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Disorder fosters chimera in an array of motile particles
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We consider an array of nonlocally coupled oscillators on a ring, which for equally spaced units possesses
a Kuramoto–Battogtokh chimera regime and a synchronous state. We demonstrate that disorder in oscillators
positions leads to a transition from the synchronous to the chimera state. For a static (quenched) disorder
we find that the probability of synchrony survival depends on the number of particles, from nearly zero at
small populations to one in the thermodynamic limit. Furthermore, we demonstrate how the synchrony gets
destroyed for randomly (ballistically or diffusively) moving oscillators. We show that, depending on the number
of oscillators, there are different scalings of the transition time with this number and the velocity of the units.
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I. INTRODUCTION

Chimera patterns, discovered by Kuramoto and Battogtokh
(KB) almost 20 years ago [1], continue to be in the focus
of theoretical and experimental studies (see recent reviews
[2,3]). Chimera is a spatial pattern in an oscillatory medium,
where some subset of oscillators is synchronous and forms an
ordered patch, while other oscillators in a disordered patch are
asynchronous. There is bistability in the classical KB setup
of nonlocally coupled oscillators on a ring: a chimera pattern
coexists with a fully synchronized, homogeneous in space
state. In this bistable situation, one should specially prepare
initial conditions to observe chimera, because the basin of
the synchronous state is relatively large. Moreover, in a finite
population (i.e., for a finite number of oscillators on the ring),
the synchronous state appears to be a global attractor: the
chimera state is a transient, slightly irregular state, which has a
lifetime exponentially growing with the number of oscillators
[4]. This paper demonstrates that disorder in the KB setup fos-
ters the opposite: synchronous state disappears, while chimera
remains stable.

The effect of disorder on chimera has been explored in sev-
eral recent publications. S. Sinha [5] studied different models
of coupled maps and coupled oscillators, and demonstrated
that with the introduction of time-varying random links to
the network of interactions, a chimera is typically destroyed,
and the synchronous state establishes. In Ref. [6], the effect
of random links addition on the chimera state in coupled
FitzHugh–Nagumo oscillators has been studied. It has been
demonstrated that although for a weak disorder, chimera sur-
vives, it becomes destroyed if the disorder is strong. We
mention here also Ref. [7], in which disorder has been ex-
plored for a variant of a chimera state not in a spatially
extended state, but for two globally coupled subpopulations
of oscillators [8].

Another way to include disorder in the setup of coupled
oscillators is to assume that the units are motile particles, pos-

sibly with randomness in their motion. There are two ways in
constructing such models: (i) one can assume that the oscilla-
tory dynamics of the elements does not influence their motion,
so that there is only the influence of the positions of the units
on their oscillatory dynamics (see Ref. [9]), and (ii) there is
a mutual interaction between motion and internal dynamics
(see, e.g., Refs. [10,11]). For example, for locally coupled
phase oscillators randomly moving on one-dimensional lat-
tice [9], motility has been shown to promote a synchronous
state. For two-dimensional motions, the authors of Ref. [12]
observed that there is a resonance range of random velocities,
for which the transition to synchrony is extremely slow. The
authors of Ref. [13] explored one-dimensional lattice with
local delayed coupling, the motion of particles was modeled
by random exchanges of positions of nearest neighbors; in
this setup, a persistent chimera was observed in some range of
parameters. Close in terms of the formulation of the problem
is a recent study by Wang et al. [14]. In this work, 128 dif-
fusive particles on a line have been considered. Each particle
is a phase oscillator, and the coupling is nonlocal with a cos-
shaped kernel (like in the chimera studies [15]). Depending on
the parameter of diffusion and coupling, both transitions from
a chimera to a synchronous state and from a synchronous state
to a chimera have been observed. Finally, we mention an im-
portant experimental setup where moving particles synchro-
nize. Prindle et al. [16] considered a population of 2.5 millions
of Escherichia coli bacterial cells equipped with genetically
engineered clocks, and observed their synchronization under
conditions where these cells were transported in a microfluidic
device, with a coupling through a chemical messenger.

In this paper, we explore the effect of disorder in particles’
positions on the properties of the “classical” KB chimera
[1]. We consider quenched disorder (random fixed position of
the particles on the ring), and dynamical disorder (diffusive
or ballistic motion of the particles). Below we restrict our
attention to the case of slow motions, which can be explored
by comparing with the quenched case. We will show, that
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the number of particles is the essential parameter governing
the dynamics, and establish scaling properties in dependence
on the parameters determining the particles velocities, and on
their number.

The paper is organized as follows. First, we introduce the
model in Sec. II. The case of quenched disorder is considered
in Sec. III. Properties of motile oscillators are considered in
Sec. IV. Finally, we conclude and discuss the results in Sec. V.

II. BASIC MODELS

We introduce our basic model as a generalization of the
Kuramoto–Battogtokh setup [1] for a ring of coupled phase
oscillators (particles). In contradistinction to Ref. [1], where
equally spaced positions of the oscillators were assumed, we
consider general positions 0 � xi < 1 for N oscillators on the
ring. The coupling is distance-dependent,

ϕ̇i = 1

N

N∑
j=1

G(x j − xi ) sin(ϕ j − ϕi − α), (1)

according to the kernel

G(x) = κ cosh[κ (|x| − 0.5)]

2 sinh κ
2

, (2)

which is a generalization of the exponential kernel adopted in
Ref. [1] to account for periodic boundary conditions on the
ring. Parameter κ determines the effective range of coupling,
parameter α is the phase shift in coupling.

For positions of the particles xi, we explore three models in
this paper.

(1) Quenched disorder: Here the positions xi of the par-
ticles are fixed, taken as independent random variables with a
uniform distribution on a ring.

(2) Diffusion of the particles: Here the particles are
driven by independent white Gaussian noise terms, leading to
their diffusion (with diffusion constant σ 2)

ẋi = σξi(t ), 〈ξi(t )〉 = 0, 〈ξi(t )ξ j (t
′)〉 = δi jδ(t − t ′). (3)

(3) Ballistic motion of the particles: Here the particles
move with constant fixed random velocities vi. Below we
consider velocities as i.i.d. Gaussian random variables with
standard deviation μ.

In this paper we restrict ourselves to the cases of slow
motion of the particles, i.e., to the cases of small parameters
σ and μ.

III. QUENCHED DISORDER

A. Observation of a transition to chimera

We start with the case of quenched disorder. Here the only
parameter is the number of the particles N . In the thermody-
namic limit N → ∞, one does not expect any deviation of
the dynamics of disordered sets from the dynamics of ordered
configurations, because in both cases in the limit N → ∞
one obtains a system of integrodifferential equations for the
distribution of phases ϕ(x, t ):

∂tϕ(x, t ) =
∫ 1

0
dx̃ G(x̃ − x) sin[ϕ(x̃, t ) − ϕ(x, t ) − α]. (4)

The population of phase oscillators Eq. (4), as has been first
demonstrated by Kuramoto and Battogtokh [1], possesses two
attracting states: (i) a fully synchronous state ϕ(x, t ) = ψ (t )
and (ii) a spatially inhomogeneous chimera state with
domains of synchrony (neighboring phases are closed to
each other) and of asynchrony (neighboring phases are taken
from a certain probability distribution). Finite-size effects
for a regular distribution of oscillators on the ring have been
explored by Wolfrum and Omelchenko [4]. The synchronous
state is still stable for any N , but the chimera state appeared to
be a chaotic supertransient, which lives for an exponentially
growing with N time interval, but eventually goes into the
synchronous state.

Our main observation is that the opposite happens for an
irregular distribution of oscillators on the ring. Namely, an
initial synchronous state may become destroyed for finite N ,
while the chimera state is stable. We illustrate a transition
from a synchronous to a chimera regime in Fig. 1.

Qualitatively, destruction of the synchronous state due to
disorder is similar to desynchronization in disordered oscil-
lator lattices first described by Ermentrout and Kopell [17].
At large enough disorder a synchronous state in the lattice
disappears due to a saddle-node bifurcation. In our setup we
cannot directly apply the theory in Ref. [17], because we have
a ring with a long-range coupling. Furthermore, the theory in
Ref. [17] is restricted to the case α = 0, while in our setup
parameter α is close to π/2.

B. Statistical evaluation

In Fig. 2 we present a direct statistical evaluation of the
probability for synchrony to occur. The numerical experiment
has been performed as follows: for a configuration of random
positions of oscillators xi, Eqs. (1) were solved starting from
the state with all phases being equal ϕ1 = ϕ2 = . . . = ϕN . If
particles evolve toward a steady rotating state, where all the
instantaneous frequencies are equal, then the configuration
is considered as a synchronous one. Otherwise, if in the set
of oscillators phase slips appear, then the configuration is
considered as a nonsynchronous (chimera). The numerical
procedure was as follows. The calculations started from the
initial state ϕ1 = ϕ2 = . . . = ϕN . During the evolution the
difference of the instantaneous frequencies �� between
the most fast and the most slow oscillator in the array was
calculated. If this quantity exceeded the threshold ��c = 0.2,
then this configuration was considered as a nonsynchronous
one. If during the time interval �T = 200 the difference
remained below the threshold, then the configuration was
considered as a synchronous one (this time interval is
approximately two times longer than the average time for
the transition to chimera at N = 16 384). Typical values of
the frequency difference for a synchronous configuration
at �T = 200 were �� � 10−4. Many runs with different
random positions have been sampled to achieve statistical
results presented in the Fig. 2. One can see that while the
probability to observe synchrony is very low for relatively
small N (in fact, for N = 256 no synchronous case out of 104

runs has been observed), it becomes high for N � 8 192. This
confirms the qualitative picture of the local stability of the
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FIG. 1. Illustration of the transition synchrony → chimera for quenched disorder and N = 1024 (other parameters: κ = 4, α = 1.457).
The particles are placed randomly on the circle, and their phases are initially equal. Panels (a, b, and c): snapshots of phase distributions
ϕ(x, t ) at (a) t = 125, (b) t = 375, and (c) t = 625. One can see how the synchronous state is destroyed in the presence of spatial disorder.
First, phase slips in a certain region of space occur. Further, clusters with the highest phase gradient begin to break down, which leads to
the formation of intervals with an irregular spatial distribution of the dynamic variable ϕ(x, t ). After that the system goes to a chimera state.
Panel (d): spatiotemporal dynamics of the phases ϕ(x, t ). Panel (e): absolute value of the local (calculated for 17 neighbors) order parameter
Z (xi, t ) = (17)−1

∑8
j=−8 exp[iϕi+ j], additionally averaged over the time interval of 3 time units. White regions correspond to synchrony. Black

dashed lines denote the moments in time for which snapshots of the phases ϕ(x, t ) are presented on panels (a, b, and c). Panel (f): the dynamics
of the global order parameter R(t ) = |N−1

∑N
j=1 exp[iϕ j]|. It is clearly seen how the transition from the initially synchronous regime with

R = 1 to the chimera state with R ≈ 0.79 occurs. The green dashed line shows the value R = 0.85, which is further taken as a criterion that
determines the time of destruction of the synchronous mode.

synchronous state at N → ∞. We stress here that we do not
consider very small systems with a few oscillators.

C. Analytic estimate of probability of the existence
of stable synchrony

Here we give a semianalytic estimate for the probability to
observe a synchronous state in a disordered array. Instead of
performing a rigorous bifurcation analysis, we first estimate
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FIG. 2. Red dots: probabilities of existence of a synchronous
state from direct numerical simulations. Curves: rescaled cumulative
distributions of the minimum of field H , for N = 128 (green curve),
N = 256 (blue), and N = 512 (magenta). These curves are drawn
with help of Eq. (7) and practically overlap, which confirms the
validity of the scaling ∼N1/2.

(approximately) a critical fluctuation of the local coupling
strength at which the synchronous state disappears. The cou-
pling strength for oscillator xk is defined, according to Eq. (1),
as

H (xk ) = 1

N

N∑
j=1

G(x j − xk ).

Let us first consider a fully synchronous state in the ordered
lattice (i.e., with regular positions of the oscillators). In this
case H (xk ) = 1, due to the adopted normalization of the
kernel. Setting ϕ1 = ϕ2 = . . . = ϕN = , one obtains for the
phases a uniform synchronous rotation

̇ = − sin α.

Let us now take into account small fluctuations of coupling
strengths hk = H (xk ) − 1. We consider local deviations of the
phases from the synchronous cluster: ψk = ϕk − , and by
substituting this in Eq. (1) obtain

ψ̇k = sin α + 1

N

N∑
j=1

G(x j − xk ) sin(ψ j − ψk − α)

= sin α + cos(ψk + α)
1

N

N∑
j=1

G(x j − xk ) sin ψ j−

sin(ψk + α)
1

N

N∑
j=1

G(x j − xk ) cos ψ j .

034205-3



SMIRNOV, BOLOTOV, OSIPOV, AND PIKOVSKY PHYSICAL REVIEW E 104, 034205 (2021)

Now we take into account that the deviations of the phases
ψk are small and are nearly symmetrically distributed around
zero. Thus, we assume

1

N

N∑
j=1

G(x j − xk ) sin ψ j ≈ 0,

1

N

N∑
j=1

G(x j − xk ) cos ψ j ≈ 1

N

N∑
j=1

G(x j − xk ) = H (xk ).

Therefore, we obtain the approximate dynamics of the phase
deviation at site k as

ψ̇k = sin α − H (xk ) sin(ψk + α)

= sin α − (1 + hk ) sin(ψk + α).

According to this equation, the dynamics of the perturbed
phase is a steady state (i.e., the oscillator k belongs to the
synchronous cluster) if 1 + hk > sin α or 1 + hk < − sin α.
In our case, where hk is small and α is close to π/2, only
the first condition is relevant. If it is violated, i.e., if hk <

hc = sin α − 1, then the oscillators k starts to rotate and the
synchronous state disappears.

Thus, the probability that the synchronous state disappears
(and this leads, as we have shown above, to the appearance
of chimera), is the probability that at least at one site hk < hc.
Therefore, we have to analyze the distribution of minima of
the field H (x) defined as

H (x) = 1

N

N∑
i=1

G(x − xi ), (5)

where xi are random positions on the interval 0 � x < 1 with
uniform density w(x) = 1.

The statistics of the field H can be evaluated as follows.
First, due to normalization

∫ 1
0 G(x)dx = 1, we get 〈H〉 = 1.

Next, using independence of positions xi, it is straightforward
to calculate the covariance of H (this calculation is completely
analogous to a calculation of the correlation function of the
shot noise (sequence of independent pulses, the Campbell’s
formula) [18]:

K (y) =〈H (x)H (x + y)〉 − 1 = N−1 κ2B(κ, y)

4 sinh2 κ
2

,

B(κ, y) =cosh κy

2
+ y[cosh κ (y − 1) − cosh κy]

2

+ sinh κy − sinh κ (y − 1)

κ
.

(6)

One can see that the variance of field H decays as expected
∼N−1. One can argue that for large N , as a sum of N statis-
tically independent contributions, the field H (x) is Gaussian,
and this indeed is nicely confirmed by numerics (not shown).
However, we are interested in the distribution of the minima
of this field, and obtaining it is a nontrivial task, because
of correlations Eqs. (6) (see Ref. [19]). These correlations,
however, do not depend on N except for the overall factor
N−1, and therefore the distribution of the minima hmin on the
lattice of size N scales like

Prob(hmin < ξ, N ) = Q(ξN1/2),

where function Q is universal (for large N). The scaling of
the random variable is ∼N−1/2, because the variance scales
∼N−1. Substituting here the threshold hc = sin α − 1, we can
express the probability to observe synchrony in a lattice of
size N as

Prob(syn, N ) = 1 − Prob(chim, N )

= 1 − Prob(hmin < hc, N ) = 1 − Q(hcN1/2).

(7)

As mentioned above, we cannot derive an analytic ex-
pression for Q(y), because one needs to find a distribution
of minima among correlated Gaussian variables. However,
it is straightforward to find this distribution numerically. If
one determines the distribution FM (ξ ) of minima of the field
Eq. (5) in a lattice of size M, then according to the scaling
relation one gets Q(y) = FM (yM−1/2).

In Fig. 2 we compare this estimate with direct numer-
ical simulations, using three distributions FM obtained for
M = 128, 256, 512. These curves are practically indistin-
guishable, what is just another manifestation of the validity
of the scaling Hmin − 1 ∼ N−1/2. The curve lies below the
numerical data, what means that the adopted estimate is rather
crude. Nevertheless, it correctly predicts that for N � 1000
practically all configurations lead to a chimera state.

IV. TRANSITION FROM SYNCHRONY TO CHIMERA FOR
MOTILE PARTICLES

In this section we consider motile particles with random
trajectories. In all cases reported in this section below, we
start at t = 0 with particles regularly distributed on the ring,
i.e., xi(0) = (i − 1)/N . The phases are set to be equal, so that
the initial state is the perfectly synchronized one. Because
of irregular motion, disorder in the positions of the particles
appears. At rather large times the particles can be considered
as noncorrelated, thus their positions are fully random on the
ring. This, as we have seen in Sec. III, facilitates a transition
to a chimera. Moreover, as in the course of time evolution
different random configurations appear, eventually one which
does not support synchrony will lead to a transition to a
chimera (we illustrate this in Fig. 3). Thus, on the contrary
to the case of static configurations of Sec. III, we expect that a
transition from synchrony to chimera will always be observed
even at system sizes as large as N = 8192.

In our simulations we used a criterion of the transition
to a chimera based on the global order parameter R. We
started with a synchronous state where R = 1. During a long
transient period, the order parameter stays close to one,
unless a large enough portion of the oscillators becomes asyn-
chronous. Here the order parameter drops, and we adopted the
moment of crossing the threshold R = 0.85 as a criterion of
transition to chimera. Additionally, we checked the local order
parameters—in all simulations after the transition the maxi-
mal (over the lattice) value of the local order parameter was
very close to one, indicating for presence of a synchronous
domain, and the minimal value of the local order parameter
fluctuated around values 0.2–0.4, indicating for presence of
a disordered domain. We illustrate this with Fig. 4. In this
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FIG. 3. The same as described in the caption of Fig. 1 but for diffusive particles with σ = 10−3. Initially all the particles are placed
equidistantly on the circle, and have equal phases. Developing at t ≈ 1000 chimera pattern slowly moves along the circle, due to random
rearrangement of particles positions. Panels (a, b, and c): snapshots of the phase distributions ϕ(x, t ) at (a) t = 500, (b) t = 1500, (c) t = 2500.
Panel (d): the spatiotemporal dynamics of phases ϕ(x, t ). Panel (e): the absolute value of the local order parameter Z (x, t ). Panel (f): the
dynamics of the global order parameter R(t ).

figure we show an overlap of 50 runs, shifted in time so
that the crossing of the level R = 0.85 is at time zero. One
can see that, although a reappearance of full synchrony is

0

0.5

1

-100 -50 0 50

R

t 100

FIG. 4. Overlap of 50 independent runs of simulations for diffu-
sive particles with N = 1024 and σ = 0.003. Red lines: evolution of
the global order parameter. Time axes are shifted so that all red lines
cross the adopted threshold Rc = 0.85 (dashed line) at t = 0. Light
blue (gray) lines: minimal (over the lattice) values of the local order
parameter (calculated over 17 neighboring sites). One can see that for
positive times these values never exceed 0.6, thus proving existence
of a disordered domain. Black lines : maximal values of the local
order parameter; they are very close to one for all times (meaning
that always a synchronous domain is present).

not excluded, practically it never happens (at least during
the explored durations of the simulations, see discussion of
potential timescales in Conclusion).

Our main interest below is the dependence of the transi-
tion time (from synchrony to chimera) on the parameters of
noise and on the system size. In the system of differential
equation (1), positions of the particles xi can be considered
as parameters. We start with a stable fixed point in this sys-
tem, which does exist for regularly spread particles. Slow
motion of particles means slow variation of the parameters in
Eq. (1), and initially the stable steady state continues to exist.
However, when the set of parameters reaches a bifurcation
point (numerical experiments show that this is a saddle-node
bifurcation, like in a disordered lattice [17]), the steady state
disappears and another, chimera state, appears. Thus, what we
want to study, is the time to bifurcation.

There is also another view on the transition to a chimera.
In the starting configuration, where the oscillators are equidis-
tantly distributed, the acting field H (x) [see Eq. (5)] is
constant. When the particles start moving, this field is no
more constant, so one observes roughening of H (x) [20]. This
roughening continues until the minimum of the field becomes
small enough to induce the bifurcation. This picture suggests
that one can expect the average time of the transition 〈T 〉 to
scale with parameters of the problem: characteristic spread
of random velocities of the particles and their number. We
explore this idea of scaling below.
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FIG. 5. Average time for a transition from synchrony to chimera
for different N [from N = 128 (bottom curve) to N = 8192 (top
curve), values of N increase by factor 2]. All data points are shown
with error bars, which are smaller than the marker size. Panel (a):
for diffusive motion of the particles [Eq. (3)] in dependence on
the diffusion parameter σ . Panel (b): for ballistic particles with
Gaussian distribution of velocities, in dependence on the standard
deviation μ.

We consider two basic setups for the random motion of
particles:

(1) Diffusive motion. Here we consider diffusive motion
of the particles according to Eq. (3). The average transition
times from synchrony to chimera are presented in Fig. 5(a).
As expected, the time grows with the number of particles N ,
and for small diffusion rates σ .

(2) Ballistic motion. Here we assume that the particles
move with constant velocities vi, which are chosen from the
normal distribution with standard deviation μ. The average
transition times are shown in Fig. 5(b).

Figure 6 illustrates the distribution of the transition times
T . It shows two examples, one for diffusive particles with
N = 1024 and σ = 0.002, and another for ballistic particles
with N = 1024 and μ = 2 × 10−4. In both cases the dis-
tribution appears to be exponential, with an offset at small
times.

Next, we discuss scaling properties of the time to chimera.
We look for a scaling relation in the form

〈T (c, N )〉 = Na f
( c

Nb

)
, (8)

where c stands for one of the parameters μ, σ , and constants
a, b generally depend on the setup. We, however, could not

10-4

10-3

10-2

10-1

100

0 1000 2000 3000

Pr
ob

t

FIG. 6. Cumulative distribution of the transition times for the
onset of chimera: the vertical axis displays probability that this
time is larger than t . Blue circles: diffusive particles with N = 1024
and σ = 0.002; red squares: ballistic particles with N = 1024 and
μ = 2 × 10−4.

fit all the data according to a unique law [Eq. (8)]. As we
illustrate in Fig. 7, taking data for the interval of system sizes
128 � N � 1024 allows for achieving a very good collapse
of data points using scaling in the form of Eq. (8), with
b = 0.45 and a = 0.15 for both cases (diffusive and ballistic
motions). However, using these parameters for larger system
sizes N � 2048 does not lead to a good collapse of points.
Rather we use for large N values b = 0.3 and a = 0.6 for
the ballistic case and b = 0.35 and a = 0.65 for the diffusive
case, but they result only in an approximate collapse of data
points.

We attribute this absence of a universal scaling to the prop-
erties of the quenched randomness described in Sec. III. As it
follows from Fig. 2, for N � 1024 it is enough for particles
to achieve random independent positions on the circle, then
the transition to chimera is nearly certain. In contradistinction,
for larger populations there is a finite probability for a ran-
dom quenched configuration to possess synchrony. This leads
to an increase of the transition time: random motion of the
particles explores different configurations, until one that does
not posses synchrony is found and the transition to chimera
occurs. This explains different scalings with a crossover near
N = 1024. Moreover, we expect that the scaling observed
for 2048 � N � 8192 will not extend to larger system sizes,
because according to Fig. 2, for such large systems, the prob-
ability of the transition in quenched configuration drastically
reduces, so that the time to achieve a chimera will be ex-
tremely large, if not infinite.

V. CONCLUSION

In this paper we studied the effect of the oscillators position
disorder on the chimera state in the Kuramoto–Battogtokh
model of nonlocally coupled phase oscillators on a ring. The
level of disorder is basically determined by the number of
units N , it disappears in the thermodynamic limit N → ∞.
Our main finding is that large disorder facilitates stability
of chimera, and for sizes of populations below some level,
it is practically impossible to observe a stable synchronous
regime in a setup with a quenched disorder. For slow random
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FIG. 7. The same data as in Fig. 5, but in scaled coordinates [diffusive particles in panels (a, b), ballistic particles in panels (c, d)]. Top
row [panels (a, c)]: scaling for 128 � N � 1024 with b = 0.45 and a = 0.15. Bottom row [panels (b, d)]: scaling for 2048 � N � 8192 with
b = 0.35 and a = 0.65 for diffusive particles, and b = 0.3 and a = 0.6 for ballistic particles.

motions of the particles, in the explored range of system sizes
up to N = 8192, we observed a transition from synchronous
initial configuration to a chimera in all realizations. Even
when synchrony has a finite probability to exist in a quenched
configuration, slow variations of positions of particles lead
eventually to a configuration where synchrony state does not
exist, so that a chimera develops.

We explored the scaling properties of the transition to
chimera and found that for both diffusive and ballistic mo-
tions, the scaling exponents in the relation Eq. (8) are nearly
the same. Due to a nontrivial dependence of the probability of
the existence of synchrony already for a quenched disorder,
the scaling is different for relatively small sizes N (where
synchrony is practically never observed) and for larger sizes,
where in the quenched case there is a finite probability for syn-
chrony to survive. We, however, have not explored very large
populations N > 8192, because of computational restrictions.

It is instructive to discuss a question, whether the observed
chimera is a final state, or a synchronous state could re-
enter. This possibility is definitely excluded for the cases of
quenched disorder, because in our simulations, started from a
synchronous initial condition, appearance of chimera means
absence of a stable synchronous solution. For moving par-
ticles, the situation is more subtle. Here it is not excluded
that during the particles motion a configuration possessing
a stable synchronous state appears and exists for some time
interval. On the other hand, from studies [4] it is known that
chimera in a homogeneous static lattice is a supertransient and
after a large time interval (exponential in N), evolves into a
synchronous state. Thus, potentially a synchronous state could
re-emerge spontaneously. This would be, however, “doubly

improbable,” because one needs a superposition of the men-
tioned two extremely rare events. In our simulations we never
observed re-entrance of synchrony.

We stress here that we studied the Kuramoto–Battogtokh
model for the “standard” parameters κ, α used in Ref. [1]. The
domain of existence of chimera and its basin of attraction may
depend significantly on these parameters. Extension of the
obtained results on other domains of parameters and on other
setups where chimera patterns exist is a subject of ongoing
study.

In this paper we focused on the regime of very slow mo-
tion of the particles, including the static (quenched) case.
Preliminary simulations show that the regimes with fast par-
ticles can differ significantly, this is a subject of ongoing
research. Another interesting case for future exploration is
one close to the thermodynamic limit, where finite-size fluc-
tuations are small. Here an analytical description based on
the Ott–Antonsen reduction might be possible, to be reported
elsewhere.
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