformation
[Eq. (5.4) in Ref. 15]

tan

(

ϕ −8

2

)

=

√

1 + η

1 − η
tan

(

ψ −9

2

)

,

they obtain a set of equations for the variables η,8,9 [Eq. (5.9) in
Ref. 15]

η̇ = −(1 − η2)(G sin8− H cos8),

η8̇ = ηF − G cos8− H sin8,

η9̇ = −
√

1 − η2(G cos8+ H sin8).

(G1)

The variables ψ are constants of motion.
Let us introduce a new variable ρ according to

1 − ρ

1 + ρ
=

√

1 + η

1 − η
.

Then, η = −
2ρ

1+ρ2 , 1 − η2 =
(1−ρ2)

2

(1+ρ2)
2 ,
√

1 − η2 =
1−ρ2

1+ρ2 , and η̇ = −2ρ̇

1−ρ2

(1+ρ2)
2 . We substitute these relations in (G1) and obtain

ρ̇ =
1 − ρ2

2
(G sin8− H cos8),

8̇ = F +
1 + ρ2

2ρ
(G cos8+ H sin8),

9̇ =
1 − ρ2

2ρ
(G cos8+ H sin8).

(G2)

Let us now introduce variables Q = ρei8 and θ = 8−9 and
assume that these variables fulfill Eq. (16a) (with γ = 0), (40),

Q̇ = iωQ + h − h∗Q2,

θ̇ = ω − i(hQ∗ − h∗Q).
(G3)

The equations for ρ,8,9 following from (G3) read

ρ̇ = (1 − ρ2)(Re[h] cos8+ Im[h] sin8),

8̇ = ω +
1 + ρ2

ρ
(Im[h] cos8− Re[h] sin8),

9̇ =
1 − ρ2

ρ
(Im[h] cos8− Re[h] sin8).

(G4)
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Substituting here ω = F, Re[h] = − H
2
, and Im[h] = G

2
, we obtain

exactly system (G2), which proves the equivalence of our
equation (16a) (with γ = 0), (40), and the WS equation (G2).
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