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Abstract—We consider the spatiotemporal states of an ensemble of nonlocally coupled nonidentical phase
oscillators, which correspond to different regimes of the long-term evolution of such a system. We have
obtained homogeneous, twisted, and nonhomogeneous stationary solutions to the Ott–Antonsen equations
corresponding to key variants of the realized collective rotational motion of elements of the medium in ques-
tion with nonzero mesoscopic characteristics determining the degree of coherence of the dynamics of neigh-
boring particles. We have described the procedures of the search for the class of nonhomogeneous solutions
as stationary points of the auxiliary point map and of determining the stability based on analysis of the eigen-
value spectrum of the composite operator. Static and breather cluster regimes have been demonstrated and
described, as well as the regimes with an irregular behavior of averaged complex fields including, in particular,
the local order parameter.
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1. INTRODUCTION
Systems of coupled oscillators are topical objects

for theoretical and experimental investigations. This is
primarily because such systems are basic models in
various fields of modern science and technology.
These systems are successfully used for describing not
only mechanical objects (in particular, coupled pen-
dulums [1, 2] and metronomes fixed on a common
base [3, 4]), but also various processes in electrical
(including power grid networks [5, 6], solid-state
structures [7, 8], and molecular chains [9, 10]). Refer-
ences to specific experimental and theoretical investi-
gations can be found, for example, in monographs [11,
12] and in review [13].

A number of key fundamental phenomena typical
of nonlinear oscillator media of different origins can
often be successfully analyzed using the phase approx-
imation [12, 14, 15]. Such phenomena include, in par-
ticular, the synchronization and emergence of correla-
tions in the system [1, 11]. A transition from more
accurate and concrete theoretical formulations to a
universal description based on dynamic equations for
phase variables reveals universal principles and general

regularities in the behavior of physical, chemical, bio-
logical, and social systems. The behavior of a popula-
tion of oscillators interacting via the mean field is ana-
lyzed most often using the well-known Kuramoto
model with global coupling and its various modifica-
tions [11, 13, 16–22]. A distinguishing feature of such
a coupling topology is the absence of information on
the position of elements of the ensemble in the coordi-
nate space. For this reason, despite the possibility of
combining oscillators into clusters, it is impossible in
this case to formulate problems of the formation of
spatial structures and the propagation of waves. How-
ever, the situation changes radically if the interaction
in the medium is not global, but local by nature
because the system becomes spatially ordered. Full
symmetry relative to transposition of elements in such
a system disappears automatically, and their number-
ing plays an important role in analysis of the dynamics
of oscillator populations.

The nonlocal coupling can be represented analyti-
cally, for example, in the form of a convolution opera-
tor. The kernel of such an operator completely deter-
mines the type of the interaction in such an oscillator
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medium. In spite of the fact that among other things,
the long-range interactions decreasing in accordance
with a power law were also considered in the literature
(see, for example, [23]), important and generally
unexpected results were obtained for kernels with
finite radii and with exponentially decreasing tails
[24–26]. Among these results, the formation of chi-
mera states characterized by the coexistence of syn-
chronous and asynchronous groups of oscillators
occupy a special position. At present, such nontrivial
states remain attractive and intriguing effects for many
researchers specializing in nonlinear dynamics (see
recent reviews [24–29]). This interest is due to the fact
that chimeras are formed because of the fundamental
symmetry breaking phenomenon [30] manifested in
certain populations in that in spite of the fact a homo-
geneous fully synchronous state exists and is stable,
the system (for a number of initial conditions) can pass
during the long-term evolution to a completely differ-
ent (more complex) regime of its dynamics, in which
apart from the groups with mutually synchronous ele-
ments, there exists a substantial part of asynchronous
oscillators.

Nontrivial states in media consisting of phase oscil-
lators with a nonlocal coupling can be described as
stationary structures with spatially nonuniform com-
plex order parameter profile that is determined locally
as a measure of coherence of the mesoscopic group of
neighboring elements. In particular, in this context,
the absolute value of such a local complex order
parameter for chimera regimes in distributed ensem-
bles and populations with a composite topology iden-
tically equals unity in the regions where adjacent oscil-
lators are synchronous and is smaller than unity in
regions with an asynchronous behavior of elements
[24–28, 31–35].

In the investigations in this field, systems consist-
ing of nonidentical oscillators occupy a special place
[13, 18, 20–23, 36–43]. In such systems, each oscilla-
tor possesses its own frequency, the value of which
depends on the properties of a given element. In an
ensemble consisting of a large number of oscillators, it
is quite natural to assume that these frequencies are
selected at random, and their distribution obeys a cer-
tain law that is formulated beforehand from physical
considerations. If we consider populations with a non-
local interaction, we can state that spatial disorder is
manifested, which can significantly affect the coher-
ence in the group of adjacent oscillators as well as the
dynamics of the ensemble as a whole. On the one
hand, its presence complicates analysis of the long-
term behavior and the states of the medium, which are
ultimately stabilized, because additional parameter
responsible for the spread of frequencies appear. One
can expect the emergence of some new more complex
regimes that are absent in the case of identical oscilla-
tors. The degree of spatial disorder determines the
bifurcation values of other quantities, at which possi-
ble scenarios of long-term evolution change qualita-
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tively. On the other hand, there appears the possibility
of an advance in the analytic description of the results
of numerical simulation. This is primarily due to the
fact that a fully coherent regime cannot be realized in
such systems. Therefore, the degenerate situation in
which the modulus of the local complex order param-
eter identically equals unity becomes impossible.

Distributed systems consisting of nonidentical
nonlocally coupled oscillators have been actively
investigated from different points of view. From a large
number of publications appearing during the last
decade in this field, we consider here only several key
works [37–43]. In particular, in [37, 38], the long-
lived states characterized by the existence of regions
with different degrees of particle coherence are
described. Such states are analogs of chimeras and are
transformed into them in the limit of zero frequency
spread. In the same publications, it was demonstrated
for the first time that the Ott–Antonsen reduction
[20–22], which makes it possible to obtain self-consis-
tent dynamic equations for macroscopic complex
fields (one of which being the local order parameter),
can effectively be used for analyzing these regimes. A
generalized phase model that can be used for describ-
ing networks of nonlocally interacting elements with
different individual characteristics was considered in
[39]. The key feature of the system considered in [39]
is the existence of a time lag in the coupling between
two pairs of elements, which is chosen at random and
introduces additional disorder. In particular, it was
shown that if the values of control parameters are close
to critical values at which a homogeneous partially
synchronous state loses its stability, the population of
nonidentical phase oscillators with a time lag is trans-
formed during its evolution into transient states distin-
guished by the existence of several (two or more)
extrema in the distribution of averaged quantities; this
in turn indicates that the medium splits into irregular
(in time) alternating (in space) regions with elevated
and lower coherence. In [44, 45] (in the case when the
medium consists of identical particles; see, for exam-
ple, [40, 41, 46]), another possible typical regime that
can be reached by an oscillator ensemble has been ana-
lyzed. It will be referred below as the twisted state
because it is distinguished by the fact that the mean
phase at an arbitrary instant increases by 2πq upon the
path-tracing of the system closed into a ring, where q
is an integer. In [42], the attention of the authors was
concentrated on states with irregular (chaotic) behav-
ior of macroscopic fields. Among other things, an
attempt was made at the classification of the observed
turbulent regimes. In the recent publication [43], the
existence of breather quasi-chimera regimes charac-
terized, on the one hand, by a periodic time variation
of the amplitude of complex mesoscopic fields at each
point of space and, on the other hand, by the coexis-
tence of regions with elevated and lower coherence was
considered. It should be noted that such regimes were
discovered earlier for systems of identical phase oscil-
D THEORETICAL PHYSICS  Vol. 132  No. 1  2021
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lators (see, for example, [32, 33]). In addition, it
should be specially emphasized that in most of the
aforementioned publications, either functions with a
finite number of terms in the corresponding Fourier
series, or rectangular finite-width distributions were
used as the kernels of the integral operator describing
the nonlocal interaction.

In this study, apart from the description of original
results for kernels with exponentially decreasing tails,
an attempt is also made at a certain systematization
and generalization of the data obtained earlier and
information found in the literature. We analyze syn-
chronous and asynchronous regimes and the corre-
sponding spatiotemporal structures in an ensemble of
weakly nonidentical nonlocally coupled phase oscilla-
tors distributed uniformly over the ring. In theoretical
analysis, we are using the Ott–Antonsen approach
[20–22]. The form of the interaction (of the exponen-
tial type) in the medium makes it possible to pass from
the integro-differential equation for the order param-
eter to a self-consistent system of partial differential
equations for two complex fields analogously to the
procedure used in [31–33]. The nonidentity of ele-
ments of the medium is a key feature that makes it pos-
sible to advance primarily in the study of the variety of
stationary nonuniform local order parameter profiles
and their stability as compared to those in our earlier
investigations of systems of identical oscillators [31–
33, 46] because the complex fields we are interested in
are smooth functions modulo smaller than unity.
Numerical simulation is performed using the initial
model of a population consisting of a large number of
phase oscillators with natural frequencies chosen at
random in accordance with the Lorentz distribution,
as well as on the basis of closed self-consistent equa-
tions for macroscopic (averaged) quantities.

The mathematical formulation of the problem
under investigation is given in Section 2. The simplest
solutions with the constant absolute value of the order
parameter are described in Section 3. Here, asynchro-
nous and partially synchronous uniform regimes, as
well as twisted states, are considered. In Section 4,
first, basic information and relations underlying the
proposed method of the search for stationary (uni-
formly rotating) nonhomogeneous solution to the
Ott–Antonsen equations with periodic boundary con-
ditions are given. Then the key aspects of linear analy-
sis of stability of the given nontrivial spatial structures
that can be put in correspondence with quasi-chimera
static states of the initial phase model are described.
Further, the main aspects and advantages of the pro-
cedure for constructing the families of such transfor-
mations with different numbers of regions with ele-
vated and lowered coherence are considered, and the
results obtained with such an approach are formu-
lated. In addition, the drawn conclusions are sup-
ported by direct numerical simulation of the dynamics
of distributed phases and the local complex order
parameter. The classes of possible observable regimes
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
with a more complex (periodic or irregular)) behavior
(in space and time) of mesoscopic (averaged) fields are
considered in Section 5. The results of this study are
formulated in Conclusions.

2. MODEL
Let us consider an ensemble of N nonlocally cou-

pled nonidentical oscillators (n = 1, 2, …, N) distrib-
uted uniformly over a segment of length L with peri-
odic boundary conditions [37–39, 41–43]. We
describe this system using the phase approximation
with dynamic variables ϕn(t), the time variation of
each such variable being determined by equation

(1)

where ωn (n = 1, 2, …, N) are natural frequencies of the
oscillators. As in most publications [18, 37–39, 41–
43], we assume that quantities ωn are chosen at ran-
dom and described by the Lorentz (or Cauchy) distri-
bution function

(2)

with mean value ω0 and half-width γ.
Field Hn(t) acting on the oscillators has phase shift

α, which is the same for all elements, and is defined in
terms of the discrete convolution operator:

(3)

Its kernel G(x) characterizes the interaction in the
medium in question and satisfies the unit normaliza-
tion condition. For G(x), we choose function

(4)
that successfully approximates the case with weak
nonlocal coupling [31–33, 46]. This function ade-
quately describes the effects associated with the influ-
ence of not only the nearest neighbors on an arbitrarily
chosen element, but also of other (more remote) oscil-
lators. We can naturally assume that this influence
decreases relatively rapidly with increasing distance
between particles. It should be emphasized that
expression (4) in the limit κL → +∞ is transformed
into exponential kernel

from the classical work by Kuramoto and Battogtokh
[47]. In fact, both GKB(x) and G(x) in form (4) are the
Green functions of the nonhomogeneous Helmholtz
equation with a source on the right-hand side. How-
ever, in the former case, the system is assumed to be
distributed over the entire (infinite) interval from –∞
to +∞, while in the latter case, the situation corre-
sponds to a finite-length medium closed into a ring;
i.e., the system satisfies periodic boundary conditions.
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Several more remarks that make it possible to
reduce the number of parameters in the given system
are due. For example, the combination of relations (3)
and (4) is invariant to scale transformations. For this
reason, without loss of generality, coefficient κ can be
set equal to unity. Therefore, we will henceforth
assume that κ = 1, and the force of coupling between
elements is determined in fact by length L of the
medium. In addition, passing to the coordinate system
rotating with velocity ω0, we can easily exclude quan-
tity ω0 from the control parameters. Consequently,
even at the stage of formulation of the problem, it is
expedient to set the value of ω0 equal to zero (i.e., we
will assume below that ω0 = 0). Thus, for typical
regimes of the long-term evolution of the given
ensemble of nonlocally interacting oscillators, three
quantities L, γ, and α are determining parameters. It
should also be noted that the case of identical oscilla-
tors (γ = 0) has already been considered in our earlier
publications [31–33, 46].

The model formulated above, which consists of
finite number N of oscillators and described by
Eqs. (1)–(4), has a wide spectrum of applications in
various fields of science and technology [11, 12, 15].
However, analysis of dynamic properties and struc-
tural features of the given system in the thermody-
namic limit, where we assume that it contains an
infinitely large number of elements (i.e., N → ∞) is
often useful and even necessary in most cases for
deeper understanding of the results of calculations. In
this case, a transition is made from Eqs. (1) and (3) to
their continuos form:

(5)

(6)

According to our assumption, in full agreement with
the initial discrete model, quantity ω at each point x of
the interval from 0 to L is specified independently and
randomly using probability distribution (2). It should
also be noted that the integral in representation (6) of
complex field H(x, t) responsible for the nonlocal
interaction should be treated as the limit of Lebesgue
integral sums [48]. Therefore, the smoothness of func-
tion ϕ(x, t) in spatial coordinate x in expressions (5)
and (6) is not required. This feature of the absence of
smoothness is observed in all regimes of behavior of a
medium of phase oscillators considered here, which
considerably complicates their analysis and classifica-
tion on the microscopic level, which is limited only to
relations (1)–(6). However, a transition to mesoscopic
fields in the limit N → ∞ makes it possible to advance
significantly in the solution of this problem. The main
stages of such a transition can be described as follows.

On the one hand, using the averaging procedure
(see, for example, [19–22, 26]), we can determine

− φ∂φ = ω +
∂

( , )( , ) Im( ( , ) ),i x tx t H x t e
t

− α φ= −
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L
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local order parameter Z(x, t) = eiφloc, which is a con-
tinuous complex function of coordinate x and time t
and satisfies inequality |Z(x, t)| ≤ 1. In the case when
|Z(x, t)| = 1, all oscillators located near point x are syn-
chronous in phase. If condition 0 < |Z(x, t)| < 1 is sat-
isfied, it is assumed that a partial synchronization
regime is observed. In this case, correlations are
observed in the motion of particles. Equality |Z(x, t)| =
0 indicates that the elements of the ensemble rotate
fully asynchronously. Therefore, analogously to sys-
tems with a global interaction, complex order param-
eter Z(x, t) plays an important role in analysis of sys-
tems with a nonlocal coupling because its amplitude
characterizes the degree of local synchronization in
the population, and the phase gives idea on the mean
value, around which quantity ϕ is spread in the vicinity
of the point with coordinate x.

On the other hand, the key aspects of the evolution
of the oscillator medium in the phase model consid-
ered here in the thermodynamic limit can be described
by introducing probability density ρ(ϕ, ω, x, t) of the
distribution of dynamic variable ϕ for a given ω and for
certain x and t. In particular, Z(x, t) can obviously be
defined directly using ρ(ϕ, ω, x, t) as

(7)

In turn, real-valued function ρ(ϕ, ω, x, t) must sat-
isfy continuity equation

(8)

In [20, 21], an attracting manifold was found for
this equation with H = H(t). Later, the approach
developed in [20, 21] and the results obtained there
were generalized to the case when field H acting on the
elements of the ensemble depends not only on time t,
but also on spatial coordinate x; i.e., H = H(x, t) in
such a situation (see, for example, the literature cited
in [22, 37] and review [26]). Here, we will consider
only briefly the main idea of this method and its con-
sequences.

Considering that the natural frequencies of the
phase oscillators in Eqs. (1) and (5) are chosen inde-
pendently and taking into account cyclicity condition
ρ(ϕ, ω, x, t) = ρ(ϕ + 2π, ω, x, t), it is expedient to seek
the solution to Eq. (8) in the form of expansion

(9)

which is in fact a Fourier series in dynamic variable ϕ.
For the Ott–Antonsen manifold we are interested in
(after the names of the authors of articles [20, 21]), all
coefficients am(ω, x, t) with subscripts m > 1 in spectral
representation (9) can be expressed in terms of factor
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a1(ω, x, t) of the first harmonic by raising it to the cor-
responding power:

(10)

In this case, the behavior of a1(ω, x, t) is described
by equation

(11)

which can easily be verified by substituting expression (9)
together with (10) directly into (8).

Further, following the general conception pro-
posed in [20, 21] (see also [22, 26, 37]) and using
expansion (9) in equality (7), we can easily establish
the relation between a1(ω, x, t) and Z(x, t), from
which, after the imposition of the above assumption
that function g(ω) has the form of Cauchy distribu-
tion (2) and the integration over ω, it follows that

Z(x, t) = (–iγ, x, t) in the given situation. It should
be noted that we assumed here that ω0 = 0. Proceeding
from Eq. (11), we obtain the following integro-differ-
ential equation for order parameter Z(x, t):

(12)

where H(x, t) is now expressed directly in terms of Z(x,
t) with the help of convolution operator

(13)

and the integral over the space in this equation should
be treated in the Riemann sense (in contrast to relation
(6)). In addition, for the Ott–Antonsen manifold with
allowance for relation (2) in Z(x, t), we can reconstruct
probability density f(ϕ, x, t) of the spread of ϕ for cer-
tain x and t [37, 38],

(14)

(here we appled the expression for the sum of a trigo-
nometric progression). This means that profile Z(x, t)
can be put in correspondence to phase distribution
ϕ(x, t) (and, naturally, vice versa) at any preset instant.

All circumstances listed above render the methods
based on the ideas developed in [20–22] mainly for
analyzing the behavior of mesoscopic fields Z(x, t) and
H(x, t) a quite effective tool for studying and predicting
possible key regimes of the behavior of many-particle
model (1)–(4) we are interested in. In further analysis,
we take one more step for simplifying the investigation
of the spatial structure of Z(x, t) and H(x, t). Using
specific form (4) for kernel G(x), we can easily pass
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from relation (13) to an equivalent differential equa-
tion

(15)

with periodic boundary conditions [0, L), namely,

(16)

In this way, we have constructed for initial prob-
lem (1)–(4) in the limit N → ∞ a reduction involving
a transition from analysis of nonsmooth phase profiles
to operation with continuous (on characteristic scales
of the medium) distributions Z(x, t) and H(x, t). It will
be shown below that for deeper understanding of pro-
cesses in collective effects occurring in system (1)–(4)
with large number N of elements, it is expedient to
analyze the dynamics of an ensemble of phase oscilla-
tors and the evolution of complex local order parame-
ter Z(x, t) specified by system (12), (15) of partial dif-
ferential equations with boundary conditions (16).

Before passing to a consistent and detail descrip-
tion, we will briefly consider the typical regimes of the
behavior of a closed circular system of nonlocally
interacting elements, which are established in numer-
ical calculations. Analysis based on model (1)–(4) and
performed using the simulation of self-consistent
equations (12), (15) has proved the existence of the
following stable structurally different states:

(1) fully asynchronous state (Figs. 1a and 1b);
(2) homogeneous partially synchronous state

(Figs. 1c and 1d);
(3) partially synchronous state with a gradient

phase distribution (Figs. 1e and 1f);
(4) spatially inhomogeneous cluster partially syn-

chronous state (Figs. 1g and 1h) in which several
(most often, static) regions with a higher or lower
degree of coherence of the oscillators can be singled
out explicitly;

(5) breather cluster regime, in which several syn-
chronous clusters with different mean frequencies
coexist (Fig. 1i, 1j);

(6) intermittency regime, in which the intervals
with irregular dynamics of averaged fields on the spa-
tiotemporal diagram change to extended intervals with
their regular behavior (which can be treated as cluster
synchronization regions; Figs. 1k and 1l);

(7) turbulence regime with a complex irregular
behavior of mesoscopic characteristics of the system,
when it is impossible to single out extended time inter-
vals during which a quasi-static structure of spatial
regions with different degrees of coherence is observed
(Figs. 1m and 1n).

It should be noted that the second and third types
of states in the limit of infinitely small spread in natu-
ral frequencies (γ → 0) are transformed into fully syn-
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∂
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2
iH H Ze

x

=
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Fig. 1. Regimes realized in system (1)–(4). Left panels:
snap shots of phases ϕn. Right panels: average frequencies
  of oscillators. (a, b) Fully asynchronous state for α =
0.2, γ = 0.5, L = 5.0. (c, d) Homogeneous partially syn-
chronous regime for α = 0.4, γ = 0.25, L = 6.0. (e, f) Par-
tially synchronous twisted state for α = 0.4, γ = 0.25, L =
25.0. (g, h) Regime of cluster synchronization for α =
1.457, γ = 0.02, L = 6.0. (i, j) Breather cluster regime for
α = 1.457, γ = 0.002, L = 7.005. (k, l) Intermittence regime
for α = 1.457, γ = 0.02, L = 8.837. (m, n) Turbulent regime
for α = 1.457, γ = 0.02, L = 16.655.
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chronous states, while the formations described in items
(4) and (5) in the case of identical particles are trans-
formed into stationary and breather chimeras [26, 31–
34]. It should be also emphasized that Fig. 1 does not
fully reflect all features of the last two of the listed
regimes. It can easily be noted, however, that the phase
coherence level for such states of the ensemble with
finite number N of elements varies with time in the
vicinity of each spatial point, and synchronous clusters
consisting of macroscopic number of oscillators cannot
be singled out in the average frequency distribution.
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To understand and explain the peculiarities and
conditions for stabilization of each regime observed in
direct simulation of system (1)—(4), we will adopt the
following strategy. Above all, we will try to find the
corresponding solutions to the Ott–Antonsen equa-
tion (12), (15) with boundary conditions (16) in the
thermodynamic limit and to test their stability; then
we will verify the obtained analytic results numerically
using initial model (1)–(4).

3. STATES WITH A UNIFORM IN SPACE 
DEGREE OF PHASE SYNCHRONIZATION

OF NEIGHBORING OSCILLATORS
3.1. Homogeneous States

Let us begin our analysis with the simplest class of
solutions to self-consistent system of equations (12),
(15) with boundary conditions (16). We are speaking
of time-independent homogeneous solutions for
which the modulus of local complex order parameter
Z(x, t) is a constant quantity, and the phase increases
with time linearly and is independent of spatial coor-
dinate x. In the initial model (1)–(4), a uniform (on
the average) rotation of a significant group of oscilla-
tors is observed, and the degree of coherence of ele-
ments at each point is the same. In this case, we seek
functions Z(x, t) and H(x, t) in form

(17)

where z0 and h0 denote constant (in accordance with
our assumption) amplitudes of averaged fields; Ω (here
and in different situations below) plays the role of the
parameter that determines their common observed fre-
quency. Substituting relation (17) into (12) and (15), we
obtain the following relation between z0, h0, and Ω:

(18)

It should be noted above all that if z0 = h0 = zas = 0,
algebraic equalities (18) obviously hold for any α and γ
irrespective of length L of the medium. In addition,
quantity Ω remains indeterminate, i.e., there is certain
arbitrariness in its choice (we can also set Ω = 0). Such
a trivial solution to Ott–Antonsen equations (12), (15)
corresponds to fully asynchronous behavior of ele-
ments in the given ensemble, when the phases of the
oscillators are distributed uniformly in the interval
from –π to π at each instant.

However, we are interested primarily in steady-
state regimes for which the mesoscopic characteristics
of the distributed population have finite values, indi-
cating the existence of correlations in the motion of
adjacent elements. Relations (18) directly imply that
such partially synchronous states can be determined
using the class of time-independent homogeneous
solutions considered here. Such collective modes exist
when control parameters α and γ satisfy condition
2γ < cosα (since γ is the half-width of the natural fre-

Ω Ω= =0 0( , ) , ( , ) ,i t i tZ x t z e H x t h e

− αΩ + γ = − =2
0 0 0 0 0 0 0

*2 ( ) ( ), .iz i z h h z h z e
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quency distribution, we have γ ≥ 0). In this case, we
can easily verify that equalities (18) can be satisfied if

(19)

It should be emphasized that these relations hold
when requirement |z0| ≤ 1 that follows from the defini-
tion of the local order parameter is met. It should also
be noted that in accordance with relations (19), length
L of the system does not affect the existence of uni-
form partially coherent regimes. In spite of the fact
that the results of numerical simulation are in confor-
mity in many respects with the conclusions drawn as a
result of the above analysis (in particular, the synchro-
nization level calculated using the calculations based
on model (1)–(4) coincides to a high degree of accu-
racy with estimate (19)) for a number of situations in
which, for example, phase detuning α is close to π/2
(α  π/2) and γ is slightly smaller than cosα/2 (γ 
cosα/2), the homogeneous partially synchronous
states stop being observed starting from a certain value
of L. We will explain below the behavior of initial sys-
tem (1)–(4) and formulate the reasons for it based on
the linear analysis of stability of time-independent
solutions (19) to Ott–Antonsen equations (12), (15),
but before that, we consider one more class of regimes
for which the coherence level of the oscillators turns
out to be the same over the entire medium.

3.2. Twisted States

In the case of identical oscillators, when γ = 0, the
homogeneous partially coherent states considered in
the previous section are transformed into fully syn-
chronous states for which |Z(x, t)| = 1 for any x at any
instant t, which follows directly from relations (19) in
the limit γ → 0. However, one more regime with
|Z(x, t)| =1 at all sites exists for a spatially distributed
ensemble consisting of nonlocally interacting particles
with identical individual characteristics. A distin-
guishing feature for this regime is the existence of a
constant phase difference upon a transition from one
point to another (for an arbitrarily chosen n, equality
ϕn + 1(t) – ϕn(t) = Δϕ = const ≠ 0 holds) so that the
total phase shift differs from zero during the passage
over the entire medium. Such a state is referred to as
the splay state [40, 44, 45]. We can naturally expect the
existence of analogs of these states for γ ≠ 0 for
model (1)–(4) under investigation. As a result of the
random spread in the natural frequencies of the oscil-
lators, the phase distribution will obviously also
become irregular. However, despite of the apparent
disorder the degree of which depends on γ, the behav-
ior of mesoscopic fields remains the same as for γ = 0,
and the general tendencies (primarily, the slope) in the
ϕ(x, t) (or ϕn(t)) profile are preserved. It should be
noted that attempts at analysis of such states were

= = − γ α
Ω = γ α − α

2 2
0 hps

hps

| | 1 2 /cos ,
tan sin .

z r

& &
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made earlier, but for other forms of kernel G(x) (see,
for example, [40, 41, 44, 45]).

Considering that twisted regimes, as well as homo-
geneous states considered above, are characterized by a
constant value of the modulus of local order parameter
Z(x, t) over the entire length of the medium, we will seek
fields Z(x, t) and H(x, t) in the form analogous to (17):

(20)

the only difference being that the exponent in these
expressions acquires an additional term proportional to
spatial coordinate x and responsible for the common
slope of the phase front of functions Z(x, t) and H(x, t).
In view of the periodicity of the boundary conditions,
coefficient Q in such a linear dependence must be
defined as Q = 2πq/L, where integer q = ±1, ±2, … (that
differs from zero in the situation of interest to us here)
indicates the number of revolutions through 2π made by
the averaged phase upon the full path-tracing of the sys-
tem. Substituting relations (20) into Ott–Antonsen
equations (12), (15), we obtain two algebraic equalities

(21)

for which we can easily find nontrivial solution

(22)

corresponding to twisted states. These expressions
imply directly that such regimes exist only if cosα > 2γ.
In addition, requirement  > 0 leads to the condition
for length L of the distributed population of phase
oscillators. In accordance with this condition, the
twisted states with number of revolutions q exist only
when size L of an ensemble closed into a ring exceeds
critical value Lgps(q); i.e.

(23)

It should be noted that if we formally set q = 0 in
expressions (22), these expressions coincide with (19).
This is another confirmation of the interrelation
between partially synchronous homogeneous and
twisted states. However, it is still expedient to distin-
guish between the two different classes of such
regimes. In particular, this point of view is supported
by the global order parameter R(t) that is an important
characteristic in the synchronization theory,

(24)

which can be calculated in limit N → ∞ using formula

(25)

Ω − Ω −= =0 0( , ) , ( , ) ,i t iQx i t iQxZ x t z e H x t h e

− αΩ + γ = − + =2 2
0 0 0 0 0 0*2( ) , (1 ) ,ii z h h z Q h z e
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αΩ = γ α −

+

2
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Fig. 2. Evolution of the twisted partially synchronous state
(TS). Results of direct numerical simulation of system (1)–
(4) for α = 1.457. Snap shots of phases ϕn for regions rep-
resented in Fig. 3. Region A: (a) unstable TS evolving to
the homogeneous regime with |z| = rhps for γ = 0.001, L =
4; (b) stable TS for γ = 0.001, L = 14; region B: (c) unstable
TS evolving to the nonuniform regime for γ = 0.003, L =
4; (d) stable TS for γ = 0.003, L = 12; (e) unstable TS
evolving to the turbulent regime for γ = 0.003, L = 28;
region C: (f) unstable TS evolving to inhomogeneous
regime for γ = 0.005, L = 4.
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For homogeneous partially synchronous states,
this parameter takes finite values, while for twisted
regimes, it is always zero, which can easily be verified
using relations (20). It should also be emphasized that
for fixed α and γ, the degree of local coherence in the
former case is always higher than in latter case.

Numerical calculations performed using initial
model (1)–(4) demonstrate good agreement with the
above description for certain selected values of α and
γ. First, this is manifested in that partially synchro-
nous twisted states are observed for long time intervals
and remain insensible to small perturbations, i.e., are
possible stable versions of rotation of phase oscillators
(see Fig. 1e and Fig. 2). Second, the degree of local
coherence, which is determined by the absolute value
of the complex order parameter calculated using
mesoscopic averaging of the results of direct simula-
tion, is reproduced quite adequately by formula (22).
In addition, the precision of estimate (22) increases
with number N of elements in the system. However, in
numerical calculations, twisted states can be realized
not for all L > Lgps(q). For example, Figs. 2a and 2b
illustrate two situations corresponding to the same
choice of α and γ (α = 1.457 and γ = 0.001), but to dif-
JOURNAL OF EXPERIMENTAL AN
ferent values of L > Lgps ≈ 0.841 (L = 4, Fig. 2a, and
L = 14, Fig. 2b). It can be seen that for L = 4 (see
Fig. 2a), the state with q = 1 number of revolutions of
average phase through 2π decays relatively rapidly and
is transformed into a partially synchronous uniform
regime. However, when L = 14 (see Fig. 2b), no such
process occurs, and the characteristic features of the
spatial distribution of dynamic variables ϕn(t) do not
noticeably change over infinitely long time intervals. In
spite of the fact that size L of the system satisfies the
existence condition (23), an analogous effect of twisted
state breaking is observed for α = 1.457 and γ = 0.003
(Figs. 2c, 2d, and 2e). It should be noted, however,
that in contrast to the case with α = 1.457 and γ =
0.001, the breaking of the phase profile formed in
accordance with relations (20), (22), and (14) occurs
in relatively short (L = 4, see Fig. 2c) as well as in
extended populations (L = 28, see Fig. 2e), and
twisted states are stable only in a certain interval of
lengths L. To explain the features of evolution of the
regimes theoretically observable in numerical calcula-
tions, linear analysis of their stability is required.

3.3. Stability of Partially Synchronously
Homogeneous and Twisted States

In this section, we perform the linear analysis of
stability of the above regimes of the behavior of a sys-
tem of nonlocally coupled nonidentical phase oscilla-
tors in the thermodynamic limit based on the Ott–
Antonsen reduction. This will allow us to remove the
aforementioned apparent (but actually nonexisting)
contradictions between the developed theoretical
description and numerical calculations. We will carry
out such analysis within a unified formalism that is
general and can be used for homogeneous as well as
twisted states. Note that for convenience and better
visualization, we will employ the equivalence of
Eq. (15) with periodic boundary conditions (16) to the
convolution operator with kernel (13).

To test analytically the stability of temporal distri-
butions of oscillators considered here, we represent
complex fields Z(x, t) and H(x, t) in form

(26)

Here, we have taken into account explicitly the key
features of phase profiles of interest to us, which cor-
respond (for fixed length L of the medium) to the
time-independent solutions to Ott–Antonsen equa-
tions (12), (15), characterized by parameters Ω
and Q. In expressions (26), functions (x, t) and

(x, t) play the role of weak (and periodic in spatial
coordinate x) perturbations to homogeneous state
with Q = 0 and to the twisted solution with Q ≠ 0.
Substituting relations (26) into (12) and (13) and lin-
earizing them in the vicinity of z0 and h0 with allow-
ance for smallness of (x, t) and (x, t), we obtain the

Ω −

Ω −

= +
= +

0
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following linear integro-differential equation with
coefficients independent of x and t:

(27)

(28)

Further, following one of the versions of the stan-
dard procedure of stability test for spatiotemporal
structures, we will seek (x, t) as a superposition of
two orthogonal components written in factorized
form:

(29)
where complex number Λ, which has both real and
imaginary parts in the general case, fully characterizes
the dynamics of each term in sum (29). Under the
assumption that the system considered here is closed
into a ring (i.e., periodic boundary conditions are sat-
isfies at the ends of segment [0, L)), because of the
constancy of factors in all terms with  and  in rela-
tion (29), we can choose functions proportional to eiKx

for (x) and (x):

(30)

where wavenumbers K = 2πk/L with k = 0, 1, 2, …
define spatial period of the mode, which does not
exceed size L of the system. After the substitution of
relations (29) and (30) into (27), (28), it remains for us
to calculate constant complex amplitudes a and b, and
the requirement of the existence of nontrivial solutions
for which at least one of the amplitude differs from zero
will allow us to determine the corresponding values of
Λ. As a result, we obtain the problem for eigenvectors
ξ = (a, b)T and eigenvalues Λ for 2 × 2 matrix :

(31)

where

(32)

Relations (31) directly imply that for determining
Λ, we must solve the quadratic equation, a pair of the
roots to which can be written directly in terms of trace
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tr  and determinant det  of the just introduced
matrix :

(33)

Proceeding from this expression, we can easily
draw the conclusion about the stability of regimes with
a uniform distribution of the complex parameter mod-
ulus. If real part Λ1 or Λ2 turns out to be positive, small
perturbations must increase exponentially with time in
accordance with relation (29).

Based on the criterion formulated above, we can
now determine the behavior of deviations of (x, t)
from z0, which correspond to one of three regimes
considered above (namely, to the fully asynchronous,
partially synchronous, and twisted states). The above
results are summarized in Fig. 3.

The fully asynchronous regime with |z0| = zas
attracts nearby trajectories of the system if cosα < 2γ
for any length L of the medium so that the situation
without any phase correlations between individual ele-
ments is realized during the long-term evolution. In
the opposite case, when cosα > 2γ, the asynchronous
regime turns out to be unstable (Figs. 3a and 3b). Spa-
tially homogeneous linear modes with K = 0 lead to
the evolution of this instability. It should be noted that
this result is universal for standard forms of kernels
used for describing the nonlocal interaction between
elements of the population, which completely coin-
cides with the conclusion drawn in [41], where the
dynamics of the trivial regime with |z0| = zas = 0 for
rectangular coupling function G(x) is considered in
detail. It should also be noted that such instability is
quite common in nonlinearly distributed models and
is called the Eckhaus instability after the author of
monograph [49].

For partially coherent states with Q = 0, |z0| = rhps
and Ω = Ωhps (see formula (19)), which are formed
under the same conditions in which an asynchronous
regime loses its stability, we can easily analyze analo-
gously the behavior of small perturbations (x, t) in
form (29), (30). Using expressions (19), (31), (32), and
(33), after a number of algebraic transformations, we
obtain

(34)

where I(K) = (1 + K2)–1 is the coefficient, to the mul-
tiplication by which the convolution operator in rela-
tion (28) is reduced if we assume that (x, t), as well
as (x, t), is proportional to eiKx. Analysis of expres-
sion (34) shows that for γ < (cosα)3, the homogeneous
partially synchronous regime is stable for any value
of L. When γ > (cosα)3, condition ReΛ < 0 existing
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Fig. 3. (a) Regions (on the plane of parameters α and γ) of
existence and stability of regimes with a uniform distribu-
tion of the synchronization level over the ensemble. For
such regimes, the amplitude of local order parameter
Z(x, t) is the same at any point of the medium at each
instant. (b) Asynchronous state exists for all α and γ irre-
spective of the length of the medium. It is unstable in
regions A (part of the (α, γ) plane with single hatching), B
(shaded region with double hatching), and C (light region
with double hatching) and stable in region D (part of
region α, γ without shading). (c) Homogeneous partially
synchronous state exists and is stable for all values of L if
the pair of quantities α and γ is chosen from region A. If,
however, point α, γ lies in region B or C, there exists a crit-
ical value starting from which this regime becomes unsta-
ble. There are no such states in region D. (d) Twisted par-
tially synchronous state exists only in regions A, B, and C
when L > Lgps. This regime is stable in regions A and B if

L >  and  < L < , respectively. In region C, the
twisted state is unstable everywhere.
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only for γ < cosα/2 is satisfied only if K = 2πm/L (m =

0, 1, 2, …) is larger than a certain critical value (α,

γ). This means that there exists limiting length (α,
γ), the excess over which renders the corresponding
spatially homogeneous regimes of the system behavior
unstable:

(35)

As regards the twisted states each of which is deter-
mined by its own value of Q = 2πq/L (q = ±1, ±2, …)
and by formulas (22) for |z0| = rgps and Ωgps, analysis of

hps
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their stability and the corresponding results appear as
slightly more complicated. For example, detailed
analysis of eigenvalues Λ1, 2 shows that depending on
the values of parameters α and γ, we can single out dif-
ferent situations depicted qualitatively in Fig. 3d. Fig-
ure 3a shows the boundaries of the regions corre-
sponding to these three situations for q = ±1. If we
choose α and γ from the part of the plane with single
hatching (region A), there exists critical length  such
that for L < , the twisted regime is unstable, while
for L > , it is stable (see Fig. 2b). This is also con-
firmed by direct numerical calculations based on
model (1)–(4) (see, for example, Figs. 2a and 2b). For
thin layer B, there are two critical values of length, 
and . In this case, the state with a phase shift of 2π
is stable in interval  < L <  (Fig. 2d) and unstable
for L <  (Fig. 2c) and L >  (Fig. 2e). In region C,
the twisted regime is unstable for any value of L
(Fig. 2f). It should be noted that in this case, we can-
not write explicit expressions for  and  and have
to determine them numerically.

It should be emphasized concluding this section
that the determined conditions of existence and stabil-
ity of regimes with a spatially uniform degree of syn-
chronization of phase oscillators, as well as the exis-
tence of different critical values for the length of the
medium, now successfully explain the behavior of sys-
tem (1)–(4), which is demonstrated in direct numeri-
cal calculations (see Fig. 2). However, less trivial states
that will be considered below can also set in during the
long-term evolution.

4. STATES WITH A STATIC SPATIALLY 
NONUNIFORM DISTRIBUTION 

OF THE PHASE SYNCHRONIZATION 
DEGREE FOR ELEMENTS 

IN THE ENSEMBLE
4.1. Stationary Solution to the Ott–Antonsen Equations

It was found from detailed analysis of the long-
term evolution scenarios of model (1)—(4) depending
on phase shift α, spatial disorder degree γ, and length
L of the medium based on direct numerical simulation
that cluster partially synchronous regimes of rotation
(both limiting and transient), for which several static
or quasi-static regions with different oscillator coher-
ence levels can be singled out explicitly, play a special
role. Examples of transitions of the studied system into
such states are given in Figs. 2c and 2f, which show
how the twisted distribution of phases with identical
values of the local order parameter modulus is violated
in interval [0, L), and the pattern with characteristic
features reflected on snap shots at t = 2000 is stabilized
over the entire time of further calculations. It can be
seen in these fragments that there exist two regions
with a higher and lower degrees of correlation of

1*L
1*L

1*L

1*L
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motion of adjacent elements. This suggests that the
profile of each mesoscopic field introduced earlier
using the averaging procedure becomes and remains
spatially nonuniform. Such long-lived modes of the
behavior of distributed populations are of special
interest primarily for the following two reasons. First,
these nontrivial regimes are observed in the ensembles
of nonlocally coupled phase oscillators considered
here even when the partially synchronous homoge-
neous state is stable. Second, for identical elements
(i.e., in the limit γ → 0), the structural formations
analogous to those shown in Figs. 2c and 2f, as well as
in Figs. 1g and 1i, are transformed into chimeras (in
their classical sense), which are distinguished by the
presence of macroscopic groups with fully synchro-
nous rotation along with groups with partially coher-
ent motion of elements [24–29]. These facts lead to
the conclusion concerning the possibility of the fun-
damental effect of partial symmetry breaking in the
states considered in this section [30].

To explain and describe in detail in the thermody-
namic limit the key features of stationary spatial struc-
tures with regions of elevated and lowered degrees of
the local phase coherence in the behavior of elements
of a medium closed into a ring, we construct and ana-
lyze the (modulo) time-independent solutions to the
reduced problem obtained using the Ott–Antonsen
approach and formulated here in the form of a set of
two partial differential equations (12) and (15) with
boundary conditions (16). We write complex fields
Z(x, t) and H(x, t) in form

(36)
where Ω plays the role of the unknown parameter to be
determined. Substituting expressions (36) for meso-
scopic quantities Z(x, t) and H(x, t) into Eqs. (12) and
(15), we arrive at the following system consisting of the
algebraic equality and a second-order ordinary differ-
ential equation, which contain complex functions z(x)
and h(x), which depends on variable x alone:

(37a)

(37b)
Here and below, the prime denotes the derivative

with respect to coordinate x. When γ ≠ 0 (i.e., the
oscillators are nonidentical and differ in their individ-
ual characteristics), for N → ∞, interval [0, L) contains
not a single point in a small neighborhood of which
full phase synchronization can be achieved and,
hence, the absolute value of the local order parameter
is always smaller than unity (i.e., |z(x)| < 1). Then we
can easily express using relation (37a) h(x) in terms
of z(x):

(38)

Let us now write z(x) as
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(39)
by introducing two real functions r(x) and θ(x), which
can naturally be referred to as the amplitude and the
phase, respectively, for z(x), the only difference from
the classical definitions being that we assume for con-
venience that r(x) can change sign and, in turn, θ(x) is
continuous including at the points at which r(x) van-
ishes. Then expression (38) for h(x) takes form

(40)

Substituting this expression into (37b) and equating
to zero the real and imaginary parts of the resultant
expression separately we pass to the following pair of
equations:

(41a)

(41b)

which can be reduced by introducing new variable u =
r' and performing additional substitution  = r2θ' and
a number of transformations to the following third-
order ordinary differential equations for r(x), u(x), and

(x) with free parameter Ω for preset values of α and γ:

(42a)

(42b)

(42c)

It should be noted that the dimensionality can be
lowered (from the fourth for set of relations (41) to the
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third for system (42)) due to the fact that function θ(x)
is defined to within a constant term, i.e., the structure
of complex fields z(x) and h(x) (and, hence, of Z(x, t)
and H(x, t) also) is invariant to a simultaneous phase
shift by a constant. For the same reason, without loss
of generality, we can set θ(0) = 0. It should also be
emphasized that because of boundary conditions (16)
at the ends of interval [0, L), we are interested only in
periodic solutions to Eqs. (42) with a period coincid-
ing with length L of the given medium. Such solutions
possess an important property (translation symmetry)
that allows us to choose conveniently (owing to certain
arbitrariness) the position of the origin of spatial coor-
dinate x. In addition, it can easily be seen that upon
substitutions x → –x, r → r, u → –u, and  → – , sys-
tem (42) remains unchanged. In other words, rela-
tions (42) experience the involution transformation.
Such properties of dependences r(x), u(x), and (x), as
well as Eqs. (42) themselves, allow us to confine our
analysis to the search for only periodic solutions r(x),
u(x), and (x) that satisfy the following conditions:

(43)

We must put in correspondence to these solutions
the spatial profiles of z(x) and h(x), which (together
with the corresponding value of parameter Ω) deter-
mine the form of stationary structures. It should also
be emphasized that direct numerical calculations
based on initial model (1)–(4) also support the choice
of the preferred class of functions r(x), u(x), and (x)
as most prospective for describing long-lived states
with a static nonuniform distribution of the degree of
phase synchronization of ensemble elements (see, for
example, Fig. 1g and fragments of Figs. 2c and 2f for
t = 2000). It should be borne in mind, however, that not
all solutions to system (42) for which conditions (43) are
satisfied are physically realizable. These solutions have
sense only when |r(x)| = |z(x)| does not exceed unity for
all x on segment [0, L). This requirement follows
directly from the definition of local complex order
parameter Z(x, t). Therefore, the problem of deter-
mining stationary solutions (36) to system (12), (15)
with boundary conditions (16), which was formulated
at the beginning of this section, can be reduced to
determining periodic trajectories of system (42), for
which conditions (43) hold.

4.2. Procedure of the Search for Static Inhomogeneous 
States and Their Structural Analysis

Let us now consider in detail the key features of sta-
tionary regimes with a nonuniform spatial distribution
of local order parameter Z(x, t). In this section, we will
first of all perform the procedure of the search for all
existing periodic solutions to auxiliary system (42),
which determine the shape of profiles of complex
fields Z(x, t) and H(x, t) with a uniformly rotating
phase. Then we single out the main distinguishing fea-

v v
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tures of the family of such solutions and put them in
correspondence with the pattern of spread of
dynamic variables ϕn(t), which must be realized in
initial model (1)–(4) of an ensemble of nonlocally
coupled nonidentical oscillator elements. Further,
such states of the populations in question will be inter-
preted from the standpoint of mesoscopic (averaged)
characteristics as well as from the standpoint of the
properties of motion of individual oscillators.

Let us begin with the description of the method for
determining stationary (in absolute value) states of
form (36), which has been developed here based on
the idea of selecting (for fixed values of Ω) of closed
(and, hence satisfying conditions (43)) trajectories in
phase space r, u,  of system (42) of third-order ordi-
nary differential equations. To determine such trajec-
tories, we have used Poincare cross section u = 0,
u' > 0, constructed by numerical integration of sys-
tem (42) starting from set r(0) = r0, u(0) = 0, (0) = 0,
where r0 takes its values from interval (0, 1), and
detecting each event with u = 0, u' > 0, and then plot-
ting it on the r, plane for better visualization using a
marker (Fig. 4). Our analysis (using primarily the facts
described in Section 4.1) shows that stationary points
of period p of the map constructed in this way corre-
spond to the sought periodic solutions to system (42)
and, hence, to symmetric spatially inhomogeneous
structures with p maxima of the modulus of local order
parameter z(x, t). Length L of each trajectory deter-
mined in this way coincides with the length of the
medium in which this state can be observed. Ulti-
mately, for a preset Ω, we determine profile z(x) that
exactly repeats itself after period L determined by the
choice of Ω. If necessary, dependence h(x) can also be
easily determined using formula (38). However, it is
more important that it is always possible to recon-
struct the distribution of initial dynamic variable
ϕ(x, t) or ϕn(t) from local order parameter z(x) with
account for relation (36). Thus, we can determine var-
ious families of static inhomogeneous states of the
medium of nonlocally coupled nonidentical phase
oscillators. Each such family is characterized by indi-
vidual Ω(L) dependence (Fig. 5) that is calculated in
implicit form using the above procedure.

Before we pass to specific examples, we note that
an analogous approach has already been successfully
used in our previous studies [31–33] for investigating
chimeras in media consisting of identical particles
(i.e., γ = 0). However, in the case studied in [31–33],
complications were encountered due to the presence
of regions with fully synchronous elements that ham-
pered the application of numerical procedures permit-
ting the determination of curves reproducing them-
selves on a finite interval. When, however, γ > 0, it is
possible to avoid problems associated with the possi-
bility of identical coincidence of oscillator phases in
the vicinity of a certain point x because the special sit-
uation with |z(x)| = 1 becomes unattainable. The

v

v

v
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Fig. 4. Poincare map for system (42) for α = 1.457, γ =
0.020. Conditions for the cross section: u = 0, u' > 0. Ellip-
tical (blue symbols) and hyperbolic saddle (red symbols)
stationary points: (a) Ω = –0.8185; (b) Ω = –0.78; (c) Ω =
–0.647. Stationary point (r1, 0) corresponds to nonhomo-
geneous solution (36)) with single maximum |z(x)|. Black
(violet) symbols indicate trajectories that do not leave
(leave) regions on the (r, ) plane, which are depicted in
fragments (a–c).
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Fig. 5. Bifurcation diagram of stationary solutions (36) to
Ott–Antonsen equations (12), (13) for α = 1.457: (a) γ =
0.002, (b) γ = 0.011, and (c) γ = 0.020. Dots (A) correspond
to the partially synchronous state; circles (B1) denote
inhomogeneous partially synchronous state with single
maximum |z(x)|; crosses (C1, C2), with two maxima; trian-
gles (D1, D2), with three maxima |z(x)|. Colored (empty)
symbols correspond to stable (unstable) regimes. Curves
B2 and B3 correspond to a partially synchronous state with
single maximum |z(x)| and with the doubled and tripled
length of the medium, respectively.
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requirement |z(x)| < 1 considerably reduces the num-
ber of initial conditions from which the construction
the Poincare cross section begins. This simplifies the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
procedure of the search for stationary points of map
and guarantees the absence of lost solutions. However,
for γ = 0, analogous guaranties cannot be given
YSICS  Vol. 132  No. 1  2021
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because all transformations and calculations are per-
formed with field h(x) the amplitude of which is not
bounded from above. On the other hand, it should be
emphasized that when the value of γ responsible for
the degree of spatial disorder tends to zero, stationary
inhomogeneous states of form (36), which were
obtained for problem (12), (15), can provide addi-
tional information on chimera solutions appearing for
γ = 0 and their domains of existence.

By way of example, let us analyze the stationary
points of the Poincare map for fixed values of α =
1.457, γ = 0.02 and various Ω (see Fig. 4). For these
values of parameters, there exists a homogeneous par-
tially synchronous state of the system with Ω = Ωhps ≈
–0.81854 and r = rhps = 0.80482.

On Poincare cross section (r, ) determined by
conditions u = 0, u' > 0, this state corresponds to a sta-
tionary point with coordinates (rhps, 0). Upon an
increase in parameter Ω, this stationary point experi-
ences bifurcation as a result of which three stationary
points appear: elliptic point (r1, 0) of period p = 1 and
two saddle points (r2, ) and (r2, – ). In this case,
closed trajectories correspond to quasi-periodic solu-
tions to system (42) (see Fig. 4a). Stationary point
(r1, 0) corresponds to inhomogeneous partially syn-
chronous state z = z1(x) with a single maximum of the
order parameter modulus |z(x)|.

Upon a further continuous variation of Ω, periodic
points with different periods appear on invariant tra-
jectories because of resonances (see Fig. 4b). In the
case of resonance overlapping, random walk regions
are formed [50]. On the Poincare map, so-called sto-
chastic layers can be observed in such a situation near
the separatrices of saddle points (see Figs. 4b and 4c).
Further, for Ω ≈ 0.648, two elliptic points are gener-
ated from point (r1, 0), which becomes a saddle point in
this case (see Fig. 4c). Pay attention to the fact that there
exist a large number of stationary points with coordi-
nated (r, 0) on the Poincare map, which correspond to
different stationary solutions to system (12), (15).

Upon a further increase in parameter Ω, all trajec-
tories (except stable separatrices) near saddle point
(r1, 0) rapidly leave its neighborhood. The search for a
stationary point using this method is complicated
because its multiplicator with the maximal absolute
value considerably exceeds unity. An analogous behav-
ior is observed in the vicinity of the remaining saddle
points with a large period, which lie on axis  = 0. This
peculiarity is associated with the increase in the length
of return trajectories in the 3D phase space r, u, .

4.3. Linear Analysis of Stability
of Stationary Inhomogeneous States

In analysis of both homogeneous and twisted
regimes with the degree of synchronization distributed
uniformly along the entire population (see Section 3),

v

v2 v2

v

v
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we have established that information on the existence
of states alone is insufficient for predicting possible
scenarios of the long-term evolution of ensembles of
nonlocally coupled phase oscillators. It is also neces-
sary to test the corresponding spatial structures for
temporal stability to small perturbations.

Following the general logical considerations that
were used, in particular, in the previous section, we
will perform the linear analysis of the stability of static
configurations with a nonuniform local order param-
eter profile, which will give us a deeper understanding
of the dynamics of the medium in question and coop-
erative processes in it. For this purpose, we linearize
Ott–Antonsen integro-differential equation (12), (13)
in its initial form in the vicinity of one of its stationary
solutions (36) characterized by parameter Ω and
length L. In accordance with the standard procedure,
we write Z(x, t) in form

(44)

where (x, t) denotes small deviations from profile
z(x) in complex field Z(x, t), which are periodic in x
[26, 31, 34]. Substituting expression (44) into Eq. (12),
performing a number of transformations with account
for relation (37)), and retaining only first-order terms
in (x, t), we obtain

(45)

Here, (x, t) and (x, t) are connected by a con-
volution operator with kernel (4), i.e., analogously to
formula (13) expressing H(x, t) in terms of Z(x, t). We
separate the real and imaginary components of com-
plex function (x, t) = ζ1(x, t) + iζ2(x, t) and write
equality (45) as a system of equations in real-valued
vector ζ(x, t) = (ζ1(x, t), ζ2(x, t))T:

(46)

where (x) is a multiplicative operator,

(47)

and (x) is an integral operator:

(48)

For convenience and briefness of the above repre-
sentations of (x) and (x), we have introduced the
following notation:
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(49)

Relation (46) directly implies that the behavior of
small perturbations (x, t) is determined by eigenval-
ues λ of sum (x) + (x) of time-independent oper-
ators (x) and (x). In the full spectrum, continuous
component λe containing a significant part of all val-
ues of λ and discrete part λp to which isolated points of
the spectrum of λ belong are usually singled out in
functional analysis. It should be noted that operator

(x) is compact for any piecewise-smooth kernel G(x)
[34]. Due to this property, a significant part of λe in the
set of eigenvalues λ of combination (x) + (x) con-
sidered here coincides with the corresponding compo-
nent of first term (x) in this combination. There-
fore, we find that λe = μ1(x) ± iμ2(x). It can easily be
verified that λe satisfy condition Reλe < 0. Conse-
quently, only the values from the point part λp of the λ
spectrum are responsible for linear stability of spatial
profile z(x) (and of distribution h(x) connected
with it).

The results of the search for stationary inhomoge-
neous solutions to the Ott–Antonsen equations and of
analysis of stability of the corresponding structure,
which are obtained using the above methods, are com-
bined and shown in Fig. 5. Here, dependences Ω(L)
are represented for homogeneous partially synchro-
nous states (branch A) and inhomogeneous states with
one (branch B1), two (branches (C1 and C2), and three
(branches D1 and D2) maxima of amplitude |z(x)| of the
order parameter for stationary solutions for α = 1.457
and several values of γ: γ = 0.002, γ = 0.011, and γ =
0.020 (Figs. 5a, 5b, and 5c, respectively). In contrast
to the situation when media of identical elements are
considered [26, 31–34], in the presence of a random
spread (disorder) in individual frequencies of the
oscillators, we can reliably calculate λp (at least, the
values for which Reλp > 0) using only the standard
method of discretization and replacement of operators

(x) and (x) by matrices with a higher dimension-
ality without resorting to additional modifications of
such a procedure, which are necessary for determining
true values of λp for γ = 0 (see [31—33] for details).
Therefore, from the standpoint of analysis in the ther-
modynamic limit, we obtain one more advantage in
the problem with spatial disorder (i.e., for γ ≠ 0).

Each of the selected types of inhomogeneous states
is marked by its own symbol. Filled colored symbols
correspond to stable regimes and empty symbols, to
unstable regimes. It can be seen that branch B1 corre-
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sponding to the inhomogeneous partially synchronous
regime stems from the straight line that ref lects the
homogeneous partially synchronous regime on the
(L, Ω) plane. This occurs precisely at the instant when
this regime loses its stability (i.e., at the point with

abscissa L = , at which the solid curve changes to
the dashed curve). Curves B2(B3) correspond to the
doubled (tripled) inhomogeneous states for which the
length of the medium is two (three) times larger than
the spatial size of structures from branch B1, although
the local complex order parameter profile coincides
completely with one of distributions z(x) obtained in
constructing family B1. It can easily be seen that curve
B1 contains points with such L and Ω, that the spatial
formations determined for these values must be stable
and, hence, represent a possible observable regime of
the behavior of the system, which is stabilized during
the long-term evolution. This circumstance is also
confirmed by numerical simulation of the Ott–
Antonsen equations. It should be noted that depend-
ing on the value of γ, transitions from a homogeneous
partially synchronous regime to a cluster regime differ
significantly. In the case of strong frequency detunings
(large γ; Figs. 5b and 5c) the transition is soft. How-
ever, in the case of weak frequency detunings (small γ),
the transition is hard, and hysteresis takes place (see
Fig. 5a, region of conjugation of branches A and B1).

With increasing parameter L, the states with one
elevated and one lowered coherence regions lose their
stability. An increase in the length of the ensemble also
leads to regimes with a large number of clusters with
different degrees of phase synchronization. In particu-
lar, an additional branch of solutions denoted by C1
stems from branch B2. Structures of this type are char-
acterized by inequality |z(x)| > 0; consequently, the
global order parameter differs from zero. Curve C1 ter-
minates at family C2 that is also formed by stationary
inhomogeneous regimes with p = 2. The main differ-
ence between states from branch C2 and the forma-
tions with parameters lying on curve C1 is that |z(x)| for
these states vanishes at two points, while macroscopic
field R collected from the entire population is zero. We
have encountered such a situation in comparing
homogeneous partially synchronous and twisted
states. If we proceed further, branch B3 generates fam-
ilies D1 and D2, which correspond to structures with
p = 3 and are transformed into one another. For exam-
ple, with increasing L, we will register new solutions
with sequentially increasing number p of maxima.

In spite of the fact that among the states discovered
by us, only regimes with p = 1 turned out to be linear
stable (in the strict sense); for some regimes with p > 1,
the exponential growth indices are small (~10–3, 10–4).
Therefore, it can be expected that all static inhomoge-
neous structures considered here play an important
role in the dynamics of the initial system. Such expec-
tations are also confirmed by numerical calculations

hps
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based on Ott–Antonsen equations (12), (15). The sim-
ulation of the initial problem shows that mesoscopic
fields Z(x, t) and H(x, t) are transformed with a high
probability to stable or weakly unstable states that are
observed during long time intervals. In the next section,
we will pay attention to the results of numerical calcula-
tions performed directly using initial model (1)–(4)
and to the search for new (now dynamic) regimes that
can appear during the breaking of static quasi-chimera
structures. Concluding this section, we note that, on
the one hand, degree of disorder γ leads to stabilization
of stationary formations (as regards the distribution of
the absolute value of the local order parameter), but
on the other hand, γ affects the length of the closed
trajectories of system (42) (see Fig. 5), which in turn
determines in many respects the position of discrete
eigenvalues λp of operator (x) + (x) on complex
plane (Reλ, Imλ). According to the results of above
analysis, the longer the medium, the higher the prob-
ability that λp with Reλp > 0 exist. Thus, inhomoge-
neous states with static phase synchronization clusters
are most stable in the case of intermediate values of
parameter γ responsible for the spread in the individ-
ual characteristics of oscillator elements constituting
the system. For example, among the situations consid-
ered in constructing Fig. 5, the formations with two
clearly manifested almost nondisplaced maxima of the
amplitude of field Z(x, t) are observed for longest times
for γ = 0.011.

5. DYNAMIC REGIMES OF LONG-TERM 
EVOLUTION OF A SYSTEM OF NONLOCALLY 

COUPLED NONIDENTICAL PHASE 
OSCILLATORS

In this section, we will first consider once again the
regime with a static cluster synchronization pattern
(see Figs. 1g and 1h) and then pass to a detailed
description of the types of dynamic inhomogeneous
states such as the breather cluster regime (see Figs. 1i
and 1j), irregular states with a clearly manifested inter-
mittence (see Figs. 1k and 1l), and without it (see
Figs. 1m and 1n). The results described in this section
were obtained by direct numerical simulation of sys-
tem (1)–(4). As the initial conditions, we have speci-
fied the phase distribution reconstructed from one of
profiles z(x) with the corresponding value of Ω, which
are determined, as has been stated in the previous sec-
tion, by length L of the medium for fixed parameters α
and γ. For definiteness, we choose α = 1.457 as the
phase shift parameter.

5.1. Static Cluster Synchronization

Let us first consider the situation in which the initial
phase distributions are formed from the stationary inho-
mogeneous solutions to Ott—Antonsen equations (12),
(15) with number of maxima p = 1. As noted above,

M̂ K̂
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these solutions correspond to branch B1 on the bifur-
cation diagrams shown in Fig. 5. The coordinate of
each amplitude maximum of complex field Z(x, t)
defines the position of the middle of a group with an
elevated degree of phase coherence and simultane-
ously of the center of a cluster with frequency synchro-
nization of oscillators (see Figs. 1g and 1h), i.e., a set
of elements that have identical average frequencies
 . It should be noted that for identical particles (γ =
0), these two macroscopic fractions coincide and form
an absolutely correlated region of the medium with
|Z(x, t)| = 1 and   = Ω.

Let us consider the case with γ = 0.002 (see Fig. 5a).
Then branch B1 appears for Ω =  = –0.9276
( = 10.5141) from a homogeneous partially syn-
chronous regime, and the Ω(L) dependence corre-
sponding to it is ambiguous, which is typical of the sit-
uation with bistability and hysteresis. On this branch,
there exists stable interval –0.9241 < Ω < –0.6851
(3.3882 < L < 7.0). Figure 6a shows profiles of |z(x)|
and |h(x)|, while Fig. 6b shows the corresponding dis-
tribution of instantaneous phases ϕn for Ω = –0.7. Fig-
ure 6c contains the spectrum of eigenvalues λe and λp,
where there exists one discrete zero eigenvalue
because of the invariance of system (12), (15) to spatial
shift x → x + x0; for remaining eigenvalues, condition
Reλp < 0 holds, indicating the stability of the regime
under investigation. Figure 6d shows the spatiotempo-
ral dynamics of quantity |Z(x, t)| obtained in the direct
numerical simulation of system (1)–(4) with finite
number of elements N = 4096. Figure 6e shows mean
frequencies   of the oscillators. We can clearly see
one cluster of elements synchronized in frequency, the
main group of which is located at the middle of inter-
val [0, L), and a clearly manifested maximum in the
profile of the modulus of local order parameter Z(x, t).
This regime for γ = 0 is transformed into a stable one-
cluster chimera (see, for example, [31–33]).

Upon an increase in γ, the degree of phase coher-
ence decreases in the whole over the entire population.
The number of oscillators belonging to frequency-syn-
chronized cluster also decreases (in percentage); i.e.,
the number of elements in the ensemble with identical
average frequencies gradually decreases. For example,
for γ = 0.02 (see Fig. 5c), the stationary inhomoge-
neous regime with L = 6.5861 and Ω = –0.68 must be
stable to small perturbations because the chosen
length of the medium falls in the stability interval

< L < , where  = 3.83422 and  = 8.232.
The results of analysis based on the approaches devel-
oped in Section 4 and direct numerical simulation of
system (1)–(4) are shown in Figs. 7a–7e. Comparing
these fragments in Fig. 7 with analogous panels in
Fig. 6, we can easily note these features associated
with a change in the degree of disorder in the medium.
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Fig. 6. (a–e) Stable inhomogeneous state for α = 1.457,
γ = 0.002, Ω = –0.70, L ≈ 6.4135. (f–j) Unstable inhomo-
geneous sate evolves to the breather regime for α = 1.457,
γ = 0.002, Ω = –0.685, and L = 7.0047. The initial condi-
tions corresponds to branch B1 of the bifurcation diagram
in Fig. 5a. (a, f) Profiles of |z| (blue solid curve) and |h|
(black dashed curve) are determined by the method
described in Section 4. (b, g) Initial distributions of phases
ϕn reconstructed from local order parameter Z(x). (c, h)
Spectrum of λ for linear perturbations for corresponding
stationary solutions Z(x) to the Ott–Antonsen equations.
Essential λe (blue circles) and point λp (red diamonds)
components of the λ spectrum. (d, e, i, j) Results of direct
numerical simulation of system (1)–(4). (d, i) Temporal
behavior of the absolute value of complex field Z(xn, t).
(e, j) Average frequencies   of oscillators.
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Fig. 7. Same as in Fig. 6. (a–e) Stable inhomogeneous
state for α = 1.457, γ = 0.02, Ω = –0.68, L ≈ 6.5861. (f–j)
Unstable inhomogeneous state evolves to the intermit-
tence regime for α = 1.457, γ = 0.02, Ω = –0.64, and L ≈
8.8373. The initial conditions correspond to branch B1 of
the bifurcation diagram in Fig. 5c.

1.0

0.5

1.0

0.5

0.3

x/
L

Im
λ

|z|
, |

h|
ϕ

.
〈ϕ〉

0.5

(a)

(b)

(c)

(e)

(d)

(f)

(g)

(h)

(j)

(i)

1.00

0

π
0.5 x/L0

0.5 1.00

0

1000 1000 t2000

0 1

0

0

−0.5

−0.3

−π

−1.0

0

0−0.01−0.02 0 Reλ−0.1−0.2

0.5 x/L0

0.5 1.00 0.5 x/L0
5.2. Breather Cluster Regime

Let us now return to the case with γ = 0.002. For
critical value  ≈ –0.6851 (  ≈ 7.0), the stationary
inhomogeneous regime loses its stability (see Figs. 6f–
6j). In this case, two complex-conjugate eigenvalues
from the spectrum of λp cross the imaginary axis
(Fig. 6h). The system passes to the breather cluster
regime, in which several frequency-synchronized

Ω1
*

1
*L
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
clusters exist (Fig. 6j). Averaged quantities H(x, t) and
Z(x, t) at spatial point experience periodic oscillations
(Fig. 6i). It should be noted that these states in media
consisting of identical elements (i.e., for γ = 0) are
transformed into breather chimeras that have been
detected in systems with various types of kernels deter-
mining the nonlocal coupling of kernels defined as
exponentially decreasing [32, 33] and harmonic func-
tions [26, 34], as well as in the form of a rectangle [51].
For ensembles consisting of phase oscillators with nat-
ural frequencies distributed in accordance with the
Cauchy law, analogous solutions with a periodic
behavior of mesoscopic fields were considered in [37,
43]. It was shown [43] that such breather regimes are
realized in the widest ranges of control parameters if the
value of spread parameter γ responsible for the degree of
disorder is small, but differs from zero, which also holds
for the situation considered here. It should also be
YSICS  Vol. 132  No. 1  2021
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Fig. 8. Same as in Fig. 6. Unstable nonhomogeneous solu-
tions with two |z(x)| peaks (for different values of Ω and L)
evolve to the intermittence regime for α = 1.457, γ = 0.011.
The initial conditions correspond to branch C1 for Ω =
‒0.625, L ≈ 14.1367 (fragments (a–e)) and C2 for Ω =
‒0.566, L ≈ 12.7904 (fragments f–j) of the bifurcation dia-
gram in Fig. 5b.
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noted that breather regimes are observed in 2D arrays of
coupled phase oscillators [52, 53].

When γ = 0.02 and the length of the medium
exceeds critical value  = 8.232 beginning from which
the state with static cluster synchronization becomes
unstable, the breather regime is registered only in a
narrow interval of L values and is quite difficult to
detect. However, the existence of such a regime con-
siderably affects transient processes in the system con-
sidered here. In particular, Figs. 7f–7j clearly show
that despite a substantially more complicated (irregu-
lar) behavior of movements that set in as a result of
evolution of instability of the structure shown in
Fig. 7f, the quasi-periodic dynamics resembling in all
its features the breather cluster regime is observed on
extended time intervals. Such a dynamics is inter-
rupted by a sharp shift of the positions of regions with

1
*L
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elevated and lowered phase coherence in space, after
which it is restored again (Fig. 7i). Such alteration of
prolonged oscillations of the structure of mesoscopic
fields and rapid (jumpwise) changes occurring during
short (on the scales of numerical calculations) time
intervals can be interpreted as the intermittence effect.
This phenomenon is one of the mechanisms of transi-
tion to developed turbulence, which in fact occurs
upon a further increase in the length of the medium.
The system begins to demonstrate the spatiotemporal
dynamics with an irregular behavior of averaged com-
plex fields Z(x, t) and H(x, t), which will be considered
below.

5.3. Irregular Regimes

It should be emphasized once again that in all situ-
ations considered here, when the distribution of the
complex order parameter modulus has one or several
peaks and never turns zero, the breaking of regular (as
regards mesoscopic fields) static inhomogeneous
states always occurs in accordance with analogous sce-
narios. Two complex-conjugate values belonging to
the discrete spectrum of λp intersect the imaginary
axis, indicating the oscillatory nature of instability. In
this case, we can trace a direct analogy with the
Andronov–Hopf bifurcation [54]. In particular, this
interpretation is confirmed by the fact that for certain
combinations of quantities α, γ, and L, the transition
to breather cluster regimes can be detected reliably,
and only then the breaking of states corresponding to
stationary quasi-chimera solutions to Ott–Antonsen
equations (12), (15) terminates upon an increase in
length L of the medium by the stabilization of complex
dynamic regimes distinguished by the drift and abrupt
shifts of the positions of regions with elevated and low-
ered degree of phase coherence. It is worth noting that
in most cases (on the one hand, two quite extended
populations, and on the other hand, populations having
a finite size), the number of local extrema in the spatial
dependences of amplitudes of averaged complex fields
at each instant is conserved (Figs. 8d and 8i).

In this section, we first single out and consider in
greater detail the main features of irregular inhomoge-
neous regimes in the situation when γ = 0.011 and the
initial conditions for elements of the ensemble are
formed using stationary solutions to Ott–Antonsen
equations (12), (15), for which p = 2, and the corre-
sponding branches are marked in Fig. 5b as C1 and C2.
It can be concluded from the above arguments and from
the description given below that other irregular regimes
(evolving from static cluster states with other number of
maxima of |z(x)|) are also possible. Figures 8a, 8f and 8b,
8g show typical profiles |z(x)| of the local order param-
eter and distributions of phases ϕn associated with
them. The corresponding spectra of eigenvalues λ of
composite operator (x) + (x) of linear stability
problem (46) are shown in Figs. 8c and 8h. It can easily

M̂ K̂
D THEORETICAL PHYSICS  Vol. 132  No. 1  2021



SPATIOTEMPORAL REGIMES IN THE KURAMOTO–BATTOGTOKH 145

Fig. 9. Same as in Fig. 6. Unstable nonhomogeneous solu-
tions with three |z(x)| peaks (for different values of Ω and L)
evolves to the turbulent regime for α = 1.457, γ = 0.020.
The initial conditions correspond to branches D1 for Ω =
–0.66, L ≈ 21.9922 (fragments (a–e)) and D2 for Ω =
‒0.66, L ≈ 20.7145 (fragments (f–j)) of the bifurcation
diagram in Fig. 5c.
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be seen that among eigenvalues λ, there are such that
Reλ > 0 (it should be noted by the way that Reλ ~ 10–2).
Therefore, these regimes are weakly unstable, and in
direct numerical simulation, ensemble (1)–(4) of
phase oscillators demonstrates a transition to a com-
plex spatiotemporal dynamics (of complex meso-
scopic fields also). However, it can clearly be seen that
over quite long time intervals, the dynamics returns to
states in which we can single out two quasi-static
regions with a high degree of coherence and two (also
quasi-static) regions with practically asynchronous
behavior of oscillators (Figs. 8d and 8i). At the ends of
long time intervals, the distribution of the Z(x, t)
amplitude stars swinging and passing from the close
structure to the stationary structure via oscillations,
which can be explained precisely by the oscillatory
evolution of instability. Therefore, the system demon-
strates the intermittency of regular and chaotic
regimes. This is due to the fact that among our solu-
tions to Eqs. (12), (15) corresponding to branches C1
and C2 in Fig. 5, there exist weakly unstable distribu-
tions that can be put in correspondence to relatively
simple transient long-lived regimes of motion. In this
case, it is impossible to single out clusters of partially
synchronous oscillators on the profile of mean fre-
quencies   (see Figs. 8e and 8j) because over quite
long time interval (averaging interval), each element
can “visit” both regions with a high degree of phase
coherence and almost asynchronous regions of the
medium. For this reason, the mean frequencies have
an almost uniformly noisy profile positioned close to
the curve the shape of which exhibits, however, traces
of structural singularities because the population is
located for quite a long time in the vicinity of one of
weakly unstable formations considered in Section 4.

If the |z(x)| profile determining the initial values is
strongly unstable, the system demonstrates chaotic
spatial dynamics that is not interrupted now by a tran-
sition to quasi-static regular structures. By way of
example, we consider the case with γ = 0.02 for unsta-
ble inhomogeneous states with three |z(x)| peaks. Fig-
ures 9a–9e correspond to the solution lying on branch
D1, while Figs. 9f–9j correspond to the solution
located on branch D2. Here, the states corresponding
to the regime with three regions of elevated phase
coherence are broken quite rapidly, and the local order
parameter begins demonstrating irregular dynamics
(Fig. 9d and 9i). The distribution of average frequen-
cies   in this case turns out to be uniformly noised
(like in the case of intermittence). However, in con-
trast to Figs. 8e and 8j, the values of   in Figs. 9e
and 9j are distributed almost over a straight line with
the same spread, indicating the absence of significant
differences between the spatial points of the medium
after averaging over time.

Thus, in system (1)–(4) of nonidentical nonlocally
coupled phase oscillators for γ < cosα/2 and γ  cos3α,
beginning from the critical value of length L of the

ϕ� n
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medium, stable inhomogeneous states with a regular
behavior of averaged fields are not observed. Instead of
these states, complex spatiotemporal regimes with a
chaotic dynamics of order parameter Z(x, t) of two
types are realized. In one case, intermittency takes
place, in which quite long time intervals alternate with
quasi-static distributions of mesoscopic characteris-
tics of the ensemble and with a relatively fast shift of
regions with elevated and lowered degrees of synchro-
nization, while in the other case, a pure turbulent
regime is realized.

6. CONCLUSIONS

Let us briefly summarize the results and formulate
the main conclusion of this study. We have considered
an ensemble consisting of a large number of nonlo-
YSICS  Vol. 132  No. 1  2021
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cally coupled nonidentical phase oscillators that are
distributed uniformly on a segment with periodic
boundary conditions. We assume that the natural fre-
quencies are specified independently at random in
accordance with the Lorentz distribution, and the
interaction between the oscillators decreases in accor-
dance with an exponential law. It should be noted that
such a configuration is equivalent to the situation
when the elements are located on a ring. The main
parameters of such a system are the phase shift, which
determines the type of coupling (attracting, neutral, or
repulsing); the half-width of the distribution of natural
frequencies, which determined the degree of their
nonuniformity; and the length of the oscillator
medium. This study is mainly aims at analysis and clas-
sification of the spatiotemporal structures appearing
during the long-term evolution of the given ensemble in
a wide range of the values of the above parameters.

Using the averaging procedure, we have obtained
the dynamic Ott–Antonsen equation for the local
complex order parameter characterizing the degree of
phase correlation of elements in a small neighborhood
of an arbitrary point in the oscillator medium under
investigation. Using this equation, we have primarily
determined stationary (uniformly rotating) regimes
with the modulo constant value of the local order
parameter. It has been established that among such
states, we can single out two types, homogeneous and
twisted states. Further, we have tested their stability
using analysis of the eigenvalue spectrum of the cor-
responding linearized equations. It has been demon-
strated that for large values of the half-width of the
natural frequency distribution function, only a fully
asynchronous regime with zero mean field is real-
ized. If, however, the half-width of the random
spread becomes smaller than a certain threshold
value, this state loses its stability, and both homoge-
neous and twisted partially synchronous regimes can
be observed depending on the size of the medium
and the phase shift.

Using the fact that the interaction between the ele-
ments decreases exponentially, the Ott–Antonsen
integro-differential equation has been transformed to
a self-consistent system of equations in partial deriva-
tives. This enabled up to propose a method for the
effective search for stationary (uniformly rotating)
inhomogeneous spatial structures, which are trans-
formed into chimera states in the limit of identical ele-
ments. The main idea of this method is the construc-
tion of closed trajectories in the phase space for an
auxiliary system of third-order ordinary differential
equation. It should be noted that such periodic solu-
tions can easily be put in correspondence with station-
ary points of a 2D map. Having found examples of
nonuniform profiles of local complex order parameter
and having reconstructed the phase distributions from
these profiles, we have tested the stability of the resul-
tant states by calculating the linear perturbation spec-
trum and using direct numerical simulation. To per-
JOURNAL OF EXPERIMENTAL AN
form such analysis, we have developed and adapted, in
particular, the procedure for calculating the continu-
ous and discrete components of the eigenvalue spec-
trum of the Ott–Antonsen integro-differential equa-
tion linearized around one of stationary formations.

Ultimately, it has been established that among
inhomogeneous states with a static distribution of
regions with elevated and lowered degree of synchro-
nization, only the regimes for which the local order
parameter profile has only one maximum is stable.
However, among other structures determined in this
study, weakly unstable (transient) formations are
encountered. Using direct numerical simulation based
on the initial system, we have confirmed these conclu-
sions and shown that the quasi-chimera (both asymp-
totic and transient) regimes of rotation under investi-
gation play an important role in the dynamics of an
ensemble of a large number of nonidentical nonlocally
coupled phase oscillators with the exponential type of
interaction because some of them are stabilized and
subsequently do not break, while others appear in the
form of transient long-lived processes between inter-
vals with a complex irregular behavior of averaged
fields. In addition, apart from such an intermittence of
regular and chaotic collective movements for extended
media, numerical calculations have made it possible to
single out and describe such states of the long-term
evolution of the system in question as a breather clus-
ter synchronization and a developed turbulent regime.
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