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ABSTRACT

Writing a history of a scientific theory is always difficult because it requires to focus on some key contributors and to “reconstruct” some
supposed influences. In the 1970s, a new way of performing science under the name “chaos” emerged, combining the mathematics from
the nonlinear dynamical systems theory and numerical simulations. To provide a direct testimony of how contributors can be influenced
by other scientists or works, we here collected some writings about the early times of a few contributors to chaos theory. The purpose is to
exhibit the diversity in the paths and to bring some elements—which were never published—illustrating the atmosphere of this period. Some
peculiarities of chaos theory are also discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0047851

Chaos is a word that is, in science, very often quickly associated
with the overgeneralized butterfly effect, inherited from the title
of a talk given in 1972 by Edward Lorenz, one of the great contrib-
utors to the so-called chaos theory. This theory is a branch of the
nonlinear dynamical systems (NDS) theory, which was boosted
by Poincaré’s works at the late 19th century. It was then further
developed by many great mathematicians for a few decades. In the

1960s, with the occurrence of computers, chaos theory emerged
as a new methodology that is neither “pure” mathematics nor
disconnected from the strongly mathematical NDS theory. The
scientists working on chaos constitute a very interdisciplinary
community whose emergence is associated with a high rate of dis-
ciplinary migration. Some of its contributors describe here how
this migration occurred.
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I. INTRODUCTION BY CHRISTOPHE LETELLIER

Chaos emerged in the 1970s. In their contribution to the prob-
lem of turbulence, Ruelle and Takens introduced the concept of
a strange attractor, strange meaning neither a limit cycle nor a
quasiperiodic motion.1 They associated turbulence with a “very
complicated, irregular and chaotic” motion. A few years later, the
term chaos was used by Li and Yorke in a very suggestive title Period-
3 implies chaos.2 Then, Rössler used it systematically to designate the
aperiodic behavior he was studying in the state space.3–6 With the
word “chaos” as a banner, scientists paid attention to aperiodic solu-
tions that were not quasi-periodic and characterized with concepts
inherited from the early works by Poincaré7,8 and Birkhoff,9 which
were synthetized in a masterpiece by Lorenz in 1963.10 A history of
the dynamical systems theory and chaos was already provided by
Aubin and Dahan-Dalmédico, focusing on three important contrib-
utors from the 1960s (Smale, Lorenz, and Ruelle).11 This field is poly-
morphic and many branches emerged in the 1960s, in mathematics
with Thom and Smale, in plasma physics with Chirikov, in mete-
orology with Lorenz, in control theory with Mira and Gumowski,
and exploded in the 1970s. Depending on the field from which it
emerged, the influences were not always the same. Browsing the list
of quotations in pioneering papers does not always allow to reveal
them as evidenced with Lorenz’s paper in which the book by Nemyt-
skii and Stepanov12 is quoted after the suggestion from a reviewer.13

It is, therefore, important to have access to direct recollections of
contributors as published, for instance, by Abraham and Ueda.14

This paper is devoted to a few contributors who never wrote
before about their early times in chaos. Some others were contacted
but declined the invitation. All of them were asked to focus on their
early times without any other indication. Various drafts were pro-
duced, inflating under some exchanges with Letellier who always
asked for more details. Contributors were always left free to develop
or not some points. No length limitation was imposed, and final
texts extend from 2 to 22 pages. Here, only excerpts are selected
by Letellier, focusing on the very early times. When possible, the
context in which a notable result was obtained is exhibited. These
excerpts may (should?) be considered biased by contributor’s views
as well as by the “selection process” from the whole text. We do not
pretend to provide an objective view of the history of chaos, but
rather how each one remembers his history of chaos. One of the
motivations—not clearly stated to the contributors—was to exhibit
the plurality of the paths followed by some scientists who con-
tributed to chaos theory as well as the recurrence of some influential
works.

The subsequent part of this paper is organized as follows.
Sections II–XIV are the excerpts of the contributions, ordered
according to a chronological order of the key contributions. Section
XV provides a short analysis and gives some conclusion.

II. THE SMALE PROGRAM BY RALPH ABRAHAM

Steve Smale finished his Ph.D. thesis in differential topology in
1956, working with Raoul Bott at the University of Michigan. At that
time, I was there in Ann Arbor, finishing my undergraduate pro-
gram in Engineering Mathematics. I was introduced to differential
topology in a course by Bott, on general relativity in 1960, working
with Nathaniel Coburn.

Solomon Lefschetz began devoting half of every year to build up
a graduate program in the mathematics department of the National
Autonomous University of Mexico. He had become interested in the
Russian literature on dynamical systems theory.15 Smale attended
Lefschetz’s summer conference in Mexico City.16 There, he met
René Thom, Morris Hirsch, and Elon Lima. Around 1958, Lima fin-
ished his Ph.D. thesis on topology with Edwin Spanier in Chicago
and introduced Smale to Mauricio Peixoto. Peixoto was a Brazil-
ian student of Lefschetz in Princeton, 1958–1959. His theorem on
the structural stability of flows in two dimensions17 was an early
breakthrough in dynamical systems theory.

In 1960, I arrived at UC Berkeley, which suddenly had a brand
new staff of mathematics professors and visitors. Smale arrived
along with Spanier (algebraic topology), Shing-Shen Chern (differ-
ential geometry), and Hirsch (differential topology) from Chicago,
Thom (differential topology) from Paris, Chris Zeeman (topology,
expositor of catastrophe theory) from Warwick, Peixoto from Rio,
Bob Williams (knot theory), Dick Palais (nonlinear functional anal-
ysis), and others comprising a research group on dynamical systems
theory based on differential topology. Hirsch (a student of Spanier)
and I were among the newbies in this group. The Smale program
was focused on the stable manifolds, structural stability, and con-
jugacy of diffeomorphisms. At this time, we devoted much time
reading and discussing the works of Poincaré and Birkhoff, espe-
cially concerning the stable curves of surface transformations and
their transversal intersections.

Smale had proved the existence of stable and unstable mani-
folds, his first major result in this field.18 He developed the horseshoe
map, his second major result. After this publication, Thom proved
that transversal intersection of stable manifolds is a generic property
of diffeomorphisms.19

Smale’s program was boosted into orbit by his influential
survey,20 which set out its foundations: conjugacy of diffeomor-
phisms, fixed and periodic points, stable and generic properties,
the nonwandering set, hyperbolic fixed points, stable manifolds,
and so on. Already, Smale drew homoclinic intersections of sta-
ble and unstable manifolds for surface transformations, discov-
ered by Poincaré and analyzed in detail by Birkhoff and Smith.21

Smale’s ingenious simplification of the homoclinic tangle in the
two-dimensional case, the horseshoe map, is shown in Fig. 1.
Smale carefully credits his predecessors—Poincaré,22 Birkhoff,23

Morse,24 Andronov and Pontrjagin,25 Thom,26 Elsgolts,27 Reeb,28 and
Peixoto.29

In 1962, I moved on to Columbia and in 1964 to Princeton
where Lefschetz still had a huge influence. I was able to teach grad-
uate courses, and, with Jerry Marsden and Joel Robbin, I rewrote
much of celestial mechanics with the new language and technology
of global analysis.30 In another, I treated the transversality of stable
manifolds in the global context of (infinite-dimensional) manifolds
of mappings.31

Around 1966, I began to receive letters from René Thom in
which he reported regular progress in his creation of catastrophe
theory. In this simple context of gradient (non-chaotic) dynam-
ical systems, he made crucial use of the language of attractors,
basins, and bifurcations, which became fundamental in the further
evolution of dynamical systems theory and later chaos theory. He
popularized a style of application of these notions, introduced earlier
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FIG. 1. Smale’s horseshoemap. A global diffeomorphismmaps the square Q into
the region bounded by dotted lines with G(A) = A’, etc. Each component P1 and
P2 of g

−1(g(Q) ∩ Q) is such that g is a linear map with g(Pi) = Qi (i = 1, 2).

by Poincaré and his Russian followers.32 The impact on the mathe-
matical community was further facilitated by a series of exemplary
articles by Zeeman.33

In 1968, a four-week conference on global analysis (July 1–26)
was edited by Chern and Smale.34 This was the moment, I believe,
at which our group finally became aware of the experimental work
and simulations on chaotic attractors. Yoshisuke Ueda, discovered
the first clearly chaotic attractor in analog simulation, the Japanese
attractor,35 for which he accurately drew the homoclinic tangle of
inset and outset curves for the forced Duffing equation,

{

ẋ = y,
ẏ = µ

(

1 − γ x2
)

y − x3 + B cos νt
(1)

obtained at Kyoto University in November 1961 (Fig. 2),36 Edward
Lorenz, discovered his chaotic attractor, at MIT, in 1963,10 and
Christian Mira discovered in 1978 his chaotic attractor in an iter-
ated quadratic map of the plane creating the theory of critical curves
for iterated maps.37,38 These discoveries sounded the death knell for
our approach based on differential topology.

In 1971–1973, new people had arrived in my department (UC
Santa Cruz), including John Guckenheimer, a recent Ph.D. with
Smale, and veterans of our group, Palais and Mike Shub. Palais
collaborated in creating a computational program using a digital
mainframe and a primitive graphics terminal. We were able to recre-
ate the attractors of Ueda, Lorenz, and Mira, with assistance of a
talented group of undergraduates. After a couple of years, we also
studied the Rössler attractor and other new developments. Gucken-
heimer was also active in computational dynamics at UCSC in the
1970s.

An important meeting was jointly sponsored in 1977 by the
New York Academy of Sciences and the University of Tübingen. My
own contribution was the first announcement of my simulation of
chaos using digital computer graphics. This work evolved into the
graphic introduction for chaos theory written jointly with the artist,
Christopher Shaw.39

Around 1978, a group of students, primarily Rob Shaw, Doyne
Farmer, Norman Packard, and Jim Crutchfield, later known as
the Santa Cruz Chaos Cabal (after Gleick’s best-seller40) began a
literature seminar and chaos program—the methodology to inves-
tigate chaotic attractors with the help of computers, for instance,
as synthetized by Lorenz. This resulted in an audacious article in

FIG. 2. Yoshisuke Ueda discovered (November 27, 1961) his chaotic attractor
in a Poincaré section of the forced Duffing equation (1). Courtesy of Yoshisuke
Ueda.

the Scientific American of December 1986 in which chaos theory
reached a wide popular audience for the first time.41

III. BORIS CHIRIKOV—SPUTNIK OF CHAOS BY DIMA L.
SHEPELYANSKY

Boris Chirikov (1928–2008) was the founder of the physical
theory of Hamiltonian chaos and made pioneering contributions
to the theory of quantum chaos.42,43 In 1959, he invented a sim-
ple analytical criterion, now known as the Chirikov criterion, which
determines the conditions for the emergence of deterministic chaos
in dynamical Hamiltonian systems.44,45

There are various research directions launched by Boris
Chirikov in the field of chaos. They include chaotic dynamics of
particles in plasma magnetic traps and accelerators, chaos border for
the Fermi acceleration model, emergence of chaos in various Hamil-
tonian systems,46,47 quantum chaos,48,49 in dissipative dynamical
systems,50,51 and many others.

I joined Chirikov’s group at the Institute of Nuclear Physics
(INP) in September 1976 at the beginning of my fourth year at
the Novosibirsk State University. As many other students, I knew
Chirikov from the course of electrodynamics given by him and Igor
Meshkov at our second year. However, my choice was also signif-
icantly influenced by a recommendation of George Zaslavsky who
had worked with Chirikov and gave outstanding recommendations
for his research.

Chirikov was the head of a theory group composed of about ten
people working on nonlinear dynamics and stochasticity (now, we
say chaos); it included essentially Felix Izrailev, Vitaly Vecheslavov,
and Lida Hailo, who worked as a programmer.

Chaos 31, 053110 (2021); doi: 10.1063/5.0047851 31, 053110-3

Published under an exclusive license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 3. Left: Boris Chirikov, Toulouse, June 6, 1998. Photo by D. L. Shep-
elyansky. Right: Amplitude of the eigenstate of the Ulam approximate of the
Perron–Frobenius operator of the Chirikov standard map at K = 0.971 635 406;
the amplitude is proportional to color with maximum for red and zero for blue; the
upper part of a phase plane is shown for the range 0 < x

2π
≤ 1, 0 <

p

2π
≤ 0.5.

Reprinted with permission from K. Frahm and D. Shepelyansky, Eur. Phys. J. B
76, 57–68 (2010).

I remember Chirikov’s office in 1976–1978. The main focus of
the room was a teletype terminal directly connected to a computer
BESM-6 at the Computer Center of Siberian Division of the Russian
Academy of Sciences, located at about 1 km distance down along
Prospect Nauka. This was the most powerful Soviet computer at
that time. From the terminal, it was possible to submit short runs on
BESM-6 and even to work in an interactive mode. Chirikov defined
the main scientific group aim as the investigation of fundamental
laws of chaos and foundations of statistical mechanics for classical
and quantum systems.

In 1977, the now famous quantum kicked rotator model was
invented. The model is the quantized version of the classical stan-
dard map, now known as the Chirikov standard map.46,47 It has the
form

{

p̄ = p + K sin x,
x̄ = x + p̄,

(2)

where bars mark the new values of conjugated variables of momen-
tum p and coordinate x and K is a dimensionless parameter charac-
terizing the kick strength. An example of the Poincaré phase space
is shown in Fig. 3.52

Back in the late spring of 1977, Chirikov suggested that I work
on the kicked rotator model, starting from the improvements of the
computer code. Following his suggestions, I achieved a significant
reduction of the CPU time, and I am still proud that the improved
figures we obtained were used in the Russian version of the kicked
rotator paper published as INP preprint in 1978.53

At those times, even chaotic dynamics in nonlinear classical
systems was a rather new and unusual subject for the world scien-
tific community. For example, there was not any specialized journal
in this field, and often, it was not easy to explain to an editor how
it happens that, in spite of Laplace determinism, simple equations
produce chaotic unpredictable behavior. Quite often, editors blamed
errors of numerical simulations and rejected papers on chaos. The
worldwide circulation of research results was initiated by Joe Ford

(Georgia Tech) who, every week, patiently collected the abstracts of
new preprints on chaos and nonlinearity, with young collaborator
Franco Vivaldi, and send them to colleagues and friends. Chirikov
knew Joe Ford from their first meeting in Kiev in 1966, where Ford
came as a tourist with a group of school pupils to visit the USSR.
Finally, the first specialized nonlinear journal, Physica D, was cre-
ated in 1980. During many years, Ford and Chirikov worked in the
editorial board of this journal.

IV. MY DANCE WITH CHAOS BY OTTO E. RÖSSLER

The first skill that I developed and which was significant for
my contribution to chaos was related to my interest in telephones. It
gradually led to repairing and then building radios and radio emit-
ters. I got my radio amateur’s license DL9KF when I was 17. After
my medical studies, I got a first scientific position at the Max Planck
Institute for Behavioural Physiology in Biocybernetics at Seewiesen.
During that year, I developed a big friendship in very long discus-
sions with Konrad Lorenz. I then spent one year as an intern at
the University of Marburg partly under the supervision of Reimara
Waible who became my wife one year later.

I hereafter obtained a one-year position for working with
Robert Rosen. In the continuation of Nicholas Rashevsky, the pio-
neer of mathematical biology,54–56 Rosen developed a bridge between
dynamical systems theory and biology.57 Bob and I had an imme-
diate resonance. From his book, I discovered Andronov, Khaikin,
and Vitt’s textbook,58 which later led me to building a three-variable
chemical multivibrator.59 Bob’s book made me firm in dynamical
systems thinking.

A few years before, I had met Friedrich-Franz Seelig. He offered
me to join his new group at the University of Tübingen. In the
early 1960s, Seelig had done his diploma work with Hans Kuhn and
Fritz-Peter Schäfer to build an analog computer consisting of a net-
work of electrical oscillators, connected to capacitors to solve the
two-dimensional Schrödinger equation.60 This system was triggered
by means of a radio frequency generator. Sharing an interest for
the origin of life, in differential equations and electronics (comput-
ers), Kuhn, Seelig, and myself agreed that nonlinear systems such as
my evolutionary soup and electronic systems were virtually isomor-
phic. This triggered a cooperation project between Seelig and me
to look for reaction-kinetic analogs to electronic circuits. I, there-
fore, joined Seelig in 1970. Seelig bought an analog computer—a
Dornier DO 240—equipped with potentiometers, a digital clock,
and two function generators. I was free in my research and started
to study few-variable systems. Chaos theory is fun. With three vari-
ables, recurrent motions can fall into a dance that is beautiful and
non-repeating and surprising at every round. This dance is chaos.
Art Winfree stimulated and paved my way into the fascinating topic
of chaos theory. In 1972, Art Winfree had invited me for a talk on
chemical automata at Purdue University.59,61 He showed me his later
well known beautiful experiments with the Zhabotinsky reaction.62,63

We started to exchange letters about interpreting chemical reactions
in terms of dynamical system theory. In 1975, we met again at a
Chronobiology Meeting held in Vienna where I gave a talk on biologi-
cal clocks. Art found my talk a little bit boring and asked me whether
I could do something more interesting in the context of my liquid
automata?64 I told him that I was thinking about a three-variable
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limit cycle that looks like a knot and hence cannot be flattened into
a planar circle-like thing for being irreducibly three-dimensional. He
replied that this sounded to him like chaos. He told me that he had
just attended a conference in Aspen, Colorado, on “chaos” and that
he had collected all the papers written on the subject and he would
send me a folder with them. Four weeks later, I received a big folder
with all the papers, mostly still in a preprint form.

The folder included Lorenz’s paper of 196310 and more recent
ones like those by Jim Yorke,2 Bob May, and George Oster. Art wrote
me explicitly that I should do him the favor of finding a chemi-
cal version of the Lorenz attractor.65 Of course, I did not succeed.
I came up with the idea of a rope wrapped about my nose several
times before falling down and then coming back up again in a loop.
This mental picture was the origin. Next came a characterless turn-
ing of the knobs on the analog computer. Simplifying and reducing
the system then was sufficient to arrive at the desired attractor.3 I
finally got the equations5







ẋ = −y − 0.95z,
ẏ = x + 0.15y,

εż = (1 − z2)(z − 1 + x) − δz.
(3)

Describing sharp transitions at the two thresholds [Fig. 4(a)] where
suddenly things switch from a one two-dimensional plane to the
other is a bit demanding numerically. After simplifying the equation
as much as possible by trial and error, the “miracle” happened that
the two formerly overlaid simple linear two-dimensional flows gave
rise to a new everywhere smooth three-dimensional flow,3







ẋ = −y − z,
ẏ = x + ay,
ż = b + z(x − c).

(4)

It is not actually the really simplest one, by the way, since I could
find later the still simpler one,66







ẋ = −y − z,
ẏ = x,
ż = b(1 − y2) − cz.

(5)

I should add here that the stimulation I had obtained from Ralph
Abraham and his school—the “Santa-Cruz kids”—was crucial. Nor-
man Packard, Rob Shaw, Jim Crutchfield, and Doyne Farmer then
jointly coined the name for the attractor.67

The movie with the “sound of chaos” (named after Simon
and Garfinkel’s “Sound of Silence”) was obtained on the analog
computer jointly with Reimara.68 The sound produced by this sim-
ulational reality proved to be familiar to the ear. Therefore, chaos is
something that is very close to everyday life.

V. HOW I BECAME INVOLVED IN CHAOS BY PHILIP
HOLMES

In 1973, I was finishing a Ph.D. thesis on noise transmission
in structures at Southampton University (UK) when I noticed that
a course on differential topology and its applications to dynamical
systems would be taught by David Chillingworth in the Mathemat-
ics Department. This introduced me to René Thom’s catastrophe
theory and to many analytical tools that I had not known before.

FIG. 4. The chaotic attractor obtained after some simplifications of the origi-
nal equations. Parameter values for system (3): δ = ε = 0.03. For system (4):
a = 0.2, b = 0.2, c = 5.7. For system (5), b = 0.275 and c = 0.2, and initial
conditions are x0 = 1, y0 = −1.4, and z0 = −0.4.

While auditing the course, I met David Rand who was also complet-
ing his thesis and who wanted to move toward applied mathematics.
We began working together and found an interesting mistake in the
interpretation of the amplitude response function for periodic solu-
tions in a preprint of Christopher Zeeman’s on Duffing’s equation
with a stiffening spring (α > 0),

ẍ + 2ζ ẋ + k(x + αx3) = f cos(ωt). (6)

The mistake involved a misinterpretation of the cusp catastrophe,
which occurs as a limiting case when two curves of saddle-node
bifurcations collide in the (f, ω) parameter space. Zeeman’s paper
finally appeared in 1976.69 We corrected the mistake and sent our
preprint to Christopher. He encouraged us to submit and publish,
and in due course, our paper came out,70 followed by further papers
on van der Pol’s equation71 and on a combined Duffing–van der Pol
oscillator.72 We did not learn of Yoshisuke Ueda’s analog simula-
tions of chaos in a similar equation with a cubic damping term until I
moved to Cornell University in 1977. Shortly thereafter, Ueda visited
Cornell and described some of his results.

However, while still in Southampton, David Rand and I found
two preprints on nonlinear oscillations by Floris Takens and things
began to become chaotic. Takens’ papers appeared in 1974.73,74 I
believe that they established fundamental examples for the classi-
fication of bifurcations in dynamical systems.

Cartwright had found a curve of homoclinic bifurcations in a
two-dimensional averaged van der Pol equation.75 David Rand and
I were able to relate it to the homoclinic bifurcations studied by
Takens and thus assemble the correct codimension-2 bifurcation
set.71 Motivated by Takens’ work, I borrowed an analog computer
from the undergraduate laboratory and (physically) programmed it
to simulate Duffing’s equation in the form

{

ẋ = y,
ẏ = x − x3 − δy + γ cos(ωt).

(7)

This system has a potential energy function with two wells sepa-
rated by a peak. With damping δ > 0, but without periodic forcing
(γ = 0), almost all solutions approach one or the other of the two
stable equilibria (x, y) = (±1, 0) except for the stable manifold of
the saddle point (x, y) = (0, 0). More significantly for chaos, when
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FIG. 5. Coexistence of a chaotic attractor and a large stable period-1 limit cycle.
Parameter values: δ = 0.15, γ = 0.30, and ω = 1. Initial conditions: x0 = 1 for
the chaotic solution and x0 = 1.8 for the period-1 limit cycle and y0 = 0.

damping δ = 0, there are two homoclinic orbits beginning and end-
ing at the saddle point. I had read and understood relevant parts
of Smale’s paper20 and realized that this implied that, with suffi-
ciently large periodic forcing γ 6= 0, the Poincaré map of Eq. (7)
has infinitely many transverse homoclinic points and, therefore,
contains Smale horseshoes (see Fig. 5 for an example).

Two conferences sponsored by the New York Academy of Sci-
ences in 1977 and 1979 focused on bifurcation theory and nonlinear
dynamics76,77 and did much to stimulate the field by bringing diverse
researchers together. I chaired a related conference in 1979, which
both engineers and mathematicians attended.78 Since I had trained
as an engineer and at that time was still trying to become an applied
mathematician, this meeting was important for my future.

Throughout my early work and collaborations, I was most
excited by the combination of computer simulations, rigorous math-
ematical theorems, and physical experiments that, together, could
create new models of dynamical processes. The classification of
bifurcations played a key role in this.

VI. HOW CHAOS SHAPED MY ACADEMIC LIFE BY
RENÉ LOZI

Strangely enough, although I was very interested in the first
examples of chaotic attractors from the end of the 1970s, I never
paid attention too much to the Rössler attractor. However, the
qualitative procedure of this method was strongly inspiring me
during several years, allowing to propose a geometric model of
slow–fast Lorenz-like attractor79 and the Alpazur oscillator with
Hiroshi Kawakami.80,81 Moreover, I was interested in his research
studies on hyperchaos and his prototypic models,82–84 map (although
non-continuous) three years later.85

I started my studies at the University of Nice in October 1967
in mathematics and physics. I had been taught that there was a list
of ODEs written by Bernoulli, Lagrange, Clairaut, Riccati, etc., and a
list of solving methods. No physical sense, in fact no meaning at all,
was attached to these academic exercises. No numerical method was
taught. Moreover, between professors, there was a strict separation
between “pure mathematician” and the few “applied mathemati-
cian” who were able to use a computer. At the university, I took
my first programming course about FORTRAN IV in 1968 using
punched cards. I discovered with fascination the methods of numer-
ical integration of ordinary differential equations (ODEs). During
1970–1971, I was following my bachelor’s degree under the super-
vision of Professor Martin Zerner (1932–2017). Martin was the first
guy who was able to use a computer that I ever met.

During his lectures, my mind knew a breakthrough that
changed the paradigm: the set of all the equations I was taught were
of zero measure in the set of all ones existing. No closed formula of
solution can be found for most of them. Only numerical methods
were able to provide approximate solution. Of course, in this scope,
computer was essential. Moreover, ODEs were useful to model phys-
ical, chemical, or even biological situations. This new paradigm has
guided my research career throughout my whole life.

While preparing my Ph.D.,86 the name “bifurcation” was largely
unknown in the communities of mathematical and numerical anal-
ysis in France. Of course, the term bifurcation was introduced 90
years before by Henri Poincaré,87 but we must consider that the
decade 1960–1970 was the golden age of the Bourbaki group88 whose
philosophy was drastically opposed to Poincaré’s way of thinking.
Moreover, Jean Alexandre Dieudonné, one of the founders of the
Bourbaki group, arrived at Nice in 1964. He was the most prominent
professor from the department of mathematics. Poincaré’s works
were, therefore, not at all in my mind.

With Gérard Iooss,89 I worked on the famous dynamo problem
explaining the origin of the magnetic earth field.90 We both attended
a conference in Roma (1977). The opening talk was given by David
Ruelle.91 In his talk, Ruelle conjectured that, for the Hénon attrac-
tor, the theoretical entropy should be equal to the characteristic
exponent. This is how I discovered the first example of chaotic and
strange attractors [Fig. 6(a)].92 At that time, the term “strange” was
used, referring to Ruelle and Takens’ paper. Today, we would use
“chaotic” rather than strange, which now refers to the fractal prop-
erties of the invariant set. Nevertheless, this is rather the fractal prop-
erties of this attractor, which were highlighted by Michel Hénon and
astonished the research community. Hénon who explored numer-
ically the Lorenz map using the IBM-7040 found it difficult to
highlight its inner nature due to its very strong dissipativity. Hénon
built the metaphoric model

{

xn+1 = 1 − ax2
n + yn,

yn+1 = bxn.
(8)

With b = 0.3, the contraction in one iteration is mild enough that
the sheaves of the attractors are visible [Fig. 6(a)].

Beyond bifurcation problems, my main interest was focused
on discretization problems and the finite element method in which
nonlinear functions are approximated by piecewise linear ones. Dur-
ing the Roma conference, I tried to apply the spirit of the method of
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FIG. 6. Some simple mappings: (a) The Hénon attractor and (b) the Lozi attractor.

finite elements to the Hénon attractor. Back to Nice on June 15 in
the morning, I eventually decided to change the square function of
the Hénon attractor, which is U shaped, into the absolute value func-
tion, which has a V shape, implying a folding property. I tested this
modification on my small desktop computer HP 9820. I shifted the
parameter value a from 1.4 to 1.7 and b from 0.3 to 0.5 (why? I do
not remember!) and plotted what is known today as the “Lozi map”
[Fig. 6(b)].93 Iooss and Chenciner encouraged me later to publish the
formula94

{

xn+1 = 1 − a|xn| + yn,
yn+1 = bxn.

(9)

This was for me the very beginning of my career in chaotic dynami-
cal systems.

I was convinced that few weeks would be enough to explain
and give a proof of the structure of a so simple attractor, but I failed.
In the next two years, I attended a workshop on iteration theory
at La Garde-Freinet (1979) where Michal Misiurewicz, after some
questions at the end of my talk, jumped on the stage. On the black-
board, he gave some clues of his forthcoming results presented at
the famous New York conference, seven months later95 where I am
proud to have shook the hand of Edward Lorenz. There, I listened
with a mix of anxiety and curiosity the first proof by Misiurewicz for
the existence of a chaotic attractor for the map I discovered two and
half years before.95 I was interested in the session devoted to turbu-
lence due to the concept of a strange attractor developed by Ruelle
and Takens.96 The talk by Vidal97 on the Belousov–Zhabotinsky
reaction was of a so great interest for me. Of course, the talk by
Misiurewicz95 was a kind of ecstasy for the young researcher that
I was.

VII. MY ROAD TO CHAOS BY LEON GLASS

For my Ph.D. at the University of Chicago, I studied dynam-
ics of molecules in liquid argon. For postdoctoral studies, I was
interested in going back to my original fascination with medicine
and psychology. I received a postdoctoral fellowship to study the
brain at the newly formed Department of Machine Intelligence and
Perception at the University of Edinburgh in 1968.

I returned to Chicago to a Postdoc. Jack Cowan had hired
two remarkable young scientists, Art Winfree and Stuart Kauff-
man for their first faculty positions. Although my initial plan was
to continue working on vision, I became intrigued by Kauffman’s
studies. Kauffman had constructed random Boolean switching net-
works and found that for networks in which each element only
had a couple of inputs, the dynamics was amazingly orderly.98

I rejected the Kauffman’s notion of discrete states and discrete
times but embedded the switching network logic in differential
equations.99,100 This was really my first research that involved non-
linear dynamics. I learned about some of the basic notions including
bifurcation and stability theory—topics that were not considered
appropriate to include in graduate physical science programs at
the time. This was immediately before the explosion of interest in
chaos.

Michael Mackey, who had training in Biophysics and Mathe-
matics, was a young faculty member at McGill University in Mon-
treal. I had met Mackey at Gordon Conferences in Theoretical
Biology in the early 1970s, and I was delighted when the opportu-
nity came to apply to McGill. I moved to Montreal in March 1975
and a few months later went out west to spend a month at the Aspen
Center for Theoretical Physics. A talk by Stephen Smale about the
period-doubling route to chaos was intriguing. Mitchell Feigenbaum
was also there, and he attributed that meeting also to piquing his
interest in chaos.101
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FIG. 7. Time delay embedding of a chaotic time series from the model for blood
cell production using the time delay equation (10) that we proposed in 1977.102

The trace is similar to the time delay embeddings presented at the New York
1977 conference organized by Gurel and Rössler. Image from the original tracings
made in 1976 or 1977 where x(2) is the delayed variable and x(1) is the current
variable.103

When I got back to Montreal, I was excited to discuss chaos
with Mackey. I asked him if physiological systems could display
chaos. He said he did not know. We decided to write a team grant
application on the theme “Oscillation and Chaos in Physiological
Systems.” We certainly proposed to study both difference and delay
differential equation models for two physiological systems: Mackey
would look at hematopoiesis, and I would look at respiration. In one
of the models for hematopoiesis, there were several novel features.
There was just one variable—the blood cell concentration. Instead
of just using a negative feedback, the equation

ẋ = β
xτ

1 + xn
τ

− γ x γ , β , n > 0 (10)

had a non-monotonic feedback term. Since it took some time to pro-
duce red blood cells once the signal was received, the production
incorporated a time delay term. We searched for chaos in the model.
Most exciting was the day when Mackey and I both sat in front of a
primitive computer screen and watched the trajectory. Since there
was only one variable, we plotted two coordinates, the current value
and the value in the past. To the best of my knowledge, this was
the first use of time delay embedding to examine complex dynam-
ics and bifurcations. We tweaked parameters and eventually found
what we were seeking.102,103 It was chaotic (Fig. 7), and the route to
chaos seemed similar to what had been observed in simple quadratic
maps.2,104

General interest in chaos had been piqued by Robert May’s
1976 review.105 We submitted our findings on chaos in simple

mathematical models of physiological systems to Science and were
delighted when it appeared.102 We emphasized the concept that dis-
eases could be characterized by abnormal dynamics that might be
associated with bifurcations in nonlinear equations. In November
1977, Okan Gurel and Otto Rössler organized a meeting on Bifur-
cation Theory and Applications.106 I was invited to speak and ran
through a sequence showing the various dynamics in the chaotic
time delay equation as a parameter changes using the time delay
embedding.103

There were many people at the 1977 meeting. One was Robert
Shaw, spending significant time to develop a way to beat roulette
by entering data from the roulette wheel into a computer program
in a shoe.107 The Dynamical Systems Collective wrote an influential
paper in 1980 showing how you could get a two dimensional portrait
of a time series by plotting the value of one variable on one axis and
its derivative, or as suggested in a footnote its value at an earlier time,
on the other axis.108 One member of the group, Farmer, went on to
study the time delay equation modeling blood cell dynamics for his
doctorate, referring to it as the Mackey–Glass equation!109 Another
person at the meeting was David Ruelle. Ruelle suggested to me that
I could look at the return map to a cross section on the time delay
embedding. He correctly thought that it would be parabolic. As far
as I know, the only published return plot for this equation appeared
in a Scholarpedia review article that Mackey and I presented many
years later when we finally took Ruelle’s suggestion.110

VIII. FIRST CHAOTIC STEPS BY ARKADY PIKOVSKY

As a second-year physics student at the Department of Radio-
physics at the University of Gorky, I had to decide the direction of
my studies. In early 1974, I approached Michael Rabinovich, that
time reader at the Theory of Oscillations chair, and asked if I can
do specialization under his supervision, and he agreed. He gave me
some review articles111,112 to read. I understood very little of them.
Nevertheless, when he formulated a first research project—deriving
a kinetic equation for modes for the Rayleigh–Bénard convection
problem, I started to read books and articles and almost the whole
third year in the University struggled with nonlinear equations for
convection. Therefore, I read what was relevant to this field in the lit-
erature, and at the beginning of 1975, I read a paper by J. McLaughlin
and P. Martin.113 They wrote about a strange attractor in convection,
and I understood nothing.

This paper contained only the 13th citation of the famous 1963
Lorenz paper10 and only the 11th citation of the equally important
1971 paper by Ruelle and Takens,1 and it was the first publication
that cited both. McLaughlin and Martin matched Lorenz’s nonpe-
riodic flow with the strange attractor concept. As a matter of fact,
stochastic dynamics (that is how deterministic chaos was called in the
Russian literature that days) was a known concept due to works of
Boris Chirikov and his group,114 but a general belief was that conser-
vative Hamiltonian chaos does not survive dissipation, and in dis-
sipative systems, only limit cycles can be stable (robust) attractors.
Lorenz’s model and the theoretical concept of Ruelle and Takens
demonstrated that dissipative chaos could be permanent, and more
and more examples of it appeared in 1975. To us, these novel ideas
came not in a direct way of reading the McLaughlin–Martin paper,
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FIG. 8. Phase portraits of two strange attractors created on an analog computer
produced by (a) the Rabinovich system (11) and (b) the electronic chaotic gen-
erator. (a) Reproduced with permission from Pikovski et al., Zh. Eksp. Teor. Fiz.
74, 1366–1374 (1978). Copyright 1978 Russian Academy of Sciences. (b) Repro-
duced with permission from Pikovski and Rabinovich, Dokl. Akad. Nauk SSSR
239, 301–304 (1978).

but through the mathematical group on a dynamical system the-
ory around Ya Sinai in Moscow.115,116 M. Rabinovich, together with
Svetlana Vyshkind, studied low-dimensional models of nonlinearly
coupled modes and observed irregular dynamics there.117 He met
Ya Sinai and from him got to know about the concept of strange
attractors. M. Rabinovich returned from Moscow very enthusias-
tic about this, and I was eager to learn more in this direction (at
this point, I also realized that I had already read about this in the
McLaughlin–Martin paper). M. Rabinovich brought from Moscow
several preprints and lecture notes that Sinai gave him (I remember
it was a text by O. Lanford III among them), which I tried to read.
However, this was rather hard for a non-mathematician, with some
objects like “Axiom A” that I could not identify. Thus, I took a step
back and started from more basic texts such as translated to Rus-
sian Smale’s review20 and lectures by A. Katok and others at Russian
mathematical schools.

Around the middle of 1976, M. Rabinovich first realized that
there is a close analog of the Lorenz system in the realm of cou-
pled oscillators (or oscillatory modes). The linear terms in the
Lorenz model can be interpreted as a combination of dissipation
and parametric excitation, while the nonlinear terms correspond to
a “classical” three-mode resonant interaction. This model is known
as the Rabinovich system,118







ȧ1 = −ν1a1 +ha∗
2 −a2a3,

ȧ2 = −ν2a2 +ha∗
1 +a1a∗

3 ,
ȧ3 = −a3 +a1a∗

2 ,
(11)

where the system is written in three columns, with dissipative, exci-
tation, and nonlinear coupling terms, correspondingly. Remarkably,
the complex solutions of the Rabinovich system appeared to lie on
the real-valued three-dimensional manifold [Fig. 8(a)], which made
the analogy with the Lorenz system nearly perfect.

The second idea came after a paper by Rössler.3 There, he
argued that in a three-dimensional slow–fast system, with a two-
dimensional S-shaped slow manifold, one can reduce the dynam-
ics to a one-dimensional non-invertible map and thus get chaos.
Slow–fast systems were a popular object at the Theory of Oscillations

chair in the context of electronic circuit dynamics. M. Rabinovich
decided to construct a chaotic electronic generator with slow–fast
dynamics.

Working on these two problems was an exciting time for me.
The computations’ results had to be put to the graphs (on a graph
paper) by hands. We used an analog computer with a plotter. One
could easily arrange a simple set of equations on this analog com-
puter, but accuracy was miserable. Therefore, one just adjusted
parameters (through rotation of a potentiometer) to obtain a beauti-
ful plot. Moreover, while plotting a long trajectory, parameters could
deviate, and it suddenly exploded. In Fig. 8, I present analog com-
puter phase portraits of the Rabinovich system and of the slow–fast
dynamics in an electronic circuit from papers.118,119

IX. TÜBINGEN BLUES BY LARS FOLKE OLSEN

My own introduction into the field came when I first went to
the department of biochemistry, Odense University (now Univer-
sity of Southern Denmark) as a graduate student in 1975 to study
bistability and oscillations in a single enzyme reaction known as
the peroxidase–oxidase reaction. My supervisor was Professor Hans
Degn who had studied this and other oscillating chemical reac-
tions since the early 1960s.120,121 In those days, the typical project
for a biochemistry student was to purify a new enzyme (or a known
enzyme in a new organism), establish an assay to measure its activ-
ity, and finally determine its KM and turnover. However, since my
high-school days, I had a crush for mathematics and physics.

In the fall of 1975, Hans Degn urged me to attend a meeting on
“Rhythmic Functions in Biological Systems” in Vienna (September
8–12). The meeting was mostly on circadian rhythms, and I did not
know any of the participants and also had nothing to contribute.
However, I had the pleasure of meeting two scientists who have had
a great influence on my later career. One was Arthur Winfree and
the other was Otto E. Rössler. Back in Odense, Degn informed me
that some unspent money could be used for a month visit to a lab
of my own choice. I asked Otto if he would be willing to have me
around for a few weeks.

When I arrived, Otto had just submitted his first paper on chaos
in a (bio)chemical system.3 My plan was to make a model of the PO
reaction that could unify its ability to show both bistability and oscil-
latory behavior based on some enzyme-kinetic measurements done
in the lab. Otto helped me with the model, and in fact, we did get it
to work. The equations are



















ȧ = K(a0 − a) −
V

(

a + κa2
)

b

λb + a + µa2
,

ḃ = σ − 2
V

(

a + κa2
)

b

λb + a + µa2
,

(12)

where a represents O2 and b represents NADH. K is a constant that
determines the rate of diffusion into the reaction mixture and a0

represents the O2 concentration at equilibrium. V, κ , λ, and µ are
enzyme kinetic parameters and σ is the inflow rate of NADH. The
model showed coexistence of steady state and limit cycle oscillations
with an unstable periodic orbit separating the steady state and the
limit cycle. It was never published in full, but the experimental data
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FIG. 9. Simple periodic (a), chaotic (b), and bursting (c) oscillations of O2 in the
peroxidase–oxidase reaction. Reproduced with permission from L. F. Olsen and
H. Degn, Nature 267, 177–178 (1977). Copyright 1977 Springer Nature.

underlying the model appeared in a later publication.122 When dis-
cussing this model, Otto was also telling me about an interesting
new kinetic model he had made, which could show non-periodic
oscillations, sensitive to initial conditions, which he referred to as
chaos.

Following my short stay in Tübingen, I started a new series of
experiments with an open system where both substrates NADH and
O2 were supplied continuously to the reaction mixture containing
the enzyme. Much to our surprise, the resulting oscillations were dif-
ferent and far more complex than we had anticipated. We observed
mixed-mode oscillations and bursting oscillations, none of which
could be explained by my simple two-variable model. Sometimes,
we also observed non-periodic oscillations as mixtures of small and
large-amplitude oscillations in a seemingly random order (Fig. 9).
Initially, Degn dismissed these oscillations as artifacts generated by
small random fluctuations in the pumping rate of NADH inflow, but
they appeared consistently when repeating the experiments with the
same experimental settings. I had an idea that these non-periodic
oscillations could be chaos, and therefore, I wrote a letter to Otto
with an extensive description of what I had done with free-hand
drawings of the data. Otto’s reply was: “Read Lorenz!”10

I read Lorenz’s fascinating paper10 and more recent papers
by Robert May104 and Li and Yorke,2 and suddenly I understood.
Following Lorenz’s instructions, I constructed a return map by
plotting each amplitude from our irregular PO oscillations against
the preceding amplitude (Fig. 10) and applied the Li and Yorke
theorem.2 I showed the plot together with the papers by Lorenz
and Li and Yorke to Degn who immediately changed his opin-
ion on the results. Within a week, we had written the manuscript
and submitted it as a letter to Nature by the end of October 1976.
We also sent copies of the manuscript to Otto and to Art Win-
free, from whom we received very enthusiastic responses.123 A few

FIG. 10. (a) Next-amplitude map of oscillations of O2 from Fig. 9(b) and (b) the
same type of plot for the oscillation periods. Trajectories with arrows were drawn to
show that the transition function allows period 3. Reproduced with permission from
L. F. Olsen and H. Degn, Nature 267, 177–178 (1977). Copyright 1977 Springer
Nature.

months later, the paper by Schmitz, Graziani, and Hudson on chaos
in the Belousov–Zhabotinskii (BZ) reaction appeared.124 In 1978,
Otto and Klaus Wegmann also published a paper on chaos in the
BZ reaction.125 It is important to note that in those days, Takens’
embedding method126 had not yet been published.

X. FROM CHEMICAL CHAOS TO CHAOTIC BRAIN BY
ICHIRO TSUDA

As everyone does, I enthusiastically studied Otto E. Rössler’s
pioneering works on chaos5,6,82,84 in my graduate student days
in the late 1970s. I tried to understand the mathematical struc-
ture of Lorenz chaos10 in relation to Smale’s horseshoe map,20 the
relationship between Lorenz chaos and a strange attractor1 in a
sense of a mathematical representation of hydrodynamic turbu-
lence, and also the relationship between such chaos and chaos in
a sense of Li–Yorke,2 while I kept thinking of “real” chaos observed
in the Belousov–Zhabotinsky (BZ) reaction system.124,127–130 Otto’s
contribution131 to real chaos in that system with Klaus Wegmann
encouraged me to pursue this direction of research.

Here, let me add some more comments about my early research
with the late Kazuhisa Tomita, concerning chaos in the BZ reaction.
We noticed early reports of chaotic behaviors in this chemical reac-
tion system. One report was published by Wegmann and Rössler131

mentioned above, while the other was by Schmitz et al.124 Although
they reported “chaotic” behaviors in laboratory experiments, it was
not clarified that those behaviors can be characterized by a math-
ematical structure recognized as deterministic chaos or strange
attractors. We wanted to show a definite evidence for the pres-
ence of chaos in the BZ reaction. We thought that finding evidence
was easy. The reason was that Otto already showed the presence
of chaos in three-dimensional continuous chemical reaction sys-
tems even with one quadratic nonlinear term, and furthermore, the
BZ reaction system should include more than one quadratic non-
linear terms due to molecular collisions of two different chemical
substances.
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FIG. 11. “Chaotic” orbits yielded by the analog computer at Yoshisuke Ueda’s
laboratory in 1978 by using the model (13). Parameter values: p ≈ 90, φ ≈

0.048, and m ≈ 3.44. Figures reproduced from I. Tsuda, master’s thesis, Kyoto
University, 1979.203

For the first time, we made a three-dimensional continuous
model for the BZ reaction based on an original Oregonator proposed
by Field and Noyes.132 In 1978, Kazuhisa Tomita asked Yoshisuke
Ueda to allow us to use analog computers in his laboratory. I finally
found “chaotic” behaviors in our model,







ξ̇ = (1 − φ)ξ + η − ξη − ξζ ,
η̇ = −(1 + φ)η + ζ − ξη + m,
pζ̇ = ξ − (1 + pφ)ζ − ξζ

(13)

using analog computers (Fig. 11).129 Christian Vidal’s Bordeaux
group found very similar chaotic behaviors to our findings in their
laboratory experiment.128 We were excited by this experimental
finding. Unfortunately, however, I could not find any chaotic behav-
iors by digital computations with our model. The equations used
in analog and digital computations were the same, but the com-
putation results were different: one showed chaotic behaviors and
the other showed simply periodic ones. I guessed that the chaotic
behaviors found in the analog computer could be a kind of noise-
induced chaos caused by the weak stability of limit cycles. Our
model does not have either an additional geometric structure pro-
ducing chaos as in the Rössler’s system or an additional dynamical
rule for changing the bifurcation parameter. One more variable was
necessary for yielding deterministic BZ chaos. Therefore, I guessed
the findings to be noise-induced chaos. Finally, I gave up mak-
ing a continuous model for deterministic chaos of the BZ reaction.
Alternatively, I concentrated on finding mathematical structures
showing the existence of deterministic chaos in the experimental
data.130

XI. REMINISCENCE OF CHAOS BY CELSO GREBOGI

In the mid-1970s, while working on my Ph.D. thesis in ther-
monuclear fusion, I took a course in the qualitative theory of dif-
ferential equations with a visiting mathematician. It was a cautious,
abstract four-month long course on specific differential equations.
As I was about to discover soon after, in that course, there was none
of the bold, intuitive philosophical generalizations that James Clerk
Maxwell,133 a physicist, and Henri Poincaré,134,135 a mathematician,

felt to be justified. Both understood the importance of systems hav-
ing sensitive dependence on initial data, the kind of dynamics that is
vibrant, compelling, and exciting.

In 1978–1981, I became a postdoc in Berkeley under Allan
Kaufman. During that time, a few markedly important events
occurred related to chaos. Still during the Soviet times, Boris
Chirikov came from Novosibirsk to visit Kaufman in the autumn
of 1978. He brought and left with us a preprint copy of his semi-
nal work.47 With Chirikov preprint on hand, Kaufman organized a
discussion group, three hours every Thursday afternoon, initially to
study Chirikov’s paper, later to go over V. I. Arnold’s recently pub-
lished book.136 In the discussion group, there were we—Kaufman’s
group, his former students, and some mathematicians. The latter
ones were really important because we learned from them the fun-
daments of the theory of dynamical systems and ergodic theory,
necessary to embark in this new science. The learning of a new
science, chaotic dynamics, supported by both the ergodic theory and
the theory of dynamical systems, was the most exciting aspect of the
multiple-year discussions.

Motivated by the studying of the Chirikov preprint, Kaufman
asked the student Steven McDonald to solve the Helmholtz equation
in the chaotic Bunimovich stadium. Their seminal work was on
quantum chaos.137 About the same time, Sir Michael Berry, came to
Berkeley to deliver the physics colloquium. He spoke about his work
on the swimming pool hot spots and on the twinkling of the stars,138

perhaps the two most important examples that can be understood
by employing the catastrophe theory of Thom.139 It was a fascinating
talk that stimulated me to read Thom’s catastrophe work. We tried
to apply the theory to particle and wave propagation but without
much success.

In the autumn of 1981, I moved back to the University of Mary-
land, where another chapter in chaotic dynamics was about to take
place. Upon arriving in Maryland, I delivered a course on symplec-
tic dynamics and Lie transforms at a Navy lab. That invitation came
from Robert Cawley who felt that the theory of dynamical systems
was the way of the future. There I met Louis Pecora. As part of that
course, I invited James Yorke to deliver a seminar as a guest. I have
never met him before, though I saw him walking on campus around
1977. I was slightly aware of his work while at Kaufman’s group.
After his talk, we sat on the stairs in front of the building, chatting
about his mathematical work on dynamical systems, and about the
naming of “chaos.”2

That initial conversation with Yorke was the beginning of a
two-decade long collaboration, involving the renowned physicist,
Edward Ott, resulting in well over 100 papers on the fundaments
of chaotic dynamics in such a collaboration. Our work, grounded
on the theory of dynamical systems and ergodic theory, and often
argued in terms of point set topology, was developed with the use of
mathematical maps and differential equations. The latter, typically
the pendulum equation140

ẍ + νẋ + ω2 sin x = f cos t, (14)

was usually employed to argue that the phenomenon we were
addressing was not particular to a mathematical framework, but it
was pervasive in science and technology. In fact, the objective of
the research was to establish basic mathematical principles so that
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researchers could then apply those principles to understand and
analyze the systems they were investigating in their own fields.

Visualization was a major component in the early scientific
developments of chaotic dynamics. It was essential to be able to
draw pictures of attractors, basins of attraction, and other invari-
ant sets on a sheet of paper or project them on a screen. In the
late 1970s and early 1980s, it was difficult, or often not doable, to
carry out more intricate calculations in order to help visualization
and understanding and to validate the theories and predictions.141

We hired a technician from NASA to programme and to deal with
the idiosyncrasies of computer arrays. Figure 12, showing the frac-
tal basin boundary and the basins of attraction of a forced damped
pendulum equation, is the result of such computations in that com-
puter array.142 Our pictures were exhibited at the National Academy
of Sciences, in a museum in New York, and were part of a traveling
exhibition throughout the United States. They were also the covers
of a dozen of mathematical, scientific, and technical publications.

XII. HOW I BECAME A NONLINEAR DYNAMICIST BY
ULRICH PARLITZ

In 1978, I started studying physics at the University of
Göttingen, and in 1982, I was looking for an interesting topic for
my diploma thesis. In those days, I read popular science books
on synergertics, self-organization, and evolution theory written by
Haken,143 Prigogine and Stengers,144 and Eigen and Winkler,145,146

and I was fascinated by these new emerging fields because they
addressed very fundamental questions of human lives and existence,
on how structure comes into being, how units of increasing com-
plexity and functionality arise as a consequence of natural dynamical
laws, and in which sense all these processes can be predicted (or not).
When talking to fellow students, I got the hint that Werner Lauter-
born works on nonlinear dynamics and chaos, and I should talk to
him about a diploma thesis in his group. I did so, and soon after,
he suggested me to investigate the dynamics of a periodically driven

FIG. 12. Fractal basin boundary and the basins of attraction of the forced
damped pendulum equation (14). Parameter values: ν = 0.1,ω = 1, and f = 2.
Reproduced with permission from Grebogi et al., Science 238, 632–638 (1987).
Copyright 1987 American Association for the Advancement of Science.

FIG. 13. Parameter space of the Duffing system (15). In the differently dotted
domains, there are symmetrical period-1 limit cycle (s1), two coexisting symme-
try-related period-1 limit cycle (as1), two pairs of asymmetry related period-1 limit
cycles (2as1), a pair of period-2 symmetry-related limit cycles (as2), and pairs of
period-n symmetry-related limit cycles (asn) with n = 4, 8, 16, . . .. Reproduced
with permission from U. Parlitz and W. Lauterborn, Phys. Lett. A 107, 351–355
(1985). Copyright 1985 Elsevier.

Duffing oscillator

ẍ + dẋ + x + x3 = f cos(ωt). (15)

Werner was primarily interested in nonlinear resonances he found
in his pioneering work on acoustically driven gas (cavitation) bub-
bles in a liquid in the 1970s,147 and one of my first tasks was to
look for such phenomena in the parameter space of the Duffing
oscillator. Experimentally, it was shown by him and Cramer in
1981148 that bubble dynamics can exhibit period-doubling cascades
to chaos, in this context also called acoustic cavitation noise. There-
fore, searching for chaos was also on my to-do list. It was known
that chaotic attractors exist for the Duffing equation with a double-
well potential.149 For the single well oscillator (15), such theoretical
results did (to our knowledge) not exist.

Therefore, I started to work, most of the time in the univer-
sity computer center filling the queue of their main computer, a
Sperry UNIVAC 1100/82, and using a VAX-11/780 for interactive
exploration of the Duffing oscillator to learn more about its dynam-
ics and how it changes when varying the driving frequency ω or
the driving amplitude f. A surprisingly rich, complex but ordered
structure of resonances, bifurcations, and coexisting periodic and
chaotic attractors emerged, which fascinated both of us, Werner
and me (Fig. 13).150 If this nonlinear system, which looks so sim-
ple, already produces such a wide variety of dynamic behavior, what
would happen with more complex, higher dimensional systems?

This was also the time when I listened for the first time a semi-
nar talk given by Otto Rössler at the University of Göttingen. It was
so impressive that I still remember the situation in the seminar room
when Otto Rössler showed slides with the taffy puller to explain the
mechanism of stretching and folding underlying chaotic dynamics
in the state space.

Chaos 31, 053110 (2021); doi: 10.1063/5.0047851 31, 053110-12

Published under an exclusive license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

After I had finished the diploma thesis, I continued with my
Ph.D. studies in Werner’s group and delved deeper into the dynam-
ics of periodically driven oscillators. How could one characterize
and label the nonlinear resonances and bifurcation curves seen in
the Duffing equation (15), the periodically driven bubbles,147 and
other nonlinear oscillators? We knew the dynamics of the circle
map and the theory of Arnold’s tongues, but this was applicable
only to self-sustained (or self-excited) systems such as the van der
Pol oscillator. Therefore, the question was where can we find a sec-
ond “rotational motion” in addition to the periodic driving in order
to compute and analyze their frequency ratio? The solution was to
consider the winding of neighboring trajectories around the peri-
odic orbits and to quantify this motion by torsion numbers.151,152

The (average) local torsion frequency � can also be used to define a
winding number w = �/ω that fulfills particular recursive schemes
in period-doubling cascades and is also defined for chaotic attrac-
tors of this class of systems. This approach was not only applied
to the Duffing oscillator, a model for a periodically driven gas
bubble,153 and many other passive nonlinear oscillators154 but also
to the periodically forced van der Pol oscillator,155

ẍ + d(x2 − 1)ẋ + x = f cos(ωt). (16)

The main motivation for our study of the van der Pol oscillator
was, however, the fact that it was known since the seminal analytical
work of Cartwright and Littlewood156 that this system may exhibit
aperiodic oscillations, but we could not find in the literature any
numerically computed example of a chaotic attractor for Eq. (16).
In fact, it took some detailed numerical simulations until we found
a complete period-doubling cascade to chaos.155

XIII. A KNOTTED ROAD TO CHAOS BY ROBERT
GILMORE

My trajectory as a physicist was strongly perturbed by For-
tunato Tito Arecchi. He is a world-class laser physicist who vis-
ited MIT for a year around 1970. Learning how the operating
state changed as the parameters changed was a bifurcation theory
problem.157 We did a lot of useful work in this field; besides it was
fun. At this time, a strong connection between the laser physics com-
munity and the nonlinear dynamics community was established by
Haken. He showed158 that there was a deep connection between one
of the standard laser physics models in a certain limit and the behav-
ior of fluids as described by the Lorenz equations.10 This connection
provoked a number of experimental searches for Lorenz-like output
behavior of various types of lasers.159,160

During this period, I encountered a reference to “catastrophe
theory.” Somebody pointed me to Thom’s book,32 not yet trans-
lated into English. After reading it, I understood nothing and put
this down to my halting French. By perseverance and luck, I was
directed to Tim Poston and then in the process of writing his book
on the subject with Ian Stewart.161 Tim gave me copies of several
important draft chapters. They were so well-written and straight-
forward that the concepts were easily assimilable. Tim also directed
me to a forthcoming work of Erik Christopher Zeeman,33 which put
the subject to work through many imaginative examples—many too
imaginative for the said physics community. The important take-
aways from this diversion were162 (i) the most visible singularities

are the stable nodes, but the most important are the unstable sad-
dles because their eigendirections help define basin boundaries, (ii)
bifurcations on manifolds could have canonical forms, (iii) all the
important ones were discretely classifiable, and (iv) the classification
overlapped enormously with the classification of simple Lie groups.
This was my introduction to chaos, both of maps and flows, and the
Lorenz attractor.10

The study of chaos changed dramatically around this time. The
enormously powerful tools of renormalization group theory163,164

were applied to iterative maps in the late 1970s on both sides of
the Atlantic.165–168 These results rapidly lead to several new invariant
quantities, such as the scaling ratio δ = 4.669 . . . . Once “universal-
ity” was claimed, a sea change occurred. With the universality claim,
“It was a very happy and shocking discovery that there were struc-
tures in nonlinear systems that were always the same if you looked
at them the right way.”40 The community of experimental scientists
took this as a challenge, and the race was on. Some of the early
experimental tests of the universality prediction are reprinted in the
excellent collection by Cvitanović.169

One set of experiments was carried out by Arecchi et al.170 This
experiment confirmed universality within an experimental error.
Tredicce moved to Drexel University to work with Lorenzo M.
Narducci in 1985. I moved to Drexel somewhat earlier (1981). My
reasons were in part: to continue working on laser problems with
Narducci.

In doing these experiments, the Arecchi/Tredicce group had
collected a great deal of data, and Tredicce wondered how he could
understand them. This was an exciting challenge that I eventu-
ally turned my complete attention to. The data showed, among
other things, multiple coexisting basins of attraction surrounding
orbits of various low periods that sometimes came into existence
or winked out of existence with a small change of parameter.170–172

Experience with catastrophes indicated the presence of saddle-node
bifurcations.

The observables were the periodic orbits, and the most impor-
tant ones were the unstable periodic orbits—again, a lesson from
catastrophe theory. We defined the relative rotation rate.173 The
ensemble of these fractions for any pair of orbits had very restrictive
and informative properties. Furthermore, they could be extracted
from experimental data and compared with models of the system. In
this way, we were able to show that the dynamics of the periodically
driven laser were those of a suspension of the Smale horseshoe.20 Not
surprisingly, there was a simple relation between the linking num-
bers of two orbits and the sum of their relative rotation rates. This
method was applied to other periodically driven systems.174 Then, it
was extended to autonomous three dimensional dynamical systems
as the Rössler system3,5 with the standard parameters.

At this point, we became aware of the Birman–Williams
theorem.175,176 This became a key tool for us. We used it as follows.
We could extract a set of low-period unstable orbits from a chaotic
attractor and then pairwise compute their “experimental” linking
numbers. Then, we could propose a branched manifold that might
be the projected limit of the attractor (Fig. 14). A following compar-
ison of the experimental linking numbers with those derived from
the branched manifold would show either that we “nailed” the anal-
ysis or had to go back to the drawing board. The net result was that
we were able to classify the topological structure of chaotic attractors
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FIG. 14. Branched manifolds describing (a) Rössler, (b) periodically driven Duff-
ing, (c) van der Pol attractors, and (d) Lorenz attractors and for particular param-
eter values. From Gilmore and Lefranc, The Topology of Chaos: Alice in Stretch
and Squeezeland, p. 23. Copyright 2003 Wiley. Redrawn with permission of the
authors.204

by integers.177 We were then able to analyze chaotic time series and
search for the integer representation of the dynamics that generated
these data.178–180

XIV. CHAOS RESEARCH AT THE NAVAL RESEARCH
LABORATORY BY LOUIS M. PECORA AND THOMAS L.
CARROLL

Chaos research at the U.S. Naval Research Laboratory (NRL)
was started in the 1980s by Lou Pecora and Tom Carroll, physicists
in the former Metals Physics Branch of the Materials Science and
Technology Division (MSTD), and by Ira Schwartz originally in the
Optical Sciences division of NRL.

Lou wanted to study nonlinear phenomena, especially chaotic
motion, in a real system, one that would have interest to the Navy.
The material yttrium iron garnet (YIG), a ferrimagnetic compound
used in many radiofrequency applications, appeared to be a good
candidate material for experimentation. Work by Professor Carson
Jeffries at the University of California, Berkeley, showed that the
magnetic spin waves in YIG were a nonlinear dynamical system and
could display chaotic behavior.181 Lou got Fred Rachford, also in our
Metals Physics Branch, interested in the experiments.

Because Rachford had the experiment ready to go, Tom Car-
roll was able to jump right in and start taking data on chaos in
spin wave interactions in YIG spheres in 1987. The results of the
experiment did at first appear “chaotic” but not in the sense Tom
was looking for. He did notice some strange transients, where the
output from the experiment would at first appear chaotic but then
suddenly become periodic (Fig. 15). Lou and Tom traveled to the
University of Maryland to consult with Celso Grebogi and Ed Ott
who showed them that these transients were something that Gre-
bogi, Ott, and Jim Yorke had actually predicted theoretically.182 Ott
explained the scaling of the transient times with applied power. Our
data showed that the average length of these chaotic transients as
micro-wave power was increased fit the predicted theoretical power

FIG. 15. Trajectory of a chaotic transient ending in a periodic attractor. Repro-
duced with permission from Carroll et al., Phys. Rev. Lett. 59, 2891–2894 (1987).
Copyright 1987 American Physical Society.

law. By March 1987, Rachford and Tom had accumulated enough
data to allow Lou to present the results at the American Physical
Society that month.183,184

Tom and Lou talked about synchronizing chaotic systems, but
they could not come up with any clear way to do that. In January
1988, Lou came home tired from the trip, and after dealing with
his young daughter late at night, he went to sleep thinking that
somehow, they could drive a chaotic system with a signal from an
identical system and maybe the two would synchronize. He man-
aged to remember that idea the next day, and in the next weeks,
some simple numerical experiments with iterated maps seemed to
confirm that chaotic driving of identical nonlinear systems could
cause them to synchronize. However, they needed more than just
numerical examples featuring simple maps.

Lou and Tom wanted an experimental example of synchronous
chaos. Tom remembered an analog computer circuit that a profes-
sor had demonstrated when he was an undergraduate. The circuit
used operational amplifiers, capacitors, and resistors to simulate the
equations for a bouncing ball with damping, and the circuit out-
put was displayed on an oscilloscope. He wanted to build an analog
computer circuit, and chaotic synchronization gave me a reason. He
found in the literature a report of a chaotic circuit developed by Pro-
fessor Robert Newcomb of the University of Maryland.185 He built a
pair of similar circuits: a drive circuit to hide a chaotic signal and
a response circuit that synchronized to the drive circuit in order to
extract a message signal that had been added to the driving signal.186

He even used this pair of circuits, along with a digital spectrum ana-
lyzer to demonstrate chaotic masking of an information signal in
front of NRL’s director of research, Dr. Timothy Coffey.

The work on the synchronization of chaotic circuits was still
unpublished but caught the interest of some people from the
Space and Naval Warfare Systems Command (SPAWAR) through
Dr. Mike Melich of the Naval Postgraduate School in Monterey,
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California. Tom and Lou were given some funding to pursue our
idea of communicating with chaotic signals.

XV. DISCUSSION AND CONCLUSION BY CHRISTOPHE
LETELLIER

From the testimonies in Secs. II–XIV, it might be relevant to
ask whether the chaos program constitutes a revolution,187 a new
science,40 or a new paradigm in an already established science. A
science commonly designates a branch of science as astronomy,
physics, chemistry, or mathematics. Chaos is a branch of mathe-
matics with some overlap with nearly all the other sciences: it is,
therefore, not a new science as supported by Holmes.188 A revolu-
tion, as it is meant today, designates a radical and sudden change.189

Nevertheless, the sudden character is questioned,190 mostly because
a scientific revolution is the result of a process that is developed
over decades if not centuries. It took nearly 20 centuries to switch
from the Aristotelician physics to what is called today the classical
mechanics. Chaos has clearly not this stature.

More important is the concept of paradigm as promoted by
Kuhn189 and which is deliberately defined in an open way. In
applied science, a paradigm is based on (i) some accepted principles,
concepts, and rules (invariant set, attractor, Poincaré–Bendixson
theorem, Takens theorem, Smale horseshoe, period-doubling cas-
cade, bifurcation, sensitivity to initial conditions, etc.), which pro-
vide some permanent solution to a group of outstanding prob-
lems, (ii) a shared methodology (working in the state space, using
numerical simulations, sharing some markers, etc.), and (iii) a meta-
physics (universality, relationships between mind and matter, etc.).
Although with a more or less conscious common ground, beliefs,
and sharing applications to some concrete natural phenomena, sci-
entists working with the chaos paradigm can belong to different
schools (statistics vs topology, for instance). Indeed, chaos is a
paradigm with its “tacit knowledge” acquired through practice and
which is not debated. In their history, Aubin and Dahan-Dalmédico
oscillate between continuity and rupture to describe the emergence
of the nonlinear dynamical systems theory.11 To us, “epistemological
break” as introduced by Bachelard191—that we could define as a new
way requiring a new concept or approach to solve a given problem
but which is still mainly understood with old concepts—seems more
appropriate than “rupture” or revolution as promoted by Kuhn189

because all of the current contributors refer to a background, to a
scientific heritage; in fact, they are quite sensitive to be correctly cat-
egorized regarding their academic background. For instance, some
of physicists expressed their exact field (radio-physics for A.P., con-
densed matter for L.M.P and T.L.C.). All of the contributors reveal
that they are highly influenced by someone—either by his scientific
corpus or by his way of thinking (R.A. inspired by Smale and Thom,
D.L.S. by Chirikov, R.L. by Thom and Hénon, L.G. by Mackey, A.P.
by Rabinovich, L.F.O. by Degn and Rössler, C.G. by Kaufman and
Chirikov, U.P. by Lauterborn, R.G. by Thom, L.M.P. and T.L.C.
by Grebogi, Yorke, and Ott)—or by a key contribution (Lorenz,10

Ruelle-Takens,1 among others). Most of them experienced a change
of categorization in their activity from a well-defined field (plasma
physics, chemistry, radiophysics, condensed matter, engineering) to
a field not so clearly identified and recognized by the academic
institutions, as already presented in Aubin and Dahan-Dalmedico:

nonlinear dynamical systems (NDS) theory or chaos? Very often, the
two terms are combined as if it is necessary to clarify some implicit
restriction.

Indeed, the NDS theory is characterized by the lack of existence
of analytical solutions, and, consequently, a qualitative approach is
required. This denotes a specific methodology whose foundations
date back to Poincaré’s works: stability analysis, phase portrait, sur-
face of section, Poincaré map, periodic orbits, etc. Poincaré, who was
deeply immersed in the history of his fields, would not deny to qual-
ify his contribution as a epistemological break rather than a rupture
or a revolution. He was clearly one of those who are producing better
while standing on the shoulders of giants.

From this aspect, all the contributions from the pre-computer
ages worked within their original scientific discipline: Poincaré,
Birkhoff, Lefschetz, Chern, Spanier, and Thom were mostly acting as
mathematicians and were recognized as such. Andronov was work-
ing in engineering (anticipating control theory). Nevertheless, a few
cases deserve some specific comments. Poincaré is commonly rec-
ognized as one of the last “universalists,” able to address various
problems whose nature was very different.192 His epistemological
break was to switch from analytical investigations of approximated
solutions to differential equations to the qualitative properties of a
set of solutions in the state space. René Thom, once he received
his Field Medal, felt free to promote a holistic approach of dynam-
ical processes, evolving strong influences from Thompson193 and
Dirac194 for developing his catastrophe theory: it would be hard
to categorize this contribution. Although clearly connected to the
NDS theory, as clearly testified in most of the recollections. Edward
Lorenz, who was a meteorologist with a strong background in math-
ematics (his former academic background), switched from mathe-
matics to meteorology during his military service.195 Nevertheless,
his 1963 contribution10 is neither a rupture with other meteoro-
logical papers nor in continuation of them since he addressed an
old problem—accuracy in weather forecasting—which dates back to
Bjerknes196 and Richardson,197 although the way he treated it was
particularly new. It was a more important epistemological break for
the NDS theory than for a meteorologist (its impact on the field
from where it is issued can be compared with Poincaré’s méth-
odes nouvelles in celestial mechanics:8 strong in NDS theory but
less significant in astronomy). The epistemological break is this new
combination of mathematical analysis (stability analysis, bound-
edness, periodic and aperiodic orbits, symbolic analysis of simple
maps) with some numerical simulations (state portraits, isopleths,
first-return map to a Poincaré section).10 The impact of the contribu-
tions by Poincaré and Lorenz is more important at the interpretation
level than for constructing predictive models.

In our view, Lorenz’s 1963 contribution is a clear synthesis of
the so-called “chaos program,” which complements Smale’s pro-
gram as mentioned by R.A. Smale’s program belongs to the field
of mathematics where contributors most often did not use numeri-
cal simulations: they propose theorems that they prove analytically.
The chaos program is built mostly on numerical data for vali-
dating heuristic theory (based on some presupposed assumptions)
as experimentalists use their measurements for validating a the-
ory based on presupposed assumptions. The chaos program still
belongs to the NDS theory but cannot be considered, stricto sensu,
mathematics. It can also not be considered physics, engineering,
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FIG. 16. Some influences between contributors based on some testimonies
from Secs. II–XIV, The graph is organized for the sake of simplicity. The arrows
(− · −·) correspond to the introduction of numerical simulations. The three bold
arrows to Rössler are influences—through direct meetings—before 1975.

or computer science. This automatically means that the chaos
paradigm is part of the NDS theory, issued from mathematics, but
it is not recognized as part of mathematics. This explains why, still
today, more than 50 years after its birth, “chaos” is a field of scien-
tific activity that is, most often, combined with a classical field (fluid
mechanics, radiophysics, plasma, optics, chemistry, ecology, physi-
ology, economy, etc.). As an example, a section in Nonlinear Physics
from the French Physical Society (SFP) was established as late as
in 2021, but, from its name, it is restricted to physics; nonlinear
dynamics would have been a far better name.

The first wave of key contributors to the NDS theory—from
the pre-computer ages—is mostly from mathematics, although some
of them also contributed to other fields (Poincaré, Thom, Lorenz,
Ruelle), and they continued to contribute in mathematics. In the
second wave, here associated with those who introduced numeri-
cal simulations in their methodology (identified by dashed–dotted
lines in Fig. 16) are from various fields (physics, chemistry, engi-
neering, but also mathematics) as shown in Fig. 17, and their works
would be more easily categorized in “chaos” rather than in the field
of their initial academic background. Some of them even changed
the field of their activities (I.T. from physics to chemistry, L.G. from
chemistry to physiology, P.H. from engineering to math). Most of
them may eventually publish time to time outside the scientific dis-
ciplines. This lack of specific discipline is in fact another source of
confusion: the techniques developed can be applied to any system of
differential equations: it is irrelevant to know from where the equa-
tions are coming (until an interpretation is needed). A given scientist
can equally contribute to understand the dynamics of an ecosystem
and of a pulsating star.

Among the contributors to the present paper, there is an atyp-
ical case: Rössler. Graduated in medicine, he never became a physi-
cian and switched first to behavioral biology (Konrad Lorenz) and to
theoretical biology (Robert Rosen).65 With his background in elec-
tronics as a radio-amateur during his teenage years, he started his
career in teaching numerical simulations in chemistry (Tübingen).
Before 1976, in the continuation of Rosen’s approach, he met Thom,

FIG. 17. Distribution of the scientists by their scientific disciplines (mathemat-
ics, physics, chemistry, and physiology). The central dashed circle represents
the branch “chaos” issued from the NDS theory. In bold are the contributors of
the first wave who influenced Rössler. Arrows indicate a change in their scientific
disciplines.

Smale, read Andronov’s book, and exchanged ideas with Art Win-
free and R.A. within the paradigm of the NDS theory. He was already
publishing in the “chaos” paradigm before 1976 since already using
numerical simulations, even though the behaviors investigated were
exclusively periodic or quasiperiodic.61,198 Earlier contributors did
that too as, for instance, Bonhöffer,199 FitzHugh,200 and Hayashi.201

Rössler used only rarely his medical background during the com-
pletion of his chaos program between 1976 and 1983: it is thus
absent from his “book” written in the early 1980s and only recently
published.202 In that way, Rössler could be hardly associated with one
of the classical scientific disciplines. He was influenced from differ-
ent scientific disciplines, and, in turn, he influenced many people
working in chemistry, biology, and physiology.

In conclusion, chaos is a branch of nonlinear dynamical sys-
tems theory that relies on numerical simulations for validating
developed rationales (note that we do use neither “theorem” nor
“proof”). This is an orphan branch of scientific research in the
sense that it can hardly be associated with any classical field. This
is eventually due to its abstract nature as well illustrated by Pecora’s
words,

“Of course, this brings a problem at dinner parties when peo-
ple ask you what you do. Answering Nuclear Physics, Plant Biology,
Chemistry, Astronomy, Ecology, will bring at least nods of (a dim)
understanding of what you do. But saying Nonlinear Dynamics or,
equally the exotic sounding Chaos Theory will bring blank stares and
a rush to have the others refresh their drinks.”

In spite of these humorous words, there is clearly a corpus of
contributions (Poincaré, Smale, Thom, Lorenz, Chirikov, Ruelle-
Takens, etc.) from which it emerged. As clearly seen by the different
recollections provided, the path to be “initiated” is not unique, and,
as for every scientific field, there are many ways to contribute to the
development of chaos and, more widely, to the nonlinear dynami-
cal systems theory. Each of these paths is based on the interactions
and influences of scientists while drinking a coffee or a beer, eating
a pizza, or trekking in mountains. This is what web-mediated inter-
actions do not allow and why in-person conferences are absolutely
needed.
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