
Chapter 12
Phase Reconstruction with Iterated
Hilbert Transforms

Erik Gengel and Arkady Pikovsky

Abstract We discuss theoretical and practical issues of data-driven phase recon-
struction approaches for nonlinear oscillatory systems by means of the geometric
technique of embeddings and protophase-to-phase transformation. In this chapter,
we introduce a natural extension of the well-studied Hilbert transform by iteration.
The novel approach, termed iterated Hilbert transform embeddings, implements cen-
tral assumptions underlying phase reconstruction and allows for exact demodulation
of purely phase modulated signals. Here, we examine the performance of the novel
method for the more challenging situation of generic phase-amplitude modulated
signals of a simple nonlinear oscillatory system. In particular we present the benefits
of the approach for secondary phase analysis steps illustrated by reconstruction of
the phase response curve. Limitations of the approach are disussed for a noise-driven
phase dynamics.
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12.1 Introduction and Overview

This chapter deals with the art of phase reconstruction. We focus on Hilbert trans-
forms, however, much of the introduced methodology is not bound to Hilbert trans-
forms alone.

In general, three approaches to signal analysis of oscillatory signals can be iden-
tified. The first approach applies statistical methods to extract information from
observations assuming no further model [2, 22, 34]. The second approach takes
the theory of dynamical systems into account and analyses the signals in terms
of the phase and the amplitude notions provided in this theory [1, 7, 9, 17–19, 24,
29, 30, 37]. In an intermediate methodology, a phase and an amplitude are extracted
from the data and then analysed in terms of statistical quantities. These methods
may or may not take an underlying theory into account [15, 23, 25, 28, 36, 42, 43]
Alternatively, one applies machine learning techniques to obtain equations of motion
directly from observations [6, 41].

Here we focus on signal analysis approaches suitable for oscillating systems. The
basic assumption is that the signal originates from a dynamical oscillating system,
interacting with other systems and/or with the environment, and the goal is to under-
stand the dynamics. This task is especially important and challenging in life science,
where a theoretic description of the oscillators is in many cases lacking, because the
underlying mechanisms are not clear. On the other hand, measurements of the full
phase space dynamics are impossible, or would destroy the system itself. The latter
aspect introduces the common setting where measurements of the systems are pas-
sive, i.e., an observer collects data from the free running system and may only apply
weak perturbations to prevent damage. For such passive observations, we pursue here
the approach inspired by the dynamical system theory: we try to extract the phases
from the signals, with the aim to build models as close to theoretical descriptions as
possible.

The ideas of the phase dynamics reconstruction has been widely used in physics,
chemistry, biology, medicine and other areas [4, 20, 31, 35] to understand properties
of oscillators and coupling between them (see also Chaps. 2, 3 and 11 of this book).
The reason for this, as we discuss below, is that the phase is sensitive to interactions
and external perturbations. In particular, many studies apply Hilbert transforms to
reconstruct the phase from data (for example see [3, 14, 38, 43] and references
therein). However, several fundamental issues in the process of phase reconstruc-
tion are unresolved, long standing and mostly omitted in the community. One issue
deals with the role of the amplitudes [8, 21]. And from the view point of pure
signal processing: how to deal with phase-amplitude mixing in Hilbert transforms
[10, 13]. The latter issue will be discussed in particular here and we describe a
solution by virtue of iterative Hilbert transform embeddings (IHTE) [12].

First, we describe the theoretical concepts. We then discuss the art of phase recon-
struction with a focus on IHTE. We illustrate this method by presenting results for
a Stuart-Landau non-linear oscillator, including reconstruction of the infinitesimal
phase response curve (iPRC). Finally, we discuss difficulties of application in case
of noisy oscillations.

http://dx.doi.org/10.1007/978-3-030-59805-1_2
http://dx.doi.org/10.1007/978-3-030-59805-1_3
http://dx.doi.org/10.1007/978-3-030-59805-1_11
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12.2 Nonlinear Oscillators and Phase Reduction

Here we briefly review the phase reduction of driven limit cycle oscillators, for more
details see [26, 27]. An autonomous oscillator is described by N state variables y
which evolve according to a system of differential equations ẏ = f(y). One assumes
that this system has a stable limit cycle y0(t) = y0(t + T ) describing periodic (period
T ) oscillations. In the basin of attraction of the cycle one can always introduce a phase
variable ϕ which grows uniformly in time

ϕ̇ = ω = 2π

T
. (12.1)

On the limit cycle, only the phase varies, so that y0(ϕ) = y0(ϕ + 2π), which
means that the value of the phase uniquely determines the point on the limit cycle.

If the autonomous oscillator is perturbed, i.e., it is driven by a small external force
ẏ = f(y) + εp(y, t), then the system slightly (of order ∼ ε) deviates from the limit
cycle, and additionally the phase does not grow uniformly, but obeys (in the first
order in ε) the equation

ϕ̇ = ω + εQ(ϕ, t), (12.2)

where Q can be expressed via f,p (see [26] for details). Equation (12.2) contains only
the phase and not the amplitude, it can be viewed as a result of the phase reduction.
The dynamics of the phase according to (12.2) allows for studying different important
effects of synchronization, etc. In the case when the oscillator is forced by another
one, the force p(η) can be viewed as a function of the phase η(t) of this driving
oscillator, so the function Q(ϕ, η) becomes the coupling function depending on two
phases. In experimental situations it is quite common to perturb just one variable
of the system. In that case, if the forcing term is scalar and does not depend on the
system variables, one can factorize Q(ϕ, t) = Z(ϕ)P(t) into the iPRC Z(ϕ) and the
(scalar) external driving P(t) [5, 39].

Example: Forced Stuart-Landau Oscillator. In this contribution we consider as
an example the perturbed Stuart-Landau oscillator (SL)

ȧ = (μ + iν)a − (1 + iα)a|a|2 + iεP(t), P(t) = cos(rωt) (12.3)

where a(t) := R(t) exp[iφ(t)] is the complex amplitude. Parameterμ determines the
amplitude (

√
μ) and stability of the limit cycles, α is the nonisochronicity parameter.

It is easy to check that
ϕ(t) = φ(t) − α ln[R(t)] (12.4)

is the proper phase, rotating, independently of amplitude R, with uniform frequency
ω = ν − μα. The frequency of the forcing is rω, where parameter r is the ratio of
the external frequency to the base frequency ω. In the first order in ε, the amplitude
and the phase dynamics read
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Fig. 12.1 Panel a: Observables X2 (blue points) and X3 (green points) as functions of the true
phase ϕ. The fact that these sets are not distiguishable from a line demonstrates validity of the
phase description for the SL oscillator (i.e. the amplitude modulation is indeed small). The same
observables as functions of the first protophase θ1 are not lines but broad sets (orange points for
X2(θ1) and grey points for X3(θ1)). The same observables become good function of the protophase
θ10 after 10-th iteration of our procedure (red and black points, corerspondingly). Panel b: Time
series for observables X2,3(t) (red,black). Simulationparameters areμ = 8,α = 0.1,ν = 1, ε = 0.1
and r = 1.8 (for X2(t)) and r = 5.6 (for X3(t)). In this scale, small amplitude andphasemodulations
are hardly seen

Ṙ = R(μ − R2) + εP(t) sin(ϕ),

ϕ̇ = ω + εμ−1/2(cos(ϕ) − α sin(ϕ))P(t).
(12.5)

Here, the iPRC is

Z(ϕ) = (cos(ϕ) − α sin(ϕ))μ−1/2. (12.6)

One can see that for small ε the dynamics of the SL is nearly periodic, with
small (∼ ε) amplitude and phase modulations. Below in this paper we will con-
sider three different scalar observables of the SL dynamics: X1(t) = Re[a(t)],
X2(t) = 0.1(Im[a])2 + 0.2(Re[a])2 + 0.3Im[a] + 0.4Re[a], and X3(t) = X2(t) +
0.3Re[a]Im[a]. The observable X1 is “simple”, it is a pure cosine function of time
for the autonomous SL oscillator. The observable X2 is also relatively simple (with
one maximum and minimum pro period), but not a pure cosine. The observable X3

can be viewed as a multi-component signal [11], with two maxima and minima pro
period. Snapshots of the time series of corresponding signals X2,3(t) are illustrated
in Fig. 12.1b.

12.3 Phase Reconstruction and Iterative Hilbert Transform
Embeddings

12.3.1 Waveform, Phase and Demodulation

In Sect. 12.2we introduced the phase dynamics concept for weakly perturbed oscilla-
tors. It is based on the equations of the original oscillator’s dynamics. In the context of
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data analysis, one faces a problem of the phase dynamics reconstruction solely from
the observations of a driven oscillator. From the time series of a scalar observable,
one wants to reconstruct the phase dynamics equation (12.2).

The first assumptionwemake is that the phasemodulation of the process observed
is much stronger than the amplitude modulation. Although, according to the theory,
amplitude perturbations appear already in the leading order ∼ ε (cf. Eq. (12.5)),
these variations could be small if the stability of the limit cycle is strong. Indeed, like
example Eq. (12.5) shows, perturbations of the amplitude are inverse proportional to
the stability of the limit cycle∼ ε/μ, and are additionally small for μ large. Thus, for
the rest of this chapter we assume that the dynamical process under reconstruction
is solely determined by the dynamics of the phase.

Generally, a time series emanates from an observable X [y(t)] of the systems
dynamics. According to the assumption above, we neglect amplitude modulation
which means that we assume y = y0, so that the scalar signal observed is purely
phase modulated

X (t) = X [y0(ϕ(t))] =: S(ϕ(t)). (12.7)

Here a 2π-periodic function S(ϕ) = X [y0(ϕ)] is unknown, we call it the wave-
form. The reconstruction problem for the signal X (t) is that of finding the waveform
S(ϕ) and the phase ϕ(t). In Fig. 12.1a, we illustrate these waveforms for the observ-
ables X2,3 of the SL oscillator. Plotting X2,3 as functions of ϕ with dots, one gets
extremely narrow lines which indicate that for chosen large stability of the limit
cycle the amplitude dynamics can be neglected and decomposition is possible. On
the contrary, if the observed signals possess essential amplitude modulation, X (ϕ)

would look like a band. In that case the above representation (12.7) is not adequate.
We stress here that a decomposition into thewaveform and the phase is not unique.

Indeed, let us introduce a new monotonous “phase” θ(t) according to an arbitrary
transformation

θ = �(ϕ), �(ϕ + 2π) = �(ϕ) + 2π, �′ > 0. (12.8)

Then the signal can be represented as X (t) = S(�−1(θ)) = S̃(θ) with a new
waveform S̃ = S ◦ �−1. Variables θ(t) are called protophases [17, 18]. Examples
for mappings Eq. (12.8) are depicted in Fig. 12.4. To see the difference between
protophases and true phase ϕ(t), let us consider the non-driven, non-modulated
dynamics. Here the phase ϕ(t) grows uniformly ϕ̇ = ω, while the protophase θ(t)
grows non-uniformly, as

θ̇ = �′(ϕ)ω = ω�′(�−1(θ)) = f (θ). (12.9)

However, having a protophase and the function f (θ) governing its dynamics, one
can transform to the true phase ϕ(t) by inverting relation (12.8):

dϕ

dθ
= 1

�′(ϕ)
= ω

f (θ)
, ϕ =

∫ θ

0

ωdθ′

f (θ′)
. (12.10)
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Note that Eq. (12.10) is well defined as by construction, θ̇ = f (θ) > 0. In the
case one observes driven oscillations, one approximately estimates f (θ) = 〈θ̇〉, see
[18] for details.

According to the discussion above, one can perform the phase reconstruction of
an observed signal X (t) in two steps:
(i) Find a decomposition X (t) = S̃(θ(t)) into a waveform and a protophase, satisfy-
ing conditions

(I): ∀t, θ̇(t) > 0, (II): S̃(θ) = S̃(θ + 2π). (12.11)

(ii) Perform a transformation from a protophase to the phase, so that the latter grows
on average uniformly in time

(III): 〈ϕ̇〉 = const. (12.12)

Conditions [I, II] ensure that the reconstructed protophase is monotonous and
2π-periodic. Condition [III] selects the phase as a variable uniformly growing in
time, in contrast to other protophases which according to (12.9) grow with a rate
that is protophase-dependent (with 2π-periodicity). Below we discuss in details the
methods allowing for accomplishing steps (i) and (ii).

12.3.2 Embeddings, Hilbert Transform, and
Phase-Amplitude Mixing

The first task, a decomposition into a waveform and a protophase, is trivial, if two
scalar observables {X (t) = X [y0(t)],Y (t) = Y [y0(t)]} of the oscillator’s dynamics
are available (of course, these observables should be not fully dependent). In this
case, on the {X,Y } plane one observes a closed continuous curve, parametrized by
the phase, and the trajectory rotates along this curve. Any parametrization of the
curve, normalized by 2π, will then provide a protophase as a function of time. After
this, one has only to accomplish the step (ii), i.e. to transform the protophase to the
phase.

An intrinsically non-trivial problem appears, if only one scalar observable, X (t),
is available. The goal is to perform a two-dimensional embedding of the signal X (t),
by generating from it the second variable Y (t). There exist several approaches for
this task. The most popular ones are the delay-embedding Y (t) = X (t − τ ) [16], the
derivative embedding Y (t) = Ẋ(t) [32], and the Hilbert transform (HT) embedding
Y (t) = Ĥ [X ](t), where (on a finite interval [t0, tm])

Ĥ [X ](t) := p.v.

π

∫ tm

t0

X (τ )

t − τ
dτ . (12.13)
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It is an observation of practice, that the latter approach based on the HT often
gives the most stable results. A reason for this is that the HT produces minimal
distortions to the signal’s spectrum. Indeed, all the methods mentioned are linear
transformations, which in Fourier space correspond to multiplications with factors
ei�τ , i�, and i sign(�), respectively. The factor for HT depends on frequency in a
“minimal” way, and does not have, contrary to the delay embedding, a parameter.
However, the HT provides only an approximate embedding, due to a mixing of phase
and amplitude modulations [13].

Indeed, only for a non-modulated, i.e. for a purely periodic signal X (t), the HT
transform provides a periodic Y (t), so that on the {X,Y } plane one observes a perfect
closed loop. If the signal X (t) is phase-modulated, then on the {X,Y = Ĥ [X (t)]}
plane one observes a non-closed trajectory (which only approximately can be con-
sidered as a loop), the width of the band gives the size of the appearing amplitude
modulation (see Figs. 12.1a and 12.2). (Also if one has a purely amplitude-modulated
signal, its HTwill provide spurious phase modulation - but this is not relevant for our
problem). It should be noted that the spurious amplitude modulation arises solely
due to the spectral properties of the Hilbert transform, and is not related to the
length of the observation data. Usually, already 20–30 observed periods suffice to
overcome boundary effects. Instead, the spectral content of the phase modulation
heavily influences the appearance of amplitude modulation, and hence the accuracy
of reconstruction [12].
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Fig. 12.2 IHTE for a periodically driven SL oscillator Eq. (12.3) with harmonic driving P(t) =
cos(rωt). Parameters: μ = 8, α = 0.1, ν = 1, ε = 0.1. In panel a observables X1(t) (for frequency
ratio r = 5.6) and X2(t) (for r = 1.8) are used. Shown are the first step of the IHTE hierarchy in
grey and orange, and step ten in black and red for X1 and X2, respectively. In panel b the observable
X3(t) with r = 5.6 is used where grey corresponds to the first embedding and black corresponds to
the embedding in step ten. Embeddings at the first iteration yield wide bands, which indicates for
an “artificial” modulation of the amplitude, while at the 10th iteration the embeddings are nearly
perfect lines, which means that the observed signals are nearly perfect phase modulated ones. Note
that the embedding of X1 has a circular shape, the embeddings of X2,3 are distorted from a circle
causing non-uniform protophases. In case of X3, the embedding shows a loop (panel (b))
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In the next section we describe a method to circumvent this problem by virtue
of iterated HT embeddings (IHTE) [12], illustrating the procedure with different
observables of the SL oscillator.

12.3.3 Iterated HT Embeddings

As discussed above, the HT embedding {X (t), Ĥ [X (t)]} although does not provide
a closed looped line, allows one for an approximate determination of the protophase.
To accomplish this, one needs to define a variable monotonously growing along
the trajectory and gaining 2π at each approximate loop. A naive analytic-signal-
based protophase arg(X + iY )would work only for cosine-like waveforms like X1,2.
Therefore we employ another definition of the protophase, based on the trajectory
length [18]

L(t) =
∫ t

0

√
Ẋ2(τ ) + Ẏ 2(τ )dτ . (12.14)

This length grows monotonously also in the case when the embedding has loops
(cf. Fig. 12.2), in which case the analytic-signal-based definition obviously fails.

Having calculated the length L(t), we can transform it to a protophase by interpo-
lation. For this, we define in the signal features which we attribute to the zero (mod-
ulo 2π) protophase, and define the corresponding time instants t j . In the simplest
case, one can define a protophase θ(t) on the interval (t j , t j+1) as a linear function
of the length θ(t) = 2π j + 2π(L(t) − L(t j ))/(L(t j+1) − L(t j )). However, such a
protophase will be discontinuous in the first derivative. A better transformation is
achieved via splines: one constructs a spline approximation for the function θ(L),
provided one knows the values of this function at the signal features: θ(t j ) = 2π j at
L(t j ).

Constructed in this way, the protophase θ(t) is only approximate, because X (θ +
2π) 	= X (θ). Visually, on the plane {X, Ĥ [X ]} one observes a band instead of a
single loop (see Fig. 12.2). Also, when X is plotted versus θ, one observes not a
single-valued function, but a band (see Fig. 12.1a).

Recently, in Ref. [12], we proposed to use iterative Hilbert transform embeddings
(IHTE) to improve the quality of the protophase definition above. Our idea is to per-
form subsequent Hilbert transforms based on the previously calculated protophases
θn(t), where n denotes the step of iteration (see Fig. 12.3). Intuitively, the advantage
of iterations can be understood as follows: The widely used first iteration already
presents an approximation to the protophase, although not a perfect one. This means,
that the function X (θ1) still has modulation, but less than X (t). Now, if we take θ1
as a new time and again perform a demodulation by virtue of the Hilbert transform
embedding, we expect θ2(t) to be better than θ1(t), etc. A detailed analysis performed
in Ref. [12] shows that this procedure indeed converges to perfect demodulation.

In terms of iterations, the protophase θ(t) discussed above is the first iteration
θ1(t), while the time variable can be considered as the “zero” iteration θ0(t). At each
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Fig. 12.3 Here we schematically explain the iterative Hilbert tranform embeddings. Typically only
one iteration is performed, and the protophase θ1(t) is used for further analysis. We show in this
chapter, how the quality of the phase reconstruction improves with the iterative embeddings

iteration step we use the obtained protophase as a new “time” with respect to which
the next HT is performed:

Yn+1(θn) = Ĥ [X (θn)] := p.v.

π

∫ θn(tm )

θn(t0)

X (θ′
n)

θn − θ′
n

dθ′
n. (12.15)

An implementation of this integral is given in [12]. Basically there are two chal-
lenges here: first, the integration has to be performed on a non-uniform grid and
second, one has to take care of the singularity at θ′

n = θn .
The iteration process will be as follows (see Fig. 12.3):

1. Having X (θn) = X (t (θn)), we calculate Yn+1(θn) = Ĥ [X (θn)] according to
(12.15).

2. Next, we construct the embedding {X,Yn+1} and find the length L(θn) from
(12.14).

3. After defining signal features, we calculate, using splines, the new protophase
θn+1 as a function of L(θn), which gives the new protophase θn+1 as a function
of the old one θn .

The steps 1–3 are repeated, starting from θ0 = t . After n iterations, we obtain a
waveform and a protophase

S̃(θn) = X (t (θn)) (12.16)

As has been demonstrated in Ref. [12], the procedure converges to a proper pro-
tophase, fulfilling conditions [I, II] above. For a purely phase modulated signal, at
large n the errors (12.17) reach very small values limited by accuracy of integration.
The convergence rate depends heavily on the complexity of the waveform and on
the level and frequency of modulation, but typically at n̂ ≈ 10 a good protophase is
constructed.

Summarizing, the IHTE solve the problem of constructing a protophase θ(t) =
θn̂(t) and the corresponding waveform S̃(θ) from a scalar phase-modulated signal
X (t); this protophase fulfills conditions (12.11)-[I, II]. Indeed, one observes in Fig.
12.4 that the first mapping �1(ϕ) is not purely 2π-periodic (blue bands). Instead,
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Fig. 12.4 Depicted are the phase-to-protophase maps Eq. (12.8) for X2[.] (panel a) and X3[.]
(panel b) based on the embeddings shown in Fig. 12.2. Colours correspond to �1(ϕ) (blue, this
data form a rather wide band indicating that the protophase at the first iteration is not precise),
�10(ϕ) (black, this data forms a narrow line indicating for a good protophase reconstruction),
ψ10(ϕ) (red, this narrow line is straight indicating for a good phase reconstruction). The orange line
is the diagonal. For better visibility the curves are shifted vertically

after ten iterations, �10(ϕ) effectively has become a line (black) indicating that a
protophase is reconstructed. The same can be seen in Fig. 12.1a, where bands of
values X2,3(θ1) are transformed to narrow lines X2,3(θ10) after ten iterations.

As the final step in obtaining a close estimate ψ(t) of the proper phase ϕ(t), we
have to perform the protophase-to-phase transformation, as described in Ref. [18].
The transformation is based on relation (12.10), where the Fourier components of the
density of the protophase are estimated according to Fk = t−1

m

∫ tm
0 exp[−ikθ(t)] dt ;

these components are used to perform the transformation as ψ = θ + ∑
k 	=0

Fk(ik)−1[exp(ikθ) − 1]. Indeed, one observes in Fig. 12.4 (red lines) that ψ(t) is,
up to estimation errors, resembling the dynamics ofϕ(t). However, we want to stress
here that determination of the protophase-to-phase transformation is based on a sta-
tistical evaluation of the probability density of the protophase. Hence, in order to
achieve a proper reconstructions with small distortions in the protophase-to-phase
mapping, one needs long time series.

We can check for the similarity of θn(t) or ψn(t) to the true phase ϕ(t) by calcu-
lating a phase and a frequency error as the standard deviations

STDq
n =

√
1

N̂1

∫ tmax

tmin

[qn(τ ) − ϕ(τ )]2dτ STDq̇
n =

√
1

N̂2

∫ tmax

tmin

[q̇n(τ ) − ϕ̇(τ )]2dτ

N̂1 =
∫ tmax

tmin

(ϕ(τ ) − ω̃τ )2dτ N̂2 =
∫ tmax

tmin

[ϕ̇(τ ) − ω̃]2dτ .

(12.17)



12 Phase Reconstruction with Iterated Hilbert Transforms 201

STDq,q̇
n tend to zero only, if the reconstructed protophases and transformed pro-

tophases qn = {θn(t),ψn(t)} are close to the true phase ϕ(t) of the system (see
Eq.(12.4)). In the integration, we skip the outer ten percent at the beginning and at
the end of the time series, to avoid boundary effects. Estimations of the instantaneous
frequency ϕ(t) and q̇n(t) are performed by a 12th order polynomial filter (Savitzky-
Golay filter) with a window of 25 points and four times repetition [33] denoted as
SG(12,25,4). Throughout the chapter we use a sampling rate of dt = 0.01, such that
the smoothing window has a width of dt = 0.25, corresponding to roughly 11% of
the fastest forcing period (r = 14.3). The estimated average growth rate ω̃ is obtained
by linear regression. Note that the normalization integral N̂1 is suitable for all phases
where the average growth is linear.

12.4 Numerical Experiments

12.4.1 Deterministic Oscillations

Here we consider the SL system (12.3) with μ = 8, α = 0.1, ν = 1. As the observ-
ables we explore functions X1,2,3[a(t)] defined above. The system is forced harmon-
ically by εP(η) = ε cos(η(t)) with amplitude ε = 0.1. The external force phase is
η(t) = rωt , for the explored range of driving frequencies rω the SL operated in the
asynchronous regime. We observe 100 periods with a time step of dt = 0.01.

In Fig. 12.6 the phase and the frequency errors according to Eq. (12.17) for the first
20 iteration steps are shown. While for slow modulations (r < 1), the reconstruction
is already accurate in the first step, for fast forcing frequencies (r > 1) indeed several
iterations are needed for precise reconstruction. The reason for this is that for high-
frequency modulations iterative HT embeddings first shift high-frequency Fourier
components of the phase modulation to lower frequencies, where they eventually
disappear. This mechanism is closely related to the Bedrosian identities [40] and is
explained in detail in [12]. For the reconstruction of phases in case of X2,3[a(t)], we
have to calculate the transformed phase ψ(t), because here the protophases deviate
from uniform growth. The results show, that IHTE combined with the protophase-
to-phase transformation provides proper phase reconstructions for the fairly stable
limit cycle oscillator under study.

Figure12.5 presents comparisons of the inferred modulation un(t) := ψn(t) −
ω̃t with the true one q(t) = ϕ − ωt , and of the inferred instantaneous frequencies
θ̇n(t)/ψ̇n(t) with ϕ̇, for a quite fast external force r = 5.6 (black bold dots in Fig.
12.6).While the first iterate is by far not accurate, iterations provide the reconstructed
estimation of the phases ψ20(t) which is very close to ϕ(t).
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12.4.2 Reconstruction of the Phase Response Curve from
Observation

Here, we present the advantage of using the IHTE for the reconstruction of the
coupling functions and the iPRC. As an example we consider the SL oscillator
with harmonic driving and parameters r = 5.6, μ = 8, α = 0.1, ν = 1 and ε = 0.1
observed via variable X1[.]. The coupling function is reconstructed by a kernel-
density fit. Namely, we use a kernel K(x, y) = exp[κ(cos(x) + cos(y) − 2)] and
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κ = 200 to construct θ̇(ϕ, η). We apply a simple iterative method described in [19].
After K iterative steps, the extracted coupling function Q̃K ,n(ϕ, η) := θ̇n(ϕ, η) − ω̃
is factorized into Z̃K (ϕ) and P̃K (η). In Fig. 12.8, the improvement due to IHTE is
evident.We used K = 30 factorization steps and recover the actual coupling function
with pretty high accuracy for different frequencies of forcing depicted in Fig. 12.7.
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12.4.3 Noisy Oscillations

In this section we discuss applicability of the described method to noisy signals. We
assume that the SL oscillator is driven by an external force containing a deterministic
and a stochastic (white noise) component

εP(t) = ε cos(ωr t) + ξ(t), 〈ξ〉 = 0, 〈ξ(t), ξ(t ′)〉 = σ2δ(t − t ′) (12.18)

with μ = 8, α = 0.1, ν = 1, ε = 0.2, r = 5.6 and different noise levels σ = [0.1,
0.08, 0.06]. We assume a “perfect” observation according to X1(t) (i.e., there is no
observational noise). Due to the stochastic forcing, the signal’s spectrum has infinite
support. In the time domain, X (t) contains an infinite amount of local maxima and
minima which will cause infinitely many but small loops in the embedding (see Fig.
12.9b). Strictly speaking, we can not obtain phase from such a signal by calculating
the length of the embedded curve, because the latter is a fractal curve.

Therefore, we can not deal with the raw signal X (t). Instead, as a preprocessing,
we smooth out fast small-scale fluctuations of X (t) by a SG [4, 12, 25] filter, effec-
tively cutting the spectrum of the signal at high frequencies. In such a setting with a
finite-width spectrum, we expect that IHTE can improve the phase reconstruction.
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The results in this case have to be interpreted relative to the smoothing parameters
which are chosen in such a way that they preserve essential local features of the
dynamics. Indeed, we observe negative instantaneous frequencies ϕ(t) pointing to
the need of a high polynomial order of smoothing (see Fig. 12.9c, d, e). Also, the
noise causes diffusion of phase (see Fig. 12.9).

From the viewpoint of phase extraction via embeddings, the white noise forcing
represents a “worst case”. On the contrary, in all situations where coloured noise with
a bounded spectrum is present, we expect IHTE to be the more easily applicable.
Depending on the spectral composition of noise, small-scale loops in the embedding
may be not present at all, or may be eliminated with minimal filtering. If the noise has
only relatively low-frequency component, the embedding will be relatively smooth,
and no additional processing is needed.

Ourmethod is restricted to the conditions (12.11). Since all of these conditions are
not fulfilled in this example, the actual phase dynamics is only partly reconstructed,
as can be seen also from Fig. 12.9a where the reconstruction error decay is much
less pronounced than in Fig. 12.6. In view of this, the presented example can be
considered as a proof of concept for IHTE of noisy signals. The method improves
the estimation of the phase, as the examples of Fig. 12.9 show, by factor up to 2.

We add the following preprocessing to IHTE:

1. Given X (t), apply a high-order SG-filter making the signal smooth with a large
number of inflection points.

2. Next, smooth ϕ(t) by the same SG-filter.
3. Proceed signal X (t) with IHTE as described in Sect. 12.3.3.

12.5 Conclusion and Open Problems

In summary, the IHTE approach solves the problem of phase demodulation for purely
phase modulated signals. Here, we present results for a dynamical system, where the
amplitude dynamics is also present and linked to the dynamics of ϕ(t). We have
demonstrated that IHTE indeed provides a good reconstruction of the phase dynam-
ics, if the amplitude variations are relatively small (see Fig. 12.4, 12.6, 12.5). We
show that iterations drastically improve the reconstruction of the phase, in compar-
ison to the previously employed approach based on a single Hilbert transform (see
Fig. 12.5) and Z(ϕ) (see Fig. 12.8). However, the analysis of the performance of
IHTE in the case of larger amplitude variations is a question to be discussed in the
future.

An important issue in the phase reconstruction is the protophase-to-phase trans-
formation. It is particularly relevant for generic observables like X3[.], with complex
waveforms. While handling such observables in the framework of IHTE does not
state a problem, influence of amplitude variations may depend drastically on the
complexity of the waveform. It should be stressed here, that while construction of
the protophase via IHTE is almost exact, the protophase-to-phase transformation is
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based on some assumption about the dynamics, which typically are only approxi-
mately fulfilled. This topic certainly deserves further studies.

Biological systems are noisy. We have given an example here, where IHTE also
improves the reconstruction of the phase in presence of fluctuations (see Fig. 12.9).
However, the very concept of a monotonously growing phase should be reconsidered
for noisy signals. Here we largely avoided problems by smoothing the observed
signal, but in this approach some features of the modulation might be lost.
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