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Abstract
We investigate the phenomenon of stochastic bursting in a noisy excitable unit with multiple weak delay feedbacks, by virtue
of a directed tree lattice model. We find statistical properties of the appearing sequence of spikes and expressions for the
power spectral density. This simple model is extended to a network of three units with delayed coupling of a star type. We find
the power spectral density of each unit and the cross-spectral density between any two units. The basic assumptions behind
the analytical approach are the separation of timescales, allowing for a description of the spike train as a point process, and
weakness of coupling, allowing for a representation of the action of overlapped spikes via the sum of the one-spike excitation
probabilities.
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1 Introduction

Bursting, which plays an important role in neuronal com-
munication and synchronization, refers to a dynamical state
where a neuron repeatedly fires a relatively regular finite
sequence spikes; bursts are separated by epochs where the
neuron is in a resting state (Izhikevich 2000; Coombes and
Bressloff 2005). Bursting is observed in neurons of differ-
ent types, such as in neocortex (Connors and Gutnick 1990),
hippocampus (Dzhala and Staley 2004; Su et al. 2001) and
cerebellum (Womack and Khodakhah 2002); see the classifi-
cation in (Izhikevich 2006b). In many situations, bursting is
an intrinsic property of a neuron, following from the partic-
ular properties of its native dynamics. Correspondingly, the
theory of such bursting is based on the bifurcation theory of
dynamical systems (Izhikevich 2000; Rinzel 1987; Channell
et al. 2007).
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In our previous works (Zheng and Pikovsky 2018, 2019),
we have demonstrated that a coherent spike pattern,whichwe
call stochastic bursting, can appear in simple excitable units
due to the combined effect of time-delayed feedback and
noise. Noise plays a twofold role in the stochastic bursting.
On the one hand, it leads to spontaneous appearance of quite
rare statistically independent spikes. On the other hand,when
a delayed feedback pulse enters like an excitatory under-
threshold kick (i.e., a weak kick that itself without noise does
not produce a new spike), noise results in an increased prob-
ability to create a new induced spike. Thus, a spontaneous
spike (the leader) can be followed by a sequence of induced
spikes (the followers) separated approximately by the delay
time interval. Because the creation of a follower is a random
event due to noise, the overall burst has a random number of
spikes. We described stochastic bursting statistically in the
case of a single excitable unit (Zheng andPikovsky 2018) and
for networks of unidirectionally delay-coupled units (Zheng
and Pikovsky 2019). What these two cases have in com-
mon, is that any two delay-induced kicks do not overlap. This
allowed for a full statistical description of the bursting as a
point process, where the only parameters are the spontaneous
rate of excitation and the probability to excite a follower. The
point process model is an idealization based on the timescale
separation: It is assumed that the characteristic duration of
a spike is much less than other characteristic times in the
system, the delay time and the characteristic time interval

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00422-021-00883-9&domain=pdf
http://orcid.org/0000-0001-9682-7122


Biological Cybernetics

Fig. 1 Schematic description of a noisy excitable unit with two feed-
back loops

between the pulses (which depends on the spontaneous rate
and the probability of induced spikes).

However, it becomes more challenging when neurons
have multiple feedback or more complex coupling topol-
ogy, where two or more delay-induced spikes could overlap.
Such an overlap of incoming spikes in a purely deterministic
setup let E. Izhikevich to introduce the concept of polychro-
nization (Izhikevich 2006a). Specific polychronous patterns
are determined by combinations of delay time. They appear
if, for a reliable excitation, superposition of delay-induced
kicks is favorable. Here, below we treat the effect of overlap
of incoming kicks in a stochastic setting, assuming that the
probability to induce a spike increases if two kicks overlap.

Similar to the previously studied cases of stochastic burst-
ing (and generally for systems with noise and delay), the
process under study is non-Markovian, which prevents using
the powerful Fokker–Planck formalism to obtain analytic
results. Thus, we adopt the point-process representation as
a good option to describe the statistics of the spike train in
each neuron and between different neurons, if timescale sep-
aration holds.

In the present paper, we extend the theory of stochas-
tic bursting to the case where incoming delayed pulses can
overlap. Here, generally, one needs to define the probabil-
ity to induce a spike by two incoming pulses. We restrict
our attention below to the case of weak coupling, where this
probability can be represented through one-pulse probabil-
ities. This allows for an analytical treatment, which results
in explicit expressions for the power spectrum of the spike
trains. First, in Sect. 2, we investigate the stochastic burst-
ing phenomenon in a noisy excitable unit with multiple delay
feedbacks. Then, in Sect. 3, we extend the theory to a network
of three delay-coupled units, with a star-type coupling.

2 One excitable unit withmultiple delayed
feedbacks

Themain goal of this paper is to extend the theory of stochas-
tic bursting to the situations where an overlap of delayed
feedback pulses is possible. The simplest case is one unit
with two delayed feedbacks, as shown in Fig. 1. (In one unit
with one delay, the incoming pulses cannot overlap.) As we
see in Sect. 3, the hub unit (unit 2 in Fig. 6) in a star-type

network possesses two or several feedback loops with dif-
ferent delays and is thus similar to the simplest setup of this
section. As a model, we consider a scalar equation on a circle
0 ≤ θ < 2π , which is a prototypical example of excitability:

θ̇ = a + cos θ + ε1(a + cos θ(t − τ̂1))

+ ε2(a + cos θ(t − τ̂2))

+ ξ(t).

(1)

Here, parameter a � 1 defines the excitability level and
parameters ε1 and ε2 are coupling strengths for the two
delayed feedbacks with delay times τ̂1 and τ̂2, respectively.
The system is driven by a Gaussian white noise ξ(t) with
intensity D, i.e., 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t ′)〉 = 2Dδ(t − t ′). By
direct simulation of the Langevin equation (1) using Euler–
Maruyama scheme with time step Δt = 0.01, we observe
rather coherent spiking which we call stochastic bursting in
the spike train, as shown in Fig. 2a.

Without feedback (i.e., for ε1 = ε2 = 0), the model is
equivalent to the well-known models of active rotators (Shi-
nomoto and Kuramoto 1986) and to the popular theta model
(Ermentrout and Kopell 1986). For a < 1, there are two
steady states, one stable and one unstable. Noise drives the
state of the system beyond the unstable steady state, and a
rotation around the circle back to the stable state occurs; this
rotation is indicated as a spike. To find statistics of the spikes,
one formulates the Fokker–Planck equation for the evolution
of the probability density of a noisy unit obeying Eq. (1) as
follows:

∂ P̂(θ, t)

∂t
= − ∂

∂θ

[
(a + cos θ)P̂(θ, t)

]
+ D

∂2 P̂(θ, t)

∂θ2
. (2)

The stationary solution of (2) is

P̂st (θ) = C
∫ θ+2π

θ

dψ

D
e− ∫ ψ

θ
a+cosϕ

D dϕ. (3)

Here, C is a normalization constant. The probability current
across threshold yields the rate of spontaneous spike excita-
tions:

λ = C
(
1 − e− ∫ 2π

0
a+cos θ

D dθ
)

. (4)

Belowwewill assume this rate to be small, i.e., the character-
istic time interval between the noise-excited spikes is much
larger than the duration of the spikes. Below we will also
assume that this separation of times is valid for characteristic
times of the delayed feedback: The delay times τ̂1, τ̂2 and
their difference |τ̂1 − τ̂2| are much larger than the duration
of a pulse.

Wenowqualitatively describe thephenomenonof stochas-
tic bursting illustrated in Fig. 2. If just one delay feedback
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Fig. 2 Spike train (a) of a neuron (1) with two feedback signals, with
values of parameters chosen as a = 0.95, D = 0.005, ε1 = 0.12, τ̂1 =
500, ε2 = 0.1 and τ̂2 = 600. Zooming in a burst shows many spikes
with interspike interval of around 500 and 600. (b) Representation in
directed tree lattice, where the cross-position of the lattice, i.e., kτ1+lτ2
with k, l being non-negative integers, represents where there is poten-
tially a delay-induced spike with some probability P(kτ1 + lτ2). The
blue numbers near the intersection kτ1 + lτ2 are the number of paths to
go to that point, i.e.,

(k+l
k

)
in Eq. (7)

term is present, the bursting appears as described in Zheng
and Pikovsky (2018). Because, after a pulse, a feedback force
acts as a kick on the unit after delay time τ̂ , there is an
increased probability p for a next pulse to be induced. Thus,
each spontaneously excited pulse can have a random num-
ber of “followers” separated by a time interval τ = τ̂ + τr ;
together, they constitute a regular burst. Here, we take into
account that the delay-induced effect is not instant, but rather
it takes some relatively small response time τr for the unit to
generate a spike after receiving a delayed kick, as described
in Ref. Zheng and Pikovsky (2019). Generally speaking, the
delay-induced spike occurs with some deviation around the
effective time delay, i.e., not exactly at t + τ̂ + τr , but for
simplicity, we assume the deviation can be ignored. The

essential parameter of the stochastic bursting is the proba-
bility p to induce a follower, and we discussed in Ref. Zheng
and Pikovsky (2018) the ways to calculate it.

In the case of two delayed feedback signals, after a spon-
taneous pulse at time t , there are two times t + τ1 and t + τ2
at which the followers can appear independently, with prob-
abilities p1 and p2, and these probabilities are the same as
for single time-delay feedbacks, as shown schematically in
Fig. 2b. However, at the next level, there is an interaction
of delayed kicks, which makes the problem essentially more
difficult than that of one delayed feedback. Below in this
paper we will assume that times τ1 and τ2 are incommensu-
rate. Thus, we exclude resonances like τ1 = 2τ2, which will
be treated in a separate work. We stress here that practically,
becausewe consider relativelyweak feedback, the number of
spikes in a burst is not large. This means that “incommensu-
rability” should be understood in a weak sense—as absence
of resonances mτ1 = nτ2 with small integers m, n.

If both followers at times t + τ1 and t + τ2 are present,
at time t + τ1 + τ2 there will be an overlap of two incoming
feedback kicks. Generally, there are many such overlaps pos-
sible, at times t + kτ1 + lτ2 with k and l being both positive
integers. (Here, due to incommensurability mentioned, for
each overlap there is only one pair of the integers k, l which
yields it.) Thus, another probability p(2) to induce a spike
mediated by the overlap of two incoming kicks is needed.
Generally, one must calculate this probability de novo. One
may employ methods similar to those used for determining
p1 and p2. However, when the two feedbacks are both weak
and independent, we can assume a linear dependence of the
probability to induce a follower on the incoming pulse ampli-
tude, which makes an approximation p(2) ≈ p1 + p2, to be
adopted below, reasonable.

It is easy to see that potential followers of a sponta-
neous spike form a tree, as illustrated in Fig. 2b. On this
tree, there can be non-branching paths, which correspond
just to sequences of followers separated by time intervals
τ1,2, which appear with probabilities p1,2. However, any
branching leads to an overlap, so we use p(2) to calculate
the probability to observe the corresponding induced spike.
We note here that the considered stochastic model is not a
standard branching process, because of the overlaps.

It is instructive to start with the simplest overlap at time
τ1+τ2. The probability to induce a spike at t = τ1+τ2 given
a spike at t = 0, i.e., P̃(τ1 + τ2), can be calculated as

P̃(τ1 + τ2) = (1 − p2)p1 p2 + (1 − p1)p1 p2 + p1 p2 p
(2)

≈ 2p1 p2.
(5)

Here, the first line in Eq. (5) describes contributions of dif-
ferent configurations with corresponding probabilities, as
shown in Fig. 3a–c.
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Fig. 3 Configurations and the corresponding probability to induce a
spike at the cross section τ1 + τ2 (a)–(c) and 2τ1 + τ2 (d)–(j) of the
lattice shown in Fig. 2b

Similarly, we can calculate the probability to induce a
spike at the time-delayed instant 2τ1 + τ2 as

P̃(2τ1 + τ2) = (1 − p1)p
2
1 p2 + (1 − p1)(1 − p2)p

2
1 p2

+ (1 − p2)(1 − p2)p
2
1 p2 + p21 p2 p

(2) p(2)

+ (1 − p2)p
2
1 p2 p

(2) + p1 p2(1 − p(2))p1 p2

+ p1 p2 p
(2)(1 − p1)p1

≈ 3p21 p2.

(6)

The corresponding configurations and their probabilities are
shown in Fig. 3d–j.

Now, by induction, it is easy to extend to the general case.
One can easily check that the general expression

P̃(kτ1 + lτ2) ≈
(
k + l

k

)
pk1 p

l
2 (7)

is consistent with calculation of the induced probability
P̃(kτ1 + lτ2) on the base of the “parent” probabilities
P̃((k − 1)τ1 + lτ2) and P̃(kτ1 + (l − 1)τ2). By iteration
of the relationship

P̃(kτ1 + lτ2)

= (1 − P̃(kτ1 + (l − 1)τ2))P̃((k − 1)τ1 + lτ2)p1

+ (1 − P̃((k − 1)τ1 + lτ2))P̃(kτ1+(l−1)τ2)p2

+ P̃((k − 1)τ1 + lτ2)P̃(kτ1+(l−1)τ2)(p1+ p2)

= P̃((k − 1)τ1 + lτ2)p1 + P̃(kτ1 + (l − 1)τ2)p2

(8)

on the directed tree lattice, it is easy to obtain Eq. (7). We
stress that expression (7) is valid only under assumption
p(2) ≈ p1 + p2; in a general case p(2) �= p1 + p2, we
could not derive a simple expression for these probabilities.

Having determined the probabilities of the followers, we
nowderive statistical properties of the bursts. To calculate the
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Fig. 4 Spike rate of the single excitable unit with two delayed feed-
backs, where ε1 is set to be 0.12 and ε2 is varied. The blue circles
represent the result by direct simulation of Eq. (1), and the red dashed
line represents the analytical result described by Eq. (9). Here, τ1 and
τ2 are chosen as 500 and 600, respectively

total firing rate μ, we have to determine the average number
of spikes in a burst. The probability to have k spikes with τ1
separation and l spikes with τ2 separation in the burst is the
product of P̃(kτ1+lτ2) and probability 1− p1− p2, which is
the probability to generate no spikes further. Thus, the total
firing rate is

μ = λ(1 − p1 − p2)
∑
k,l

P̃(kτ1 + lτ2)(k + l)

≈ λ

1 − p1 − p2
.

(9)

We check this relation numerically in Fig. 4. Throughout
the paper, the values of parameters for a and D are fixed
as a = 0.95 and D = 0.005. This yields the spontaneous
spike rate λ = 6.64 × 10−4, as calculated from Eq. (4). The
probabilities to induce a spike can be calculated by virtue
of solving a forced Fokker–Planck equation numerically as
described in Ref. Zheng and Pikovsky (2018). For the delay
coupling amplitudes ε = 0.1 and ε = 0.12, this gives values
p = 0.25 and p = 0.39, respectively. Furthermore, in this
case, the empirical value of the response time τr is approx-
imately τr ≈ 7. In Fig. 4, we set the value of ε1 fixed, i.e.,
ε1 = 0.12 and thus p1 = 0.39, and vary the strength of the
second feedback ε2. As shown in Fig. 4, the analytic result
described by Eq. (9) predicts well the spike rate when ε2 is
small and moderate; deviations appear for large values of ε2.

Our next goal is to calculate correlations and spectra of
stochastic bursting in this system. The autocorrelation func-
tion C(s) can be represented in terms of the joint probability
to have a spike in the time interval (t, t + Δt) and a spike in
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the time interval (t + s, t + s + Δt):

C(s) = 1

T

∫ T

0
dt lim

Δt→0

P(t, t + Δt; t + s, t + s + Δt)

Δt2
.

(10)

Since the joint probability P(t, t+Δt; t+s, t+s+Δt) is the
product of the probability to fire a spike in the time interval
[t, t + Δt], i.e., μΔt , and the conditional probability to fire
a spike within the time interval [t + s, t + s + Δt] given a
spike at time t (see also Ref. Zheng and Pikovsky 2019), i.e.,∑

k,l P̃(kτ1 + lτ2)δ(s ± (kτ1 + lτ2))Δt , we obtain by using
expression (7)

C(s) = μ
∑
k,l

P̃(kτ1 + lτ2)δ(s ± (kτ1 + lτ2))

≈ μ
∑
k,l

(
k + l

k

)
pk1 p

l
2δ(s ± (kτ1 + lτ2)).

(11)

The Fourier transform of the correlation function gives the
power spectrum:

S(ω) =
∫ ∞

−∞
ds C(s)e−iωs

≈μ
∑

k,l;k+l>0

(
k + l

k

)
pk1 p

l
2e

ikωτ1+ilωτ2 +c.c.+μ

=μ

∞∑
m=0

(p1e
iωτ1 + p2e

iωτ2)m + c.c. − μ =

=2Re

(
μ

1 − p1eiωτ1 − p2eiωτ2

)
− μ.

(12)

We compare this theoretical prediction with the results of
numerical simulation in Fig. 5a.

Using the same method, a noisy excitable unit with m
delays described by the following Langevin equation

θ̇ = a + cos θ + ε1(a + cos θ(t − τ̂1)) + · · ·
+ εm(a + cos θ(t − τ̂m)) + ξ(t)

(13)

can be studied. Here, the total spike rate can be expressed as

μ = λ/(1 −
m∑
l=1

pl), where pl is the probability to induce a

spike by the delay feedback with strength εl and time delay
τ̂l . (We remind that we consider only the case of a weak
feedback, where all pl are small.) The power spectral density
of the corresponding spike train is described by the following
formula:

S(m)(ω) ≈ 2Re

⎛
⎜⎜⎝

μ

1 −
m∑
l=1

pleiωτl

⎞
⎟⎟⎠ − μ, (14)
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Fig. 5 Power spectral density of a noisy excitable unit with a two-
delay feedback and b three-delay feedback. For the direct simulation
of Eq. (1) (blue lines), the parameters are chosen as ε1 = 0.12, τ̂1 =
500, ε2 = 0.1, τ̂2 = 600 in two-delay case and ε1 = ε2 = ε3 =
0.1, τ̂1 = 300, τ̂2 = 430, τ̂3 = 500 for Eq. (13) in three-delay case.
The red lines are the analytic results described by Eq. (12) for two-delay
case and Eq. (13) for three-delay case. The power spectral density of
the spike train is multiplied by the power spectral density of the shape
function (color figure online)

Fig. 6 Schematic description of three delay-coupled noisy excitable
units in a chain, where pi j is the probability to induce a spike due to
delay feedback with strength εi j and time delay τi j

where τl = τ̂l + τr . Since the condition of timescale sepa-
ration becomes harder to fulfill for large m (one needs the
time intervals between pulses to be large), practically only
the case m = 3 is tested in Fig. 5b.

As shown in Fig. 5a, b, the analytic results described by
Eq. (12) for two delayed feedbacks and Eq. (14) for three
delayed feedbacks agree well with the direct simulation of
the Langevin Eqs. (1) and (13), respectively.

3 Delay coupling in a chain of three units

Here, we use the approach above to study a network of three
delay-coupled noisy excitable units. The scheme of coupling
is presented in Fig. 6, i.e., it is a star-type network with a
central unit 2 (a hub) coupled to peripheral units 1 and 3.
As is clear from Fig. 6, there are four delay times and four
probabilities to induce a follower.

123



Biological Cybernetics

The Langevin equations, describing this network, read

θ̇1 = a + cos θ1 + ε21(a + cos θ2(t − τ̂21)) + ξ1(t),

θ̇2 = a + cos θ2 + ε12(a + cos θ1(t − τ̂12))

+ ε32(a + cos θ3(t − τ̂32)) + ξ2(t),

θ̇3 = a + cos θ3 + ε23(a + cos θ2(t − τ̂23)) + ξ3(t).

(15)

Here, εi j (i, j = 1, 2, 3) is the delay feedback strength from
unit i to unit j with delay time τ̂i j , and ξi (t)(i = 1, 2, 3)
is the Gaussian white noise in unit i with 〈ξi (t)〉 = 0,
〈ξi (t)ξ j (t ′)〉 = 2Dδi jδ(t − t ′). In the absence of delay feed-
back, i.e., εi j = 0, the three units fire spontaneously with
constant rates λi (i = 1, 2, 3), described by Eq. (4). For sim-
plicity, the noise intensities here in the three units are chosen
to be the same. When the delayed feedback is included, i.e.,
εi j �= 0, each spontaneous spike in unit 1 will induce another
spike in unit 2 with probability p12 after time delay τ12, and
the induced spike in unit 2 will generate spikes in unit 1 with
probability p21 after time delay τ21 and in unit 3 with proba-
bility p23 after time delay τ23. Here, τi j includes the response
time, i.e., τi j = τ̂i j + τr .

Thus, each spontaneous spike,which plays a role of leader,
is followed by random number of induced spikes (follow-
ers) across the network. Noteworthy, the above description
is based on timescale separation as described in Sect. 2. The
relation to themodel of one excitable unit with two feedbacks
described in Section 2 is evident when one considers effec-
tive feedbacks from unit 2 to itself: There are two effective
delay feedback channels, one with the probability p21 p12
and time delay τ21 + τ12 to induce a spike back into unit 2
itself through unit 1 and the other one through unit 3 with
probability p23 p32 and time delay τ23 + τ32. Therefore, the
total spike rate of unit 2 can be represented as

μ2 = λ2 + p12λ1 + p32λ3
1 − (p21 p12 + p23 p32)

. (16)

Here, the numerator λ2 + p12λ1 + p32λ3 represents the total
rate of first spikes in a burst in unit 2. These are spikes initiated
spontaneously in unit 2 (rateλ2), and thefirst followers in unit
2 of spikes spontaneously created in units 1 and 3 (rates p12λ1
and p32λ3, respectively). The denominator in (16) comes
from the same summation as in Eq. (9).

Similarly, we can express the total spike rateμ1 of neuron
1 as

μ1 = λ1 + μ2 p21

= λ1 + λ2 + p12λ1 + p32λ3
1 − (p21 p12 + p23 p32)

p21,
(17)

since the leading spikes in unit 1 are either the spontaneous
ones created in unit 1, or induced from total spikes of unit 2.
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Fig. 7 Power spectral density of neurons 1 (a), 2 (b) and 3 (c) in a chain
of three delay-coupled noisy excitable neurons. Values of parameters
are ε1 = ε2 = ε3 = 0.12, τ12 = 350, τ21 = 300, τ23 = 300, τ32 =
400, a = 0.95 and D = 0.005. Noteworthy, all the power densities
are multiplied by the power spectral density of the shape function SH ,
similar to Ref. Zheng and Pikovsky (2018, 2019). Blue lines: theory;
red lines: analytic results (color figure online)

For unit 3, the total rate is

μ3 = λ3 + μ2 p23

= λ3 + λ2 + p12λ1 + p32λ3
1 − (p21 p12 + p23 p32)

p23.
(18)

Using the same method as described in Sect. 2, we can
write the power spectral density of a spike train in unit 2 as

S2(ω) ≈ 2Re

(
μ2

1 − p̄1eiωτ̄1 − p̄2eiωτ̄2

)
− μ2, (19)

where p̄1 = p21 p12, τ̄1 = τ21 + τ12, p̄2 = p23 p32 and
τ̄2 = τ23 + τ32. Similarly, taking into account all the delayed
feedback loops connecting neuron 1, we obtain the power
spectral density of neuron 1 as follows:

S1(ω) ≈ 2Re[ μ1

1 − ( p̄1eiωτ̄1 + p̄1 p̄2eiωT
∑
n>0

( p̄2eiωτ̄2)n)
]

− μ1

= 2μ1Re

(
1 − p̄2eiωτ̄2

1 − p̄1eiωτ̄1 − p̄2eiωτ̄2

)
− μ1.

(20)

Here, we denote T = τ̄1 + τ̄2 in the first line, and the term
p̄1 p̄2eiωT

∑
n>0

( p̄2eiωτ̄2)n is due to the summation of all the

feedback loops starting from neuron 1, connecting neuron 2
and 3 and then going back to neuron 1. By the same method,
the power spectral density of neuron 3 is

S3(ω) ≈ 2μ3Re

(
1 − p̄1eiωτ̄1

1 − p̄1eiωτ̄1 − p̄2eiωτ̄2

)
− μ3. (21)
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We compare these expressions with the results of direct
numerical simulations of model (15) in Fig. 7a–c.

For networks of coupled units, it is instructive to calculate
cross-correlations and cross-spectra. The cross-correlation
between neuron 1 and 2 can be described in terms of the
joint probability P12(t, t + Δt; t + s, t + s + Δt) that there
are a spike in the time interval (t + Δt) in neuron 1 and a
spike in the time interval (t + s, t + s +Δt) in neuron 2 (see
also Ref. Zheng and Pikovsky 2019), i.e.,

C12(s) = lim
Δt→0

P12(t, t + Δt; t + s, t + s + Δt)

Δt2

= μ1 p12
∑
k,l

P̃(kτ̄1+l τ̄2)δ(s − (kτ̄1+l τ̄2+τ12))

+ μ2 p21
∑
k,l

P̃(kτ̄1

+ l τ̄2)δ(s + (kτ̄1 + l τ̄2 + τ21)).

(22)

Here, P̃(kτ̄1+l τ̄2) is the probability to induce a spike at time
kτ̄1 + l τ̄2 after a spike, and according to Eq. (7), it is

P̃(kτ̄1 + l τ̄2) ≈
(
k + l

k

)
p̄k1 p̄

l
2. (23)

Substituting Eq. (23) into Eq. (22), we obtain the cross-
correlation function

C12(s) ≈ μ1 p12
∑
k,l

(
k + l

k

)
p̄k1 p̄

l
2δ(s − (kτ̄1+l τ̄2+τ12))

+ μ2 p21
∑
k,l

(
k + l

k

)
p̄k1 p̄

l
2δ(s + (kτ̄1

+ l τ̄2 + τ21)).

(24)

The cross-spectral density between neurons 1 and 2 is just
Fourier transform of the cross-correlation function, i.e.,

S12(ω) =
∞∫

−∞
Ci j (s)e

−iωsds

≈ μ1 p12e−iωτ12

1 − p̄1e−iωτ̄1 − p̄2e−iωτ̄2

+ μ2 p21eiωτ21

1 − p̄1eiωτ̄1 − p̄2eiωτ̄2
.

(25)

As shown in Fig. 8 (see panels (a) and (b) for the real and
the imaginary parts of the cross-spectral density), the analytic
results agree well with direct simulation of Eq. (14).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.06

0
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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ω
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�{S12(ω)}
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Fig. 8 Real part (a) and imaginary part (b) of the cross-spectral den-
sity between neurons 1 and 2 in a chain of three delay-coupled noisy
excitable neurons. Values of parameters are chosen the same as in Fig. 7.
Noteworthy, the cross-spectral densities are alsomultiplied by the power
spectral density of the shape function SH as in Fig. 7. Blue lines: theory;
red lines: analytic results (color figure online)

4 Conclusion

In summary, we investigated stochastic bursting in a single
noisy excitable unit with multiple feedbacks and in a star-
type network of three delay-coupled units. Both systems are
the simplest examples of a neural network with an overlap
of incoming spikes. In the deterministic case, this leads to
polychronization (Izhikevich 2006a); in this sense, stochas-
tic bursting in such a network may be referred to as noisy
polychronization.

Our analysis is based on two approximations. One is that
of timescale separation, valid for weak noise and large delay
times. It allows us for modeling the process as a point one,
so that only time instants of spikes are relevant for corre-
lations and spectra. Another approximation is based on the
assumption that the induced probabilities are small, and the
probability for two overlapping inputs to induce a spike can
be represented as a sum of the corresponding one-input prob-
abilities. This latter assumption appeared to be extremely
helpful, as it allowedus to express the probabilities of induced
spikes in a simple closed form. We would like to point out
that our analysis does not rely specifically on the theta model
but is generally applicable to any excitable unit as long as
the assumptions above (most important is that of separation
of timescales) are met. Once the spontaneous firing rate and
probabilities of generating of followers are known, the calcu-
lations of the total firing rate of each unit and of the pairwise
correlations are straightforward.

As a result of our analysis, the spectra of the point stochas-
tic bursting process have been analytically represented in a
closed form. These power spectral and cross-spectral densi-
ties (12), (14) and (20–21) agree well with direct simulation
of the original Langevin equations (1), (13) and (15). A gen-
eral structure of the analytic expressions is the same: It yields
a power spectrumwith peaks at the delay times; the strengths
of these peaks are roughly proportional to the corresponding
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probabilities to create a noise-induced follower. Remarkably,
the cross-spectrum (25) has not a peak form, but rather looks
like modulated oscillations, where characteristic modulation
periods are the partial delays between the units.

Our approach works well for small numbers of interacting
units and small numbers of feedback loops, because here
the timescale separation is well justified. In a network with
a large number of units and many connections, the spikes
become denser, and the point process approximation might
be violated. Similarly, for strong feedbacks the probability
to induce a spike by overlapping inputs will be a non-trivial
quantity (not a sum of one-input probabilities) as well.

At this point, we would like to mention several relevant
studies of correlations in noisy neural networks. Pernice et al.
(2011) investigated the pairwise correlation in networks of
neuronswith both excitatory and inhibitory interaction, based
on the linear Hawkes processes. Trousdale et al. (2012) ana-
lyzed how the network structure influences the correlations
based on the linear response theory (Lindner et al. 2005).
There are also more sophisticated methods to investigate
high-order correlations (Jovanović and Rotter 2016; Ocker
et al. 2017). It would be interesting to consider the high-
order statistics of stochastic bursting in the framework of the
present model.

From the viewpoint of applications, we would like to
mention that correlation functions of the spike trains are an
important indicator of neural code in computational neu-
roscience (De La Rocha et al. 2007; Doiron et al. 2016;
Nirenberg and Latham 2003). Our analytic results could be
potentially compared with observed correlations and spectra,
shedding light on the origin of observed correlations. In this
context, it appears especially helpful that the basic expres-
sions describing the spectral properties like (12), (14) and
(25) contain only a few parameters. Therefore, experimen-
tally observed spectra could be easily fitted to the derived
analytic forms.
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