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Impact of local network characteristics on network reconstruction
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When a network is inferred from data, two types of errors can occur: false positive and false negative
conclusions about the presence of links. We focus on the influence of local network characteristics on the
probability α of false positive conclusions, and on the probability β of false negative conclusions, in the case
of networks of coupled oscillators. We demonstrate that false conclusion probabilities are influenced by local
connectivity measures such as the shortest path length and the detour degree, which can also be estimated from
the inferred network when the true underlying network is not known a priori. These measures can then be used
for quantification of the confidence level of link conclusions, and for improving the network reconstruction via
advanced concepts of link weights thresholding.
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I. INTRODUCTION

Complex systems are of key interest in multiple scientific
fields, ranging from medicine, physics, mathematics, engi-
neering, economics, etc. [1–4]. Many complex systems can be
modeled, or represented as dynamical networks, where nodes
are the dynamical elements and links represent the interac-
tions between them. In this context, networks are widely used
in studies of synchronization phenomena of coupled oscilla-
tors as well as in the analysis of chaotic behavior in complex
dynamical systems [5–8]. A deep understanding of network
characteristics allows controlling the network dynamics [9],
e.g., in case of optimizing vaccination strategies with the aim
of controlling the spread of diseases [10]. Very often one faces
an inverse problem: the underlying network is not known,
and a reliable inferring of the network structure from the ob-
servation is crucial for understanding the system’s operation
[11–20].

When a network is to be inferred from observation data,
typical analysis techniques provide measures of connectivity
strength for each link. Several methods have been suggested
in the literature to reconstruct the network structure and de-
cide whether these measures pass a certain threshold, thereby
providing a means to decide if the corresponding links are
considered as present or not [21–27].

If a nonexisting link is erroneously detected, it is called
a false positive link and is referred to as a type I error.
Likewise, an existing link that remains undetected is called
a false negative link and is referred to as a type II error
[see Fig. 1(a)]. The probability of detecting a false positive
link is usually denoted by α, while β denotes the probabil-
ity that an existing link remains undetected. The goal of a
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reliable reconstruction is to minimize both these probabilities
simultaneously.

In [28–30], the analysis of the errors of both types was
focused on the influence of false positive and false negative
conclusions about links on the reconstructed network charac-
teristics. It was demonstrated, that within the same network
topology, the values for α and β, leading to the least biased
network characterization, change depending on the network
property of interest. In this paper, the analysis is reversed: the
study focuses on the influence of network characteristics on
the probabilities of type I and type II errors.

Below, we first assume the knowledge of the true under-
lying network. In Sec. III we perform a simulation study to
show the dependence of the probability of false positive and
false negative links on their shortest path length and their
detour degree (defined later in Sec. II A). In Sec. IV, these
results are applied to a scenario where the underlying network
is unknown a priori, so we evaluate the shortest path length
and of the detour degree from the reconstruction to improve
the quality of the latter, i.e., to decrease the number of falsely
concluded links.

II. NETWORKS AND METHODS

In this section we present some network definitions which
are necessary for the understanding of the paper. A network
is defined as a set of nodes with links between them [31]. In
graph theory, a branch of mathematics that studies networks,
a different notation is used: networks are called graphs, and
nodes and links are called vertices and edges, respectively.
Below, the notations from network theory and graph theory
are used synonymously.

In this paper, Erdős-Rényi networks are used for the simu-
lation study. Erdős-Rényi networks are random networks in
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FIG. 1. (a) Outline scheme for different types of reconstructed
links with respect to the true ones. (b) Example of a network with de-
tour degrees (DDs) �i j = 2 and � jk = 0, shortest path length (SPL)
�i j = � jk = 1 and �ik = 2, indirected shortest path length (iSPL)
�̃i j = 2 and �̃ jk = 3. Notice also that �̃ik = �ik = 2.

which the set of nodes is fixed, and each pair of nodes is
connected with independent probability p.

A. Binary networks

The adjacency matrix A of a binary network with n nodes
is an n × n matrix with elements

Ai j =
{

1 if there is link from node i to node j,
0 otherwise. (1)

Networks can be directed or undirected. In an undirected
network, connection from i to j implies the connection from
j to i. Note that this implies that the adjacency matrix is
symmetric. In a directed network, this symmetry is broken,
therefore, if a path from i to j exists, a path from j to i does
not necessarily exist. We will consider directed networks and
hence nonsymmetric adjacency matrices.

For two randomly selected nodes i, j in a network of n
nodes, the shortest path length (SPL) �i j measures the num-
ber of links separating them if the shortest path is taken.
For connected nodes i, j, i.e., when the oriented edge i → j
exists, the SPL is �i j = 1. For directed networks generally
�i j �= � ji. For reasons explained in a later Sec. III A, we will
also be considering a generalization of SPL, i.e., the indirect
shortest path length (iSPL) �̃i j . Namely, iSPL is the shortest
path length when the direct link, if it exists, is disregarded.
For binary networks therefore, iSPL is larger or equal to 2,
�̃i j � 2. Notice also that in case the considered link is not
present, iSPL and SPL coincide. A simple network example
with evaluated SPLs and iSPLs is depicted in Fig. 1(b).

Inspired by the idea of a local clustering coefficient [31],
a unique network characteristic, which we refer to as the
detour degree (DD) �i j , is defined here. Detour degree is
a pairwise measure that quantifies detours between a pair of

nodes. Namely, for every oriented node pair i → j, the detour
degree is the number of oriented paths of length 2 from i to
j. For example, in the case shown in Fig. 1(b), the DD is
�i j = 2, corresponding to two directed paths of length 2 from
i to j through v1 and v3. Since the edge between v4 and j
is oriented towards v4, a path from i to j through v4 does
not exist. Similarly to the SPL, the DD is nonsymmetric for
directed networks. Notice also some connection between the
SPL and the DD: if �i j � 3, then �i j = 0.

B. Weighted networks

Often it is useful to define a network where links are not
binary connections, but are instead described by continuous
weights. The adjacency matrix elements of weighted networks
are real numbers. Definitions provided in the previous section
for the SPL, iSPL, and the DD in binary networks are here
generalized for weighted networks.

We consider the direct path length from node i to node j to
be the inverse of the corresponding adjacency matrix element
Ai j [32] or, in other words, the inverse of the link weight.
Therefore, the SPL from node i to node j is the minimal sum
of pairwise path lengths for all available paths between i and
j, i.e.,

�i j = min
(
A−1

ik1
+ · · · + A−1

kn j

)
, (2)

where nodes k1 through kn belong to all possible paths from i
to j (for iSPL the direct path is excluded from consideration).
Note that for binary networks, this definition is coherent with
the one in the previous section. For a binary network, an
existing link corresponds to weight 1 and an absent link to
weight 0, the latter would lead to an infinite contribution in
the sum. Therefore, Eq. (2) reduces to the number of links
separating i and j if the shortest path is taken. As a side note,
one can draw a parallel here with circuit theory [33], with
link weights representing directed conductances, making the
shortest path correspond to the path of least resistance and the
SPL quantify its effective resistance.

The DD of an oriented node pair i → j measures the
contribution of all the possible two-step paths from i to j.
In weighted networks, such a contribution must consider the
weights of the edges. Namely, the DD is scaled by the product
of weights of the two edges that form the two-step path

�i j =
∑

k

AikAk j . (3)

For binary networks, this definition is coherent with the def-
inition in the previous section since for Akh ∈ {0, 1}, Eq. (3)
reduces to the total number of paths of length 2 from node i
to node j. In the circuit theory analogy [33], the DD roughly
corresponds to the effective conductance of all paths of length
2 (that would be

∑
k

AikAk j

Aik+Ak j
). Note that, in both the binary and

weighted cases, Eq. (3) can be expressed elegantly in matrix
form as � = A2.

C. Network inference examples

It is not a goal of this study to develop a novel network
inference method; rather, we take methods from the previous
literature and consider how they are affected by the network
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FIG. 2. Inferred coupling strengths, relationship of α and β as function of the iSPL and DD using two inference techniques: G1 [(a), (c),
(e)] and G2 [(b), (d), (f)]. (a), (b) Histograms of the inferred coupling strengths and selected threshold (0.08 for G1 and 45 for G2) used for
(c)–(f). (c), (d) Probability of false positive α (in blue asterisks) and probability of false negative β (in red triangles) as functions of the iSPL.
(e), (f) Probabilities of α (blue asterisks) and β (red triangles) as functions of the DD for a specific value of the threshold.

properties. We perform our studies with two network infer-
ence techniques. The first one takes continuous signals of
all oscillators and assumes they follow the Kuramoto model
dynamics [4]:

φ̇k = ωk + ε
∑

j

Tk j sin(φ j − φk − 	 jk ), (4)

where ε is the coupling strength, φk the phases, ωk the natural
frequencies, and 	 jk phase shifts. It returns, based on the
maximum likelihood approximation of the phase dynamics,
both the phase shifts 	 jk (which we do not use in the analysis
below) and strictly positive values for interactions εTk j . For
details, see Ref. [21]. A network inferred using this technique
is indicated in this paper with G1, and Fig. 2(a) shows an
example of inferred coupling strengths.

The second technique is designed for pulse-coupled oscil-
lators. It takes the observed spike times and assumes that the
interaction can be well represented with a network based on
the Winfree phase equation [34]

φ̇k = ωk + εZk (φk )
∑

j

Tk jδ(t − t j ), (5)

where Zk (φ) is the phase response curve and t j are the spike
times of oscillator j. It returns, based on minimizing the sim-
ulated phase error at times of spikes, both the phase response

curves Zk (which we do not use in the analysis below) and
real values (positive and negative) for interactions εTk j . For
details, see Ref. [5]. A network, inferred using this technique,
is indicated in this paper with G2, and Fig. 2(b) shows an
example of inferred coupling strengths.

III. DEPENDENCE OF FALSE CONCLUSIONS ON
NETWORK CHARACTERISTICS

This section focuses on the dependence of false positive
and false negative link conclusions on the network charac-
teristics introduced in Sec. II. To this aim, we simulate an
ensemble of oscillatory networks, and infer their connectivity
from limited observations of its time series. We consider two
different inference techniques, both of which yield continuous
values for link weights (see Sec. II C).

We denote the true network’s binary adjacency matrix with
T and the inferred weighted one with W . The aim is to recon-
struct the original binary network T from the inferred one W ,
i.e., determine on the basis of link weights Wi j whether the
links are present or not. This is typically done by thresholding
the weights, i.e., if an inferred link weight passes a certain
threshold, the link is assumed to be present.

The inferred coupling strengths Wi j have a certain distri-
bution [see Figs. 2(a) and 2(b) as an example]. The shape of
this distribution is affected by many factors, the main being
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the network topology and the inference method itself: how
the inferred weights are scattered due to data limitations and
unaccounted effects. Consequently, depending on the chosen
threshold value, different numbers of false positive and false
negative conclusions occur. This is commonly represented
with a receiver operating characteristic, commonly referred to
as a ROC curve [35]. In this paper the interest is focused on
the influence of the probabilities of false conclusions on the
local network characteristics SPL and DD.

The simulation study is performed on Erdős-Rényi net-
works with n = 100 nodes and probability of connection
p = 0.15. In particular, for G1 the frequencies ωk are uni-
formly distributed within the interval (0.5,1.5), the phase
shifts 	 jk are uniformly distributed in the interval (0, 2π ),
the original coupling strength is set to ε = 0.3, and 500 data
points are used to perform the network inference. For G2, the
frequencies ωk are uniformly distributed within the interval
(1.0,2.0), the coupling strength is set to ε = 0.5, all oscil-
lators are assigned the same phase response curve: Z (ϕ) =
− sin(ϕ) exp[3 cos(ϕ − 0.9π )]/ exp(3), and all spikes that oc-
cur within 500 observed periods of the slowest oscillator are
considered for network inference. We perform 100 simula-
tions of each network to have enough statistical data. For both
G1 and G2 the parameters are chosen such that the weight
distributions of present and absent links significantly overlap
[see Figs. 2(a) and 2(b)]. The main way in which this is
achieved is by limiting the amount of data available to the
inference techniques: with fewer observations, the inference
of connectivity is less accurate, which is reflected in the width
of the distributions.

False conclusions with respect to local network structures

In this section we study how the inferred weights, and
therefore false conclusions, depend on the local characteristics
of the true network T , namely, the shortest path length (SPL)
and the detour degree (DD). Since T is binary, the values
of SPL and DD are integers. It is worth noting here that we
consider that all possible links i → j can be falsely identified
regardless whether they are present in T or not. Their presence
simply determines whether they are candidates for a false
positive conclusion (not present in T ), or a false negative one
(present in T ).

In the following, the proportions of false conclusions are
evaluated on subsets of links with certain values of SPL and
DD, i.e., links are separated into categories according to the
value of their SPL and DD and then probability of false con-
clusions is proportionally evaluated for each category. Unlike
the DD, SPL is by definition related to the type of possible
conclusions, i.e., SPL equal to 1 means the true link is present,
therefore excluding the possibility of false positives, and on
the other hand SPL larger than 1 means the true link is not
present, therefore excluding the possibility of false negatives.
In order to relax this limitation we here amend the definition
and consider the indirect shortest path length (iSPL), i.e., SPL
when the direct link is disregarded [see Fig. 1(b)]. Note that
iSPL of binary networks is by definition greater or equal than
2. Also, if the direct link is not present, then SPL and iSPL
coincide.

The false conclusion rates for different values of iSPL are
depicted in Figs. 2(c) and 2(d). What we observe is that false
conclusions happen more often for links with shorter iSPL.
This observation can be explained using the following reason-
ing: the smaller the (indirect) distance between two nodes, the
more they influence each other via indirect coupling, which
can disrupt the inference algorithms [5,21] into misinterpret-
ing the connectivity. This holds true for both α and β [see
Figs. 2(c) and 2(d)].

We perform a similar analysis using the DD in place of
the iSPL [Figs. 2(e) and 2(f)]. The probabilities of false con-
clusions α and β are evaluated for subsets of links with the
same DD. We find that both α and β typically increase with
the DD. This can again be explained by the same reasoning
we used when considering iSPL, namely, if the DD is low,
the indirect interaction between the nodes is low regardless of
whether the direct connection exists or not. This means that
there are less interferences to be picked up by the inference
algorithms. These dependencies are depicted in Figs. 2(e) and
2(f).

Here, we point out that the DD is effectively a measure of
connectivity while iSPL is a measure of detachment, i.e., they
measure opposite things. In circuit theory, analogy DD is a
measure of effective conductance while iSPL is a measure of
effective resistance.

IV. WHEN THE TRUE GRAPH IS UNKNOWN

A. Using network characteristics from the reconstruction

As we have seen in Sec. III A, false conclusion probability
increases with the measure of indirect distance between nodes,
i.e., it increases with iSPL and decreases with DD. The study
presented above will be now reversed: suppose the true net-
work T is not known and we only have access to the inferred
wights W . In this section we investigate the possibility of
using local network information of the inferred graph W to
gain additional insight on the probability of link existence.

We can evaluate iSPL with Eq. (2), and DD with Eq. (3)
on the inferred network W . If any weights are negative, we
take their absolute value, the reasoning being that we are inter-
ested in the estimated interaction between nodes and negative
weights represent a kind of interactions as well. Then, we
compare the relationships between the inferred link weight
Wi j , the iSPL �̃i j , and the DD �i j , all obtained from W .

In Fig. 3, we show scatter plots of the inferred coupling
strengths (or weights) versus their corresponding links’ iSPL
[Figs. 3(a) and 3(b)], and versus DD [Figs. 3(c) and 3(d)], us-
ing the two network inference methods explained in Sec. II C
and indicated as G1 and G2. We color the points differently for
the ones that represent a true link, Ti j = 1 (red, corresponding
to the cluster with higher inferred coupling strength), and
the ones that do not, Ti j = 0 (black, corresponding to the
cluster with lower inferred coupling strength). This reveals
the qualitative dependence of weights on indirect measures
of connectivity: iSPL and DD. The ranges of inferred true
and false weights overlap more for lower values of iSPL and
larger values of DD. These findings are reflective of those
in Sec. III A since they imply that the probabilities of false
conclusions decrease with iSPL and increase with DD. This
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FIG. 3. Scatter plots of the inferred coupling strengths (weights) versus the iSPL [(a) and (c)] and versus the DD [(b) and (d)] for both
inference methods, G1 [(a) and (b)] and G2 [(c) and (d)]. Points corresponding to true links are depicted with red (corresponding to the cluster
with higher inferred coupling strength) and to nonexisting links with black (corresponding to the cluster with lower inferred coupling strength).
The SPL-relative threshold in depicted as a green line in (a) and (c).

means that these measures can be used to represent the level
of confidence in detected links, i.e., links with low DD and
high iSPL are more likely to be accurately reconstructed by
thresholding. Note that the difference in the scale of DD
between Figs. 2 and 3 comes from the difference in the scale
between true weights and inferred weights, in addition to the
difference between inference techniques G1 and G2. The G1

technique on average scales down the weights, while the G2

technique scales them up. The scaling up becomes even more
prominent when we compute the DD [Eq. (3)] which contains
a product of weights, and this is the reason for having factor
104 in Fig. 3(d).

We illustrate this with ROC curves evaluated on only
a selected portion of links, according to their DD and
iSPL. In particular, we consider the more confident half of
links and compute false conclusions proportionally. These
partial-consideration ROC curves are shown alongside the
full-consideration curve as comparison (see Fig. 4). The DD
in particular seems to be a good indicator of confidence in a
link conclusion.

B. Alternative thresholding

The results presented in Sec. III A show the dependence
of the inferred coupling strengths on two network character-
istics: the indirect shortest path length (iSPL) and the detour
degree (DD). These results suggest that network reconstruc-
tions might benefit from different strategies of determining
the existence of links. The naive choice consists of selecting
a threshold value, and considering all links with inferred cou-
pling larger than the threshold as present, while the rest as not
present. In this section, two advanced thresholding strategies
are discussed.

The first possibility we discuss takes into account the
relationship between the link’s inferred coupling strength
and its SPL. Specifically, one of many natural choices is to
only consider links as present when their inverse coupling
strength corresponds to their SPL. In other words, consider
present all links for which the inferred SPL goes through
the direct link. This choice can be graphically represented
with a curved threshold, taking the 1/x curve in the plot
of Figs. 3(a) and 3(c). We refer to this as the SPL-relative
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FIG. 4. ROC curves corresponding to complete network recon-
struction (thick gray line), 50% of links with the lowest DD (dashed
brown line), and 50% of links with the highest iSPL (dotted green
line). Best results correspond to the upper left corner of the ROC
plot. The point corresponding to the mountain-pass thresholding
is depicted with a blue triangle, and the one corresponding to the
SPL-relative thresholding with a red circle. Methods G1 and G2 are
represented in (a) and (b), respectively.

threshold. Figure 4 shows the ROC curve corresponding to
the naïve choice for the threshold, and the circle red marker
corresponds to the SPL-relative threshold. While this does not
seem to improve the reconstruction for G1, it does signifi-
cantly enhance the results for G2. Further, we could consider
combining SPL-relative threshold with the naïve threshold,
by simply thresholding the remaining links. Namely, among
the links whose strength corresponds to the reciprocal of the
SPL, we perform simple thresholding. With this combined
thresholding the reconstruction is marginally improved for G1

as well, i.e., within a range of threshold values both α and β

are marginally reduced.
For the second thresholding, consider Figs. 3(b)–3(d). In

the figure, the naive threshold corresponds to a horizontal
separation line. We suggest to make use of the extra dimension
gained with the new DD measure and consider a separation
line that bends and therefore possibly separates true links from
nonlinks more efficiently, i.e., with less false conclusions.
To this aim, we first compute the histogram of the inferred
coupling strengths as a function of the DD (see Fig. 5). Then,
we calculate the curve that follows the local density minimum
between the two bulges of the histogram (black dashed line in
Fig. 5). This curve is then used as the new threshold and we

FIG. 5. Mountain-pass threshold (black dashed line) and a possi-
ble choice for the naive threshold (white dotted-dashed line) on top of
the density histogram for the inferred coupling strengths as a function
of the DD for both inference methods G1 (a) and G2 (b). Color code
expresses the density in the logarithmic scale.

refer to it as the mountain-pass threshold. The corresponding
result of the mountain-pass threshold in terms of false conclu-
sion is illustrated in Fig. 4 with a blue triangular marker. For
both G1 and G2, this choice of the threshold results in a better
reconstruction of the true links than both the SPL-relative and
the naive thresholds.

V. DISCUSSION AND CONCLUSIONS

In this paper, the influence of local network characteristics
on the probability of false conclusions about the links inferred
from typical data analysis methods has been examined.

We considered binary directed networks of coupled os-
cillators and assumed a setup where only individual nodes
can be observed. Namely, connectivity cannot be measured
directly, but instead can only be estimated from dynamical
observations of individual oscillators. The particular methods
of connectivity inference adopted in this paper take signals of
individual nodes and yield a real-valued connectivity matrix
representing link weights. In order to obtain binary connectiv-
ity from weighted connections, one would typically threshold
link weights to determine their presence. A portion of links
is almost always misidentified. In this paper we investigate
the relationship between these false conclusions and local
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network characteristics. In particular, we look into two net-
work characteristics: the shortest path length and the detour
degree. By performing a statistical analysis on simulations
where the ground truth is known, we found that these local
characteristics can provide additional information regarding
the probability of false conclusions. The knowledge of the
dependency of the inferred link weights and these characteris-
tics allows the links to be represented in a higher dimensional
space, where more advanced thresholding techniques can be
used. Two thresholding techniques are proposed as examples,
both decreasing the proportion of false conclusions for the
tested conditions.

Additionally, we demonstrated that such a posteriori
calculated local network characteristics can provide good es-
timators of confidence in obtained links. These results can be
applied to real experimental settings, where the underlying
true network is not known a priori. As such, these multidi-
mensional thresholding techniques show potential for use in a
variety of further investigation.

The computational cost to perform such analyses is small
since both DD and SPL can be evaluated for every node
pair in time proportional to third power of number of nodes
O(n3). DD simply involves squaring the adjacency matrix,
which with a textbook algorithm scales with O(n3), and even
slightly faster implementations have been found scaling with
O(n2.4) [36]. SPL (as well as iSPL) can be evaluated us-
ing, for example, Warshal’s algorithm [37], which although
slightly more time consuming than matrix multiplication still
scales with O(n3) when efficiently implemented. Such com-
putational scaling makes it feasible to analyze networks of
several thousands of units on a modern laptop. For even larger
networks (millions of nodes) heuristic algorithms for DD and
SPL should be considered, sacrificing optimality for a signifi-
cant reduction in computation cost.

This paper provides insight into the concept of thresh-
olding and offers a general strategy applicable to network
reconstructions. Here, we showed two examples of different
inference methods used to reconstruct ER networks, but we
expect this would work also in many other cases, for different
inference methods as well as network topologies. We pre-

sented two sample cases in which the decision of considering
a link present, or not, lies in a gray area. More specifically,
the inferred coupling strengths show a distribution which
cannot be clearly separated into two. This is a prototypical
scenario where our method should be employed to improve
the network reconstruction. If, for instance, the inferred cou-
pling strengths presented a distribution made of two clearly
separated peaks, then simply choosing a threshold for the
inferred coupling strengths to split the two distributions would
lead to a nearly perfect reconstruction, and therefore our
strategy would be superfluous. However, typically in exper-
imental settings the inference accuracy is limited and network
reconstructions would benefit from our approach. The com-
putational cost of such analyses is small, and the approach
does not require strong assumptions, therefore, this can be
easily applied with any network reconstructed from data. We
suggest that one should employ our strategy as a simulation
study tailored to their own case. Such analysis might reveal
strong dependencies between the inferred coupling strengths
and local network characteristics which can be used to im-
prove the reconstruction by lowering down the ratio of false
positive and false negative detected links, possibly even more
than the examples shown in this investigation.

In future studies, different reconstruction methods as well
as different network topologies should be considered to check
whether the common rules found in this paper apply to a wider
range of cases. Furthermore, deliberating knowledge-based
criteria for determining how effective a particular local char-
acteristic is for the purpose of network reconstruction could
lead to conception of optimized network characteristics.
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