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Transition to synchrony in a three-dimensional swarming model with helical trajectories
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We investigate the transition from incoherence to global collective motion in a three-dimensional swarming
model of agents with helical trajectories, subject to noise and global coupling. Without noise this model was
recently proposed as a generalization of the Kuramoto model and it was found that alignment of the velocities
occurs discontinuously for arbitrarily small attractive coupling. Adding noise to the system resolves this singular
limit and leads to a continuous transition, either to a directed collective motion or to center-of-mass rotations.

DOI: 10.1103/PhysRevE.104.014216

I. INTRODUCTION

Helical motion is a common form of movement in active
particles, e.g., microswimmers using flagella for propulsion
[1,2]. It facilitates chemotaxis even for small particles. Os-
cillating in circles much larger than the body size, biological
swarmers can detect chemical gradients and adapt their trans-
lational motion accordingly. Moreover, artificial swarmers,
such as magnetic micromachines with helical motion [3] or
microrobot swarms [4] are being designed and controlled in
the laboratory with potential biomedical applications, e.g.,
for drug delivery. When such self-propelled particles interact,
their velocities can align resulting in a directed collective
motion [5–7]. In addition to a directional alignment, phase
synchronization of oscillatory movements may also be pos-
sible, resulting in collective oscillations.

The seminal Vicsek model [5] of swarming particles, de-
spite its simple formulation, displays a variety of dynamical
regimes [8,9]. Its basic approximation is that active particles
in a viscous medium move at velocities v̂ with constant (unit)
amplitude and only adjust their directions through interactions
with neighboring particles. The Vicsek model can easily be
extended to include helical trajectories by defining individual
rotation axes ω̂ and frequencies (angular velocities) ω for
the particle velocity vectors. In general, the velocities and
the rotation directions evolve in time, are coupled, and are
subject to noise. As a ubiquitous influence in nature, noise
plays an important, often antagonizing role in the dynamics
of the collective motion, in particular at microscopic scales.

Without noise, and with a fixed distribution of frequen-
cies and static rotation axes, this setup has recently been
proposed and analyzed as a high-dimensional generalization
of the Kuramoto model [10]. It was found that, for odd-
dimensional vectors v̂, the synchronization transition occurs
discontinuously and without hysteresis for arbitrarily small
attractive coupling. This means that in three dimensions fre-
quency heterogeneity cannot prevent synchronization at small
coupling strengths. We report in this paper that this is the
singular limit of a transition at finite coupling strength in the

presence of noise. The Watanabe-Strogatz theory [11] and the
Ott-Antonsen ansatz [12], first developed for ensembles of
two-dimensional noise-free oscillators, have been shown to
generalize to higher dimensions [13,14] as well. With noise,
identical frequencies, and certain fixed distributions of rota-
tion axes, the stability of the incoherent (uniform) velocity
distribution has been obtained for an equivalent system of
random tops [15], a mechanical model for a disordered spin
system. The magnetization transition in this model corre-
sponds to a directed collective motion in the swarming model.
In another context, a spatiotemporal alignment of vectors
rotating on a unit sphere may also be considered a very sim-
plified model for beating cilia, which in general rotate under a
variable angle around a fixed axis [16].

In this paper we present a general condition for the tran-
sition to collective motion (alignment) for arbitrary but fixed
distributions of rotation axes and heterogeneous frequencies,
based on a linear stability analysis. This condition can still
be used in an adiabatic approximation if the rotation axes
ω̂ are not fixed but evolve on a longer timescale than the
particle velocities v̂. In this case the stability of the incoherent
state depends adiabatically on the degree of the rotation axes
alignment.

II. MODEL FORMULATION

A. Langevin equation

Independent of their interpretation as velocities, we are
considering a set of N unit vectors σ̂ i with i = 1, . . . , N ,
subject to torques μi:

˙̂σ i = μi × σ̂ i. (1)

The forces act perpendicular to the vectors σ̂ i, ensuring that
the amplitudes remain constant. Throughout the text we de-
note vectors by bold symbols and mark unit vectors, such as σ̂,
with hats. Symbols subscripted with x, y, and z denote vector
components in Cartesian coordinates. The torque μi can be
any time-dependent global or individual forcing. We assume
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FIG. 1. Amplitudes of the stationary mean velocity for particles
with uniformly distributed rotation axes, Lorentzian frequency distri-
bution with mean frequency ω0 = 0 (left and right handed rotations)
and width γ as a function of the noise strength D (both in units of the
coupling strength). The dashed vertical lines mark the critical noise
strengths according to our linear stability analysis of the incoherent
state, Eqs. (31) and (32). The solid red line on top of the simulations
for γ /K = 0 is the mean field amplitude (9) for the globally coupled
Vicsek model (von Mises–Fisher distribution).

it to be the sum of three components: (i) a constant rotation
bias of amplitude ωi around a rotation axis in the direction
ω̂i; (ii) an alignment force which rotates σ̂ i towards a vector
ρi (this component is responsible for interaction of the units);
and (iii) a noise component ξi:

μi = ωiω̂i + K (σ̂ i × ρi ) + ξi(t ). (2)

Here K is a coupling strength which, when it is positive,
promotes alignment of σ̂ i with ρi. The term ξi(t ) is a vector
of independent Gaussian white noises 〈(ξi )n(t )(ξ j )m(t ′)〉 =
2Dδi jδmnδ(t − t ′). The Langevin equation (1) with stochastic
force (2) is to be interpreted in the sense of Stratonovich
to preserve the unit amplitude of the vectors σ̂ i. By direct
simulation of the model we observe that a positive global
coupling above some critical value leads to an alignment
(synchronization) of the units, as shown in Figs. 1 and 3. The
goal of the analysis below is to understand this transition.

B. Fokker-Planck equation

In the standard Vicsek model [5] with local interactions,
the variables σ̂ i are particle velocities v̂i, the constant rotation
bias is zero (ωiω̂i = 0) and the vector ρi is the average velocity
of all particles within a distance R from the ith particle. As a
result of the competition between the aligning coupling and
noise, there exists a critical coupling strength Kcr , at which the
incoherent state loses stability. When the radius of interaction

FIG. 2. Solutions (Kl ,�l ) of dispersion relation (28) in (a) and
(b) as a function of the rotation axes mean field amplitude 〈ω̂z〉
(von Mises–Fisher distribution). Panel (c) shows the roots of the
dispersion relation on the (K,�) plane for 〈ω̂z〉 = 0.25. The color
shade on the two branches in (a) denotes the frequency �l of the cor-
responding unstable mode. We see one branch having frequency zero
(black dots), corresponding to a stationary directed mean velocity,
and another branch of oscillatory instabilities (thin black line and col-
ored circles). Depending on K one of these two types of instabilities
occurs first when 〈ω̂z〉 increases. The dashed horizontal line marks
the coupling K = 1.38 in the examples of Fig. 3. The dashed vertical
lines mark the values 〈ω̂z〉 = 0.08, 0.2 and 0.38 corresponding to
the horizontal lines in Fig. 3(a). The first instability at 〈ω̂z〉 = 0.08
corresponds to a directed motion; the second, oscillatory unstable
mode appears at 〈ω̂z〉 = 0.31. This can be seen in the magnified
plot in (b). At 〈ω̂z〉 = 0.25 we show in panel (c) critical coupling
values for the unstable modes and corresponding frequencies (dark
green circles). At these points the real part (light red lines) and the
imaginary part (black lines) of the dispersion relation Eq. (28) vanish
simultaneously. The three oscillatory modes are part of the same
(colored) branch in panel (a).

is taken to be larger than the spatial size of the popula-
tion, the coupling becomes global, i.e., ρi = ρ = 1

N

∑
i σ̂ i =

〈σ̂〉. Below we consider globally coupled populations only.
The amplitude ρ = |ρ| serves as the order parameter for the
synchronization/alignment transition. It takes values between
zero for a uniform distribution of σ̂ i and one when the vectors
are identical.

In the thermodynamic limit N → ∞ the system can be
described by a family of smooth densities f (σ̂, t ; ω̂, ω) for
vectors σ̂ with a given fixed rotation bias ωω̂. These densities
obey the Fokker-Planck equation

∂t f + ∇s · ( f a) = D∇2
s f , (3)

where ∇s is the vector differential operator along the surface
of a unit sphere acting on the argument σ̂ and a = ωω̂ × σ̂ +
K (ρ − (ρ · σ̂)σ̂ ) is the deterministic part of the force acting on
a vector σ̂ with rotation bias ωω̂.
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FIG. 3. Transient and final states of N = 10 000 particle veloci-
ties and frequency vectors with K = 1.38, noise level D = 0.2, mean
rotation frequency ω0 = 1.0, and frequency heterogeneity γ = 0.05.
The directions of the rotation axes evolve from uniformly random
initial conditions under the influence of mean field coupling κ and
angular diffusion d = 0.005. In the left column κ = 0.0158 and in
the right column κ = 0.018. Panels from top to bottom show (a) the
mean field amplitude 〈ω̂z〉 of the rotation axes (rising, dark blue
curves) and the deviation 	 from the von Mises–Fisher distribution
[Eq. (15), flat, light curves] as functions of time; (b) the final station-
ary distribution of rotation axes directions as small dots on the unit
sphere (sinusoidal projection) and a large circle in the direction of
the mean field 〈ω̂〉; (c) the velocity mean fields ρz (light red curve, in
the direction of 〈ω̂〉) and ρx (dark purple curve) as functions of time;
(d) the final stationary or rotating distribution of particle velocities
(small dots) and the direction of the velocity mean field (large circle);
and (e) sample particle trajectories in the final state over t = 100 time
units (thin irregular lines) as well as the full ensemble center of mass
trajectory (bold line). Horizontal and vertical dashed lines in panels
(a) and (c) are discussed in the text.

In this paper we assume that the frequencies ω and
the rotation axes ω̂ are random and independent. They are
distributed according to the probability densities g(ω) and
G(ω̂), respectively. The order parameter ρ is the expectation

value

ρ =
∫ ∞

−∞
dω g(ω)

∫
S2

r(ω̂, ω)G(ω̂) dA(ω̂) (4)

of the frequency dependent mean fields

r(ω̂, ω) =
∫

S2
σ̂ f (σ̂, t ; ω̂, ω) dA(σ̂ ). (5)

The terms dA denote the S2 surface volume elements.

III. DIFFUSION ON A SPHERE WITH GLOBAL COUPLING

A. Synchronization and alignment transition

The simplest case allowing for a full analytic treatment is
the one without oscillations, i.e., g(ω) = δ(ω). Then the two
processes determining the dynamics of vectors σ̂ are diffusion
under the influence noise and alignment to the mean field ρ:

˙̂σi = [K (σ̂ i × ρ) + ξ] × σ̂ i. (6)

The stationary solution of the Fokker-Planck equation (3) can
be found analytically. It is current ree, which amounts to a
detailed balance condition in (3):

f a = f · K (ρ − (ρ · σ̂ )σ̂) = D∇s f . (7)

Without loss of generality, we set ρ = ρ ẑ and multiply both
sides of Eq. (7) by ẑ. The resulting one-dimensional differ-
ential equation for the rotational symmetric density has the
Boltzmann-type von Mises–Fisher distribution as a solution:

f (θ, φ) = f (θ ) = Kρ

4πD sinh
(Kρ

D

) exp
(Kρ

D
cos θ

)
. (8)

Here θ, φ are polar angles defining the direction of the vector
σ̂. For this density Eqs. (4) and (5) give the self-consistency
condition

|ρ| = ρ = coth

(
Kρ

D

)
− D

Kρ
. (9)

Its solution can be represented in a parametric form. Denoting
x = Kρ

D , we obtain both the order parameter ρ and the essen-
tial parameter of coupling to noise ratio K/D as functions of
x: ρ = coth x − 1/x and K/D = x2/(x coth x − 1). The auxil-
iary parameter 0 < x < ∞ varies between the transition point
at x → 0, where ρ → 0, and the noise-free limit x → ∞,
where ρ → 1 (complete alignment). These analytic expres-
sions are in agreement with direct simulations of Eq. (6), as
depicted in Fig. 1 (case γ /K = 0). Expanding Eq. (9) to the
third order in ρ we obtain close to the transition point

ρ ≈ Kρ

3D
− K3ρ3

45D3
or ρ ≈

√
15D2(K − 3D)

K3
, (10)

i.e., the globally coupled Vicsek model has a continuous tran-
sition at K = 3D with critical exponent 1/2.

B. A model for von Mises–Fisher distribution of rotation axes

Above in Sec. III A we considered a simple situation with-
out rotation biases. Below we perform a more general analysis
that includes distributions of the frequencies g(ω) and of the
rotation axes G(ω̂). The latter is a distribution on a sphere,

014216-3



ZHENG, TOENJES, AND PIKOVSKY PHYSICAL REVIEW E 104, 014216 (2021)

and it is natural to assume it belongs to the von Mises–Fisher
family of distributions (because this family spans a range from
the uniform to a very narrow distribution). As it follows from
the analysis above, a von Mises–Fisher distribution naturally
appears as a stationary distribution for the Langevin process
(6). Therefore, below we use the model where rotation axes
ω̂i are not constants, but evolve slowly like in (6):

˙̂ωi = [κ (ω̂i × 〈ω̂〉) + ζ] × ω̂i. (11)

where ζ with 〈(ζi )n(t )(ζ j )m(t ′)〉 = 2dδi jδmnδ(t − t ′) is Gaus-
sian white noise. If the coupling κ and the noise intensity d are
small, the evolution of the distribution G(ω̂, t ) according to
(11) is slow. Furthermore, as will be illustrated below, during
this evolution G(ω̂, t ) is a slowly evolving von Mises–Fisher
distribution. This is confirmed in Fig. 3 below by monitoring
the ensemble moments 〈ω̂z〉, 〈ω̂2

z 〉, 〈ω̂2
x 〉, and 〈ω̂2

y 〉. According
to (9) for a von Mises–Fisher distribution (8) of rotation axes

fω(θ, φ) = κ〈ω̂z〉
4πd sinh

(
κ〈ω̂z〉

d

) exp

(
κ〈ω̂z〉

d
cos θ

)
, (12)

which for d < 3κ has the second moments

〈
ω̂2

z

〉 = 1 − 2d/κ, (13)

〈
ω̂2

x

〉 = 〈
ω̂2

y

〉 = d/κ, (14)

the deviation

	 = 〈ω̂z〉 +
〈
ω̂2

x

〉
〈ω̂z〉 − coth

( 〈ω̂z〉〈
ω̂2

x

〉
)

(15)

must be zero. We check numerically, that in our simulations
this is not only valid in the final stationary state, but also
during the transient. This allows us to study the synchroniza-
tion transition in an adiabatically evolving von Mises–Fisher
distribution of the rotation axes.

IV. LINEAR STABILITY ANALYSIS OF THE
INCOHERENT STATE

In the following we analyze the stability of the incoherent
state where the vectors σ̂ (or velocities v̂) are distributed
uniformly in all directions and |ρ| = ρ = 0. Following the
nontrivial derivation in [10], the Fokker-Planck equation (3)
can be rewritten as

∂ f

∂t
+ K (∇s f − 2 f σ̂) · ρ + (ωω̂ × σ̂ ) · ∇s f = D∇2

s f . (16)

We consider a small perturbation on top of the uniform inco-
herent distribution f0 = (4π )−1. Substituting the ansatz f =
f0 + η(σ̂, ω̂, ω)est for a small perturbation into Eq. (16) and
assuming without loss of generality ω̂ = ẑ (this allows us to
express the eigenmode in terms of angles θ, φ), we obtain to
the linear order in ρ and η the equation

2K (ρ · σ̂)(4π )−1 = ω
∂

∂φ
η(θ, φ, ω)

+ sη(θ, φ, ω) − D∇2
s η(θ, φ, ω). (17)

In order to solve Eq. (17), we express σ̂ and η(θ, φ, ω) in
terms of bi-orthonormal spherical harmonics Y m

l (θ, φ) as

σ̂ =
√

2π

3

⎛
⎝ Y −1

1 − Y 1
1

iY −1
1 + iY 1

1√
2Y 0

1

⎞
⎠ (18)

and as

η(θ, φ, ω) =
∞∑

l=0

l∑
m=−l

bm
l (ω)Y m

l . (19)

On the surface of the sphere the action of the diffusion term re-
duces to ∇2

sY
m

l (θ, φ) = −l (l + 1)Y m
l (θ, φ). Substituting this

expansion into Eq. (17), we obtain a linear system of equa-
tions for the coefficients bm

l :

1√
6π

K
(√

2ρzY
0

1 + (ρx + iρy)Y −1
1 − (ρx − iρy)Y 1

1

)

=
∞∑

l=0

l∑
m=−l

bm
l [s + imω + Dl (l + 1)]Y m

l (θ, φ), (20)

which can be solved using the orthonormality of the spherical
harmonics. Since the left-hand side depends on Y m

l with l = 1
only, the components bm

l with l > 1 decay exponentially at
rates Dl (l + 1). For l = 1 the coefficients b0

1, b−1
1 , and b1

1 are
calculated explicitly, resulting in the general form

η(θ, φ, ω) =
√

1

3π

Kρz

s + 2D
Y 0

1 +
√

1

6π

K (ρx + iρy)

s + 2D − iω
Y −1

1

−
√

1

6π

K (ρx − iρy)

s + 2D + iω
Y 1

1 (21)

of a potentially unstable mode. Integrating σ̂η over the sur-
face of the sphere [Eqs. (5), (18), and (21)], using again
the orthonormality of the spherical harmonics, we obtain the
frequency dependent mean fields (moments of the linear per-
turbation) to linear order:

r =
∫

S1
σ̂η(θ, φ, ω)dA(σ̂ ) = 2K

3

⎛
⎜⎜⎝

ρxλ−ρyω

λ2+ω2

ρyλ+ρxω

λ2+ω2

ρz

λ
,

⎞
⎟⎟⎠, (22)

where λ = s + 2D. According to the convention above, ω̂ is
directed along ẑ while the direction of ρ is arbitrary. However,
expression (22) can be rewritten in a covariant form, allowing
for arbitrary directions of ρ and ω̂:

r = 2K

3

[
λρ

λ2 + ω2
+ ωω̂ × ρ

λ2 + ω2
+

(
1

λ
− λ

λ2 + ω2

)
ω̂(ω̂ · ρ)

]
.

(23)
To express the resulting dispersion relation equation, it is

convenient to introduce the following notations:
(1) We introduce the averages over the distribution of the

frequencies as

h1 =
∫ ∞

−∞

λ

λ2 + ω2
g(ω)dω, h2 =

∫ ∞

−∞

ω

λ2 + ω2
g(ω)dω,

(24)
and h3 = 1

λ
− h1.
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(2) We introduce two matrices, characterizing the distribu-
tion of the rotation axes: the antisymmetric matrix of the first
moments � as

� =
∫

S1

⎛
⎝ 0 −ω̂z ω̂y

ω̂z 0 −ω̂x

−ω̂y ω̂x 0

⎞
⎠G(ω̂)dA(ω̂) (25)

and the covariance matrix W as

W =
∫

S1

⎛
⎝ ω̂2

x ω̂xω̂y ω̂xω̂z

ω̂xω̂y ω̂2
y ω̂yω̂z

ω̂xω̂z ω̂yω̂z ω̂2
z

⎞
⎠G(ω̂)dA(ω̂). (26)

With these notations we can express ρ from (4) and (23)
self-consistently in a compact form

ρ = 2K

3
[h11 + h2� + h3W]ρ. (27)

The real part of the exponent s = λ − 2D for any mode ρ

matching this eigenvalue equation gives the growth rate of
that mode. Equation (27) has a nontrivial solution ρ if the
dispersion relation

det

[
2K

3
(h11 + h2� + h3W) − 1

]
= 0 (28)

holds. This is the main result of our paper and we will discuss
consequences and examples in the following sections. But
first we would like to examine general properties of Eq. (28).
Because both the real and the imaginary part of the deter-
minant (28) must be zero at criticality where s = i� and
other system parameters are fixed, this occurs at a discrete
set of points (Kl ,�l ) (see an example in Fig. 2 below). At
the smallest coupling strength Kcr = minl Kl , the incoherent
state loses stability and a nonzero mean field with frequency
�cr emerges. For any critical mode with (Kl ,�l ) the mode
with (Kl ,−�l ) is also critical. Moreover, there is always at
least one nonoscillating solution (Kl ,�l = 0) since the deter-
minant is a cubic polynomial in K with real coefficients when
� = 0. A nonzero frequency �cr at the bifurcation indicates
the formation of a rotating velocity mean field in the swarming
model where the variables are interpreted as velocities σ̂ = v̂.
This means that the population will demonstrate coherent
oscillations. In contradistinction, if the critical mode has zero
frequency �cr = 0, a transition to a regime with a stationary
nonzero mean velocity occurs. This corresponds to a directed
motion of the swarm’s center of mass.

The dependence of the real and imaginary parts of the
matrix determinant in (28) on the system parameters can be
arbitrary complicated [see Fig. 2(c)]. Changing the system pa-
rameters, pairs of points (Kl ,�l ) can emerge or annihilate and
the sequence of critical coupling strengths for these unstable
modes, and thus the type of the emerging collective motion
can change.

V. SYNCHRONIZATION IN THE PRESENCE OF A
UNIFORMLY DISTRIBUTED ROTATION BIAS

In the presence of individual, quasistatic rotation axes, the
model described by Eqs. (1) and (2) is a noisy version of
the recently proposed three-dimensional generalization of the

Kuramoto model [10]. Indeed, in two dimensions the connec-
tion between the Vicsek model and the Kuramoto model has
been made explicit [17,18]. The three-dimensional Kuramoto
model without noise was discussed as a swarming model
in [10]. Strikingly and in stark contrast to the classical Ku-
ramoto model, despite heterogeneous frequency amplitudes
and rotation directions, which were described in [10] as im-
perfections that make individuals deviate from ideally straight
lines, global coupling leads to a finite translational collective
motion for arbitrary small coupling strength, when all oscilla-
tions cease as the velocities settle at well-defined fixed points.
Frequency heterogeneity is not sufficient to prevent velocity
alignment.

On the other hand, random perturbations of the torque in
the form of Gaussian white noise stabilize the incoherent state,
much as in the classical Kuramoto model, and a transition
to collective motion occurs at finite coupling strength. In
Fig. 1 we show the mean velocity as a function of the relative
noise strength D/K for an isotropic distribution of rotation
axes G(ω̂) = 1/(4π ) and Lorentzian frequency distributions
g(ω) = γ

π
(ω2 + γ 2)−1 with mean frequency zero and width

γ characterizing the frequency heterogeneity. Depending on
the ratio γ /K a stationary mean field bifurcates continuously
from ρ = 0 at a critical value of (D/K )cr , which the linear
stability analysis in Sec. VI A predicts.

The branch of partially synchronized states stretches from
this bifurcation point on the horizontal axis (where ρ = 0) to
a point on the vertical axis (at D = 0) in the noise free limit,
discussed in [10]. The existence of a critical ratio (D/K )cr

for the transition from incoherence to coherence means that
the noise free limit D → 0 is singular as the critical coupling
strength also goes to zero. In Fig. 1 we show four examples
with different frequency heterogeneities γ /K = 0, 0.1, 1, and
10. The rotation-free case γ /K = 0 corresponds to the glob-
ally coupled Vicsek model for which the bifurcation curve
is known parametrically [Eq. (9), solid red line]. When the
frequencies are very heterogeneous, e.g., γ /K = 10, the in-
coherent state, where the mean velocity is zero, is stable for
even lower ratios of D/K . For D = 0 the mean velocity in the
limit γ /K → ∞ is ρ = 0.5 corresponding to the limit K → 0
as predicted in [10].

VI. AXIAL-SYMMETRIC DISTRIBUTION OF
ROTATING AXES

In this section we go beyond the simplest setup of Sec. V
and discuss a nontrivial situation where there is a preferable
direction of rotation axes ω̂.

A. The general case

With ẑ-axial symmetry of the distribution G(ω̂), the matrix
W (26) is diagonal and matrix � (25) has only the nonvan-
ishing entries ±〈ω̂z〉. Then the matrix determinant (28) is a
product of two factors so that one of the two equations

0 = h1 + 〈
ω̂2

z

〉
h3 − 3

2K
, (29)

0 =
(

h1 + 〈
ω̂2

x

〉
h3 − 3

2K

)2

+ 〈ω̂z〉2h2
2 (30)
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must hold. If 〈ω̂z〉h2 is zero, one can show that no oscillatory
instabilities with � 	= 0 exist. This includes also the cases
discussed in Sec. V. Then the numbers of left and right ro-
tating oscillators around each rotation axis are equal and we
can immediately find the solutions with � = 0 as

K = 3

2

1

〈ω̂2〉h3 + h1

∣∣∣∣
λ=2D

, (31)

where 〈ω̂2〉 = 〈ω̂2
z 〉 for Eq. (29) and 〈ω̂2〉 = 〈ω̂2

x 〉 = 〈ω̂2
y 〉 for

Eq. (30). The smaller of these two K values is the critical
coupling strength. With a Lorentzian frequency distribution
g(ω) = 1

π

γ

(ω−ω0 )2+γ 2 , the integrals (24) and h3 = 1/λ − h1 can
directly be calculated:

h1 = λ + γ

(λ + γ )2 + ω2
0

, h2 = ω0

(λ + γ )2 + ω2
0

. (32)

Inserting these expressions into (30) and (29) gives an explicit
formula for the critical coupling strength. To calculate the
critical coupling strength in Fig. 1, where ω0 = 0 and 〈ω̂2〉 =
1/3, we use Eq. (31). Equation (31) with a delta distribution
of frequencies, i.e. ω = ω0 and γ = 0, gives the exact same
result as in Ref. [15] which is thus included in our analysis as
a special case.

B. Example: Slowly evolving von Mises–Fisher distribution

When chiral symmetry is broken, i.e., 〈ω̂z〉h2 	= 0, oscilla-
tory instabilities can be expected, leading to a partial phase
synchrony of the helical trajectories. In this case the swarm
center of mass can perform quite regular oscillations whereas
individual trajectories appear to be erratic [see Fig. 3(e2)].
Such collective oscillations have recently been observed in
dense colonies of E. coli [7].

As an example shown in Figs. 2 and 3, we study the
transition to collective motion in a swarm of globally coupled,
self propelled particles of unit velocities v̂ and with helical
trajectories. The rotation axes ω̂ of the particles diffuse and
align slowly to their mean direction according to Eq. (11)
with d = 0.005 and κ = 0.0158 or κ = 0.018. We use these
two values to illustrate directed and rotating motions of the
particles center of mass. The frequency distribution g(ω) is
Lorentzian with mean frequency ω0 = 1.0 and width γ =
0.05. The coupling strength and the diffusion constant for the
velocity vectors are K = 1.38 and D = 0.2.

We can apply our linear stability analysis under the as-
sumption of a quasistatic distribution of rotation axes ω̂. We
start with isotropic random initial conditions of uniformly dis-
tributed axes ω̂, where the incoherent distribution of velocities
σ̂ is stable for K = 1.38. As the rotation axes evolve accord-
ing to (11), they start to align and 〈ω̂z〉 grows, the moment
〈ω2

z 〉 is growing, and the moments 〈ω2
x 〉 = 〈ω2

y 〉 = 1 − 2〈ω2
z 〉

are decreasing. With these parameters, the linear stability of
the incoherent velocity distribution changes as well. At some
point it can become linearly unstable, the velocity vectors start
to align, and a transition to collective motion is observed.

During the transient we monitor deviation of the rotation
axes distribution from the von Mises–Fisher distribution ac-
cording to Eq. (15). One can see in Fig. 3(a) that systematic
deviations are smaller than finite ensmble size fluctuations in
the equilibrium state, i.e., 〈ω̂z〉 characterizes the rotation axes

distribution completely and we can study the linear stability
as a function of 〈ω̂z〉 alone.

We start with a discussion of linear stability properties
of the uniform incoherent state, according to the analytical
expressions of Sec. IV. Figures 2(a) and 2(b) shows the crit-
ical coupling strength and frequency of unstable modes as a
function of 〈ω̂z〉 according to our linear stability analysis [the
roots of Eq. (28) are found numerically]. There are two critical
branches. One (black) branch corresponds to a transition to a
non-oscillating mode, and thus to a directed motion of parti-
cles. Another (colored) branch corresponds to an oscillating
mode, and thus to center-of-mass oscillations in the popula-
tion. We choose the coupling parameter K = 1.38, therefore
with a gradual increase of 〈ω̂z〉 the system evolves along a
horizontal line in Figs. 2(a) and 2(b). The first transition at this
coupling strength is to a nonoscillating mode at 〈ω̂z〉 ≈ 0.08.
At 〈ω̂z〉 ≈ 0.32 an oscillating mode also becomes unstable.
From the linear analysis we cannot judge, what will be a result
of a competition of these modes.

Figure 3 shows results of direct numerical simulations,
with the aim to test the prediction of the linear stability
analysis and to explore truly nonlinear regimes. We have
chosen two values of rotation axes coupling, κ = 0.0158 in
the left column and κ = 0.018 in the right column of Fig. 3.
The difference is that for the former, smaller value of κ the
saturation level of 〈ω̂z〉 does not exceed the critical value for
the oscillatory instability. Thus, here we expect the directed
motion to occur. This is indeed observed in the simulations.
The directed motion itself is illustrated in panel (e1), where
one can see that it is superimposed with helical trajectories
of the particles. The transition point is, however, delayed
in comparison to the theoretical prediction: it happens at
time t ≈ 4000 [see panel (c1)], where the value of 〈ω̂z〉 is
0.2. A delay of bifurcation (compared to the static value
〈ω̂z〉 = 0.08) is a general phenomenon for parameter-varying
systems; here it might be even enhanced due to finite-size
effects.

Another, larger value of κ = 0.018 leads to a saturated
level of the alignment of rotation axes at 〈ω̂z〉 ≈ 0.5, which
is larger than the second critical value for the instability of the
oscillating mode. Here we observe two transitions, as one can
see in panel (c2) of Fig. 3. The first transition at t ≈ 1500 cor-
responds to the same value 〈ω̂z〉 ≈ 0.2 as in panel (c1). In this
transition a directed motion with ρz 	= 0 appears. However,
this motion is a transient episode: it exists only up to time
t ≈ 2000, at which the alignment of frequencies reaches level
〈ω̂z〉 ≈ 0.38. Starting from this level, the oscillating mode
dominates: a rotation of ρ in the x-y plane with ρz ≈ 0 and
oscillating values of ρx and ρy [panel (c2)]. The rotational
motion of the center of mass is illustrated in panel (e2).

VII. CONCLUSION

In conclusion, we have investigated velocity alignment and
frequency synchronization in a three-dimensional globally
coupled swarming model with helical trajectories and noise.
Unit velocity vectors of the particles precess around individual
rotation axes, tend to align into the direction of the mean
velocity due to coupling, and are subject to noise. We have
derived the condition for the emergence of a nonzero velocity
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mean field, leading to either a directed motion of the swarm
or to collective oscillations. In direct simulations we have only
observed second-order transitions at finite coupling strength,
in contrast to a discontinuous transition at infinitesimal small
coupling, reported in the singular, deterministic limit [10].
A higher order analysis beyond linear stability considera-
tion, such as the multiscale perturbation method used in the
classical Kuramoto model, is still needed to characterize the

type and the characteristic exponents of the synchronization
transition.
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