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Abstract
I study deterministic dynamics of chiral active particles in two dimensions. Particles are considered
as discs interacting with elastic repulsive forces. An ensemble of particles, started from random
initial conditions, demonstrates chaotic collisions resulting in their normal diffusion. This chaos is
transient, as rather abruptly a synchronous collisionless state establishes. The life time of chaos
grows exponentially with the number of particles. External forcing (periodic or chaotic) is shown
to facilitate the synchronization transition.

1. Introduction

Active or self-propelled particles are a subject of active current research (see introductory review [1]). For
microscopic particles, random interactions with an environment are essential, and one speaks about active
Brownian particles, subject to noisy forces. For macroscopic particles, existence of random forces is not so
obvious, but here one also often introduces them to model observed fluctuations in the motions of animals
and birds (cf famous Vicsek model [2]). A large class of active particles constitute chiral active particles, natural
trajectories of which are not straight lines, but circles. The origin of chirality can be asymmetry in the particle
shape or in the propulsion mechanism; also external magnetic field may lead to circular motion (see discussion
and examples in [1]).

There are different models for interaction of active particles. In many cases, inspired by the Vicsek model
[2], one assumes an aligning interaction: neighboring particles ‘prefer’ to align their velocities. In the con-
text of chiral Brownian (i.e. noise-driven) particles, such an aligning interaction can lead to an appearance of
synchronized rotating clusters (see, e.g., references [3–6]). In this paper, I consider deterministic particles with-
out alignment forces. The main finding is that this system demonstrates a transition from supertransient chaos
to synchronous clusters.

I introduce the basic model in section 2. In section 3 I demonstrate that while for small times, circling col-
liding active particles demonstrate chaos leading to their diffusion, at large times a transition to a synchronous
state without collisions occur. The life time of chaos grows exponentially with the number of particles, what
allows to speak about supertransients, typical for spatio-temporal chaos. In section 4 I demonstrate that exter-
nal periodic or random forcing induces a transition to a collisionless state already at small times. I conclude
with discussion in section 5.

2. Model formulation

I consider active particles in two dimensions, with circular natural trajectories. The two components of velocity
(v = ẋ, u = ẏ) for one particle obey following equations:

v̇ = −ωu + μ(W2 − u2 − v2) + m−1Fx,

u̇ = ωv + μ(W2 − u2 − v2) + m−1Fy.
(1)
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Here W is a steady speed, which a particle attends if the other forces Fx,y vanish; parameter μ describes the rate
of the relaxation to this steady speed; m is the particle’s mass. The velocity field rotates with frequency ω. In a
steady state, an isolated particle rotates on a circle of radius W/ω with frequency ω.

It is worth noting that equation (1) is widely used in synchronization and coupled oscillators studies as the
Stuart-Landau model (see, e.g., [7]). In this interpretation two variables u, v describe a state of an autonomous
oscillating system close to the Hopf bifurcation point. It is also well-known that under a periodic or random
force this oscillator synchronizes [7], this effect will be explored in section 4.

Below I consider two types of forces acting on particles. The first force is the interaction between the
particles. I assume, following reference [8], a conservative repulsing interaction governed by a truncated
Lennard-Jones potential, which depends on the distance R between the particles:

V(R) =

⎧⎪⎨
⎪⎩
ε

[(σ
R

)12
− 2

(σ
R

)6
+ 1

]
for R � σ,

0 for R > σ.

(2)

This potential takes from the full Lennard-Jones potential only its repulsing part, and the attracting part
is absent. Thus, this potential mimics not-so-hard discs with radius σ/2, which repulse each other when
collide, and do not interact aside of collisions. I stress here that the interactions have no any alignment
action (the latter is often assumed in models of Vicseck type). If there where no activity and chirality
[i.e. ω = μ = 0 in (1)], then the model reduces to a Hamiltonian one of elastically colliding disks. In the
case of hard disks it is believed that the dynamics is fully chaotic (the Boltzmann–Sinai hypothesis), although
the proof [9] has some restrictions. For smooth potentials, stable periodic orbits in the Hamiltonian dynamics
may appear [10]. Much less is known for colliding active particles, but our simulations in section 3 indicate
for chaos.

In addition to interaction forces described by (2), I will consider external forces specified in section 4.
Below I study numerically an ensemble of active particles with circular orbits (1), (2) in a periodic geometry,

i.e., on a torus L × L. I fix μ = 2, W = ω = 1, σ = 0.2, m = 1, and ε = 0.1 throughout the paper. The main
parameters to explore is the number of the particles N and the density ρ = NL−2. Numerical integration has
been performed using the standard fourth order Runge–Kutta method with step Δt = 2π/800. In all cases
the calculations start from a maximally random initial state: initial positions of the particles are randomly
chosen from a uniform density on the square (of course, overlapping is avoided), initial velocities have the
form u = W cosα, v = W sinα, where α is uniformly distributed on a circle [0, 2π)

3. Chaotic state and spontaneous transition to synchrony

3.1. Quasistationary chaotic state
Because collisions of hard disk have a scattering property with an essential degree of instability (like dispersive
billiards), one can expect chaos in colliding active particle described by equations (1) and (2). Due to multiple
collisions, velocity of a particle is random, so its motion is a diffusion in two dimensions. I illustrate this
with figures 1 and 2. They show trajectories of N = 20 particles in a particular run. Up to time Tst ≈ 27 000
(I measure time in periods of rotations) motion of all particles is irregular.

Quantitatively, a good characteristics of irregularity is the mean diffusion constant of the particles. It can
be calculated from the mean squared displacement after a large time interval

D =
〈(x(T) − x(0))2 + (y(T) − y(0))2〉

T
.

Diffusion in the system is normal, as the graph of 〈(x(T) − x(0))2 + (y(T) − y(0))2〉 versus time interval T
(figure 3(a)) shows. Because D is an intensive quantity, one can expect that it depends on the intensive param-
eter—density of particles ρ, but not on the number of particles N. However, calculations of the diffusion
constant figure 3(b) show, that for a small number of particles a significant depletion of the diffusion constant
is observed. I attribute this to correlations which appear in small communities where the same particles collide
many times. In large ensembles, a particle has again and again new neighbors, so that correlations effectively
disappear [see nearly coinciding values for N = 30 and N = 40 in figure 3(b)].

The diffusion constant non-monotonically depend on the density of the particles. Heuristically, this can be
explained as follows. For large densities, the system is quite crowded, and the mean free rotation time between
collisions is small. Thus, diffusion results from a sequence of uncorrelated small steps. For smaller density,
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Figure 1. Positions of particles vs time for N = 20, ρ = 3. These positions are depicted at each period of the free rotation 2π/ω
(stroboscopically), therefore a rotation without collisions looks like a steady state. Synchronization transition occurs at t ≈ 27 000.

Figure 2. Trajectories of particles for the same data as figure 1. Positions of the particles are shown stroboscopically with period
of rotation 2π/ω. Therefore the positions at the synchronous stage are fixed points in this two-dimensional representation, and
thus not visible.

the free rotation time increases and the length of a step between two collisions becomes closer to its maximal
value, diameter of the circles; thus diffusion becomes enhanced. With further decrease of density, collisions
become more seldom while the characteristic displacement between collisions remains the same; thus diffusion
constant decreases.

3.2. Spontaneous transition to synchrony
The main observation of this work is that the chaos described above is in fact a transient state, it evolves even-
tually into a configuration without collisions; such a transition can be seen at Tst ≈ 27 000 in figure 1. Indeed,
a set of particles (1) has an absorbing synchronous state where all the velocities are equal: v1 = v2 = · · · = vN,
u1 = u2 = · · · = uN. In this state the particles rotate synchronously, the distances between them remain
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Figure 3. Calculation of diffusion constant. Panel (a): mean squared displacements vs time for N = 20 and different ρ are nearly
perfect straight lines confirming normal diffusion of particles. Panel (b): diffusion constants (obtained by averaging over 500
independent runs) for different N and ρ.

constant, and they do not collide. Thus this state, in which the particles do not interact, continues forever.
Such a state can exist also in a Hamiltonian setup, but there it can occur only for specially constructed initial
conditions. If collisions in a set of Hamiltonian discs occur, they cannot disappear, because of the reversibility
of the dynamics. For active particles with a non-Hamiltonian dynamics, there is no such a restriction.

I stress that the state in figure 1 at T > Tst is not completely synchronous, as the phases of rotation of
different particles do not coincide. It is sufficient to achieve a state where collisions disappear, such a regime,
which I call absorbing collisionless state, continues forever. In fact, this state always establishes in the numerical
simulations performed in the given range of parameters, so one can attribute it as a globally attracting one.

I illustrate the collisionless synchronous state corresponding to T > Tst of figure 1 in figure 4. Figure 1 shows
that the transition to synchrony is quite abrupt, so this is an example of type-II supertransients according to
classification of [11]. This allows one to speculate, that the mechanism of the transition is in exploration by
the chaotic system of different possible configurations, until a configuration without collisions is ‘found’.

The time at which a synchronous absorbing state appears depends on the initial configuration of particles,
it is distributed according to an exponential law as figure 5 demonstrates. In figure 6 I show dependence of
the mean time to achieve a collisionless state on the number of particles and on density ρ (the number of
independent runs for the statistics in figures 5 and 6 was in the range from 700 to 4000). The main feature
is that the life time of a chaotic state grows exponentially with the number of particles N. This growth is,
however, perfectly exponential for large enough ensembles N � 20 only; for smaller system sizes the growth is
slightly faster than exponential. The exponent appears to vary only weakly with the density parameter. Thus,
this system belongs to a class of extended systems with chaotic supertransients [12, 13]. Figure 6 also shows
that the law of exponential growth with the number of particles only weakly depends on the density parameter.
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Figure 4. Synchronous state for the trajectory shown in figure 1. Black filled circles: positions of the particles at a certain time;
colored large circles: trajectories of the particles.

Figure 5. Distribution of times to synchronization for N = 30 and ρ = 4 (red squares). The black dotted line shows exponential
fit P(t) = exp[−t/Tst], where Tst = 95 372 is the average value (presented in figure 6).

4. Driven transition to synchrony

Noninteracting particles are described by a set of effective Stuart–Landau oscillators (1). Thus, such an ensem-
ble can be synchronized by an external periodic or random force, as described in the theory of synchronization
[7]. One can expect that the same happens also in the presence of the collisions, although the synchronization
onset can be retarded due to them. I Illustrate the effect of a periodic force Fx = γ cos(ωt) on the ensemble
in figure 7. A small force has almost no effect, the mean life time of the chaotic state is almost the same as
for autonomous particles. At large values of γ, the transition occurs within a few periods, the mean life time
is almost the same for different N and ρ. Noteworthy, at intermediate force amplitudes 0.01 < γ < 0.03, the
reduction of the mean life time of chaos is mostly pronounced for systems with low density (see curves with
ρ = 1 for N = 20 and N = 30).

Common noise is another source of synchrony in ensembles of uncoupled oscillators [7]. Here I report on
numerical experiments where noise was in the form of a Poissonian sequence of delta-pulses:

Fx =
∑

n

anδ(t − tn), (3)

5



J.Phys.Complex. 2 (2021) 025009 (8pp) A Pikovsky

Figure 6. Mean time to synchronization in dependence on the number of particles and on density. The dependencies in the range
20 � N � 30 are well fitted (the fits are shown with black dotted lines) with Tst ≈ A(ρ)exp[B(ρ)N], where B(1) = 0.304,
B(2) = 0.311, B(3) = 0.309, B(4) = 0.282.

Figure 7. Mean time to synchrony under periodic force vs force amplitude γ for different ρ and N (averaging over 1100
independent runs).

where tn are Poissonian time events appearing with rate τ−1, and an are independent amplitudes of the pulses
taken from a Gaussian distribution with standard deviation σ. Mean life times of chaos are shown in figure 8.
Remarkably, under noisy force the mean life time of chaos is nearly a constant, it does not depend on the
number of particles and on the density. This can be attributed to the fact that the force is rather strong in our
setup. As a result, the noisy driving not simply ‘assists’ natural transition to synchrony, but rather destroys
it. The transition time is therefore determined by the time of synchronization by noise of individual, non-
colliding particles. So, for small number of particles common noise retards transition to synchrony compared
to the spontaneous one. For large number of particles the effect is opposite, here for N = 30 noise reduces the
life time of chaos by a factor larger than 20. A very weak dependence on the mean life time of chaos on the
number of particles and on the density allows for representing the dependence of this time on the parameters
of the forcing σ, τ by averaging over N, ρ. The results presented in the inset of figure 8 show that this time
grows with γ and τ (in the explored range 0.1 � σ τ � 0.3).
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Figure 8. Mean time to synchrony under random force (3) with τ = 0.2 and σ = 0.2 (filled markers, averaging over 1000
independent runs). Also, for comparison, is shown the unperturbed mean time (open markers). The inset shows the mean time
(averaged over N = 10, 20, 30 and ρ = 1, 2, 3) in dependence on parameters of the forcing σ, τ .

5. Conclusion

In this paper I studied an ensemble of active particles with circular natural trajectories, subject to elastic col-
lisions. This setup differs from previous studies in two aspects: (i) the basic dynamics is purely deterministic
(except for the special considered case of a common random force), and (ii) there are no aligning interactions.
I show that the autonomous system demonstrates supertransient chaos. Starting with random initial condi-
tions, for a long interval of time, chaotic dynamics is observed, leading to a normal diffusion of the particles.
However, the final state is a regime without collisions, where neighboring particles effectively synchronize their
circular rotations. I demonstrate that the life time of chaos depends on the density of particles, and grows expo-
nentially with the number of them. Furthermore, I show that the transition to synchronous rotations can be
induced by an external periodic force, common for all particles (this effect has been previously reported in
other context in references [14, 15]). Also I demonstrate that a random common force also leads to a syn-
chronous dynamics without collisions. Forced transitions have a certain transient time which for large forces
does not depend on the number of particles. In this paper we considered an ideal case of identical particles. Pre-
liminary calculations show that spontaneous regularization of the dynamics happens also for inhomogeneous
populations (e.g., for different frequencies of the particles); more details will be presented elsewhere.
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