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Abstract. Topic and aim. Synchronization in populations of coupled oscillators can be characterized with order parameters
that describe collective order in ensembles. A dependence of the order parameter on the coupling constants is well-known for
coupled periodic oscillators. The goal of the study is to extend this analysis to ensembles of oscillators with chaotic phases,
moreover with phases possessing hyperbolic chaos. Models and methods. Two models are studied in the paper. One is an
abstract discrete-time map, composed with a hyperbolic Bernoulli transformation and with Kuramoto dynamics. Another
model is a system of coupled continuous-time chaotic oscillators, where each individual oscillator has a hyperbolic attractor
of Smale-Williams type. Results. The discrete-time model is studied with the Ott-Antonsen ansatz, which is shown to be
invariant under the application of the Bernoulli map. The analysis of the resulting map for the order parameter shows, that the
asynchronouis state is always stable, but the synchronous one becomes stable above a certain coupling strength. Numerical
analysis of the continuous-time model reveals a complex sequence of transitions from an asynchronous state to a completely
synchronous hyperbolic chaos, with intermediate stages that include regimes with periodic in time mean field, as well as with
weakly and strongly irregular mean field variations. Discussion. Results demonstrate that synchronization of systems with
hyperbolic chaos of phases is possible, although a rather strong coupling is required. The approach can be applied to other
systems of interacting units with hyperbolic chaotic dynamics.
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Annomayusn. Tema u yenp. CHHXPOHU3ALUS B TIONMYJISLUSAX CBA3aHHBIX OCIMJUIATOPOB MOXKET OBbITh OXapaKTepH30BaHa Ma-
paMeTpamu MOpsaKa, ONUCHIBAIONIMMH KOJJIGKTHBHBIH MOPSAIOK B aHCaMOJIsIX. 3aBUCHMOCTB HapaMeTpa mopsiika oT koddhu-
LMEHTOB CBS3M XOPOLIO U3BECTHA JUISl CBSI3aHHBIX IIEPUOANYECKUX OCHMILIATOPOB. Lleblo TaHHOTO HCCIIEeNOBAHMUS SIBISIETCS
00001IeHHe 3TOr0 aHajIM3a Ha aHCAaMONIM OCLHMJUIITOPOB C XaOTHYECKUMH (ha3aMu, a MMEHHO, ¢ (azamu, pacupeneaéHHbI-
MH Ha THIIEpOOIHYEcKOM arrpakrope. Modenu u memoosi. B pabore nccnemyrorcs nse monenu. Ilepsas — abGcTpakTHOe
oToOpakeHHe B IUCKPETHOM BPEMEHH, COCTaBICHHOE U3 rumepbomdeckoro npeodpasosanus beprymm u nunamuku Kypa-
MoTO. BTOpast — 3To cucTeMa CBSI3aHHBIX XaOTHYECKHX OCHWUIATOPOB B HENPEPHIBHOM BPEMEHH, e KaKABIA OTIEIBHBII
OCIMJUISATOP UMEET THIepOoIndecKuii arTpakrop tuna Cmeina-Bunbsamca. Pesyismamor. Mopnens B TUCKPETHOM BPEMEHHU
n3ydaeTcsl ¢ moMompbio moaxona OTra—AHTOHCEHA, KOTOPBIH, Kak ITOKa3aHO, MHBApHAHTEH IIPU NPUMEHEHUH OTOOPaKCHUS
BepHynmi. AHanu3 HOMYYeHHOTO OTOOpakKeHHMS IO TapamMeTpaM IIOpsiKa IOKa3bIBAaeT, YTO aCHHXPOHHOE COCTOSHHE BCe-
I1a yCTOHYHBO, a CHHXPOHHOE COCTOSHHE CTAaHOBHUTCSI YCTOMYHMBBIM BBIIIE ONPEACICHHON CHIBI CBSI3H. UMCICHHBIH aHa-
T3 MOJIETH B HEMPEPHIBHOM BPEMEHH ITOKA3BIBAET CIOKHYIO MOCIE0BATENEHOCTD NMEPEXON0B M3 ACHHXPOHHOTO COCTOSTHHMS
B TOJHOCTBIO CHHXPOHHBIN THIEPOOIMYECKHH XaoC ¢ MPOMEXYTOYHBIMU CTaJUSIMH, KOTOPHIE BKIIOUAIOT PEXHMBI C Me-
PHOIMYECKUM BO BPEMEHH CPEJHUM IOJIEM, a TaKKe CO cIab0 M CHIBHO HEPETYIAPHBIMH BapHAIMSAMU CPEIHETO ITOJI.
Obcyacoenue. Pe3ynbraTsl HOKa3bIBAIOT, YTO CHHXPOHU3ALMS CUCTEM C TUIEPOOINIecKUM (pa30BbIM Xa0COM BO3MOXKHA, XOTS
TpebyeTcst JOBOJIIBHO CHJIbHAs CBA3b. JIaHHBIN MOAXOA MOXET ObITh MPUMEHEH U K APYTHM CHCTEMaM B3aHMOJAEHCTBYIOIINX
3BEHBEB C TUMEPOOTHMUSCKON Xa0THUECKONW TUHAMUKOMU.

Knwouesvie cnosa: runep0onryecKkuii aTTpakTop, CHHXPOHU3ALNS, KOJUIEKTHBHAS IHHAMHKA.
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Introduction

Synchronization of chaotic oscillators has many aspects [1], one generally distinguishes complete,
generalized, and phase synchronization. The latter property is related to chaotic oscillators with well-
defined phases. Many chaotic oscillators, like the Rossler system, possess chaotic amplitudes, while
the phase in such systems is not chaotic and corresponds to a zero Lyapunov exponent. The dynamics
of the phase is of diffusion type, and correspondingly the phase synchronization phenomena for such
oscillators are close to those for periodic oscillators with a certain level of noise in the phase dynamics.
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In a seminal paper [2] S.P. Kuznetsov constructed a physical model of an oscillator with a chaotic
phase. In this construction, the process has amplitude modulation, and at each period of modulation the
phase experience a doubling map. The overall attractor is hyperbolic and belongs to a Smale—Williams
solenoid class. In a series of subsequent publications, summarized in the book [3], S.P. Kuznetsov and
co-authors provided many examples of systems with hyperbolic phase chaos.

In this paper we study synchronization properties of the oscillators with chaotic phases. First,
we construct a rather abstract model, where phase chaos and synchronizing interactions are separated
in time (Section 1). Namely, the process consists of two epochs: in one epoch phase oscillators interact
according to the Kuramoto global coupling scheme, and in another epoch the phases undergo a chaotic
Bernoulli map. This model demonstrates, for certain values of parameters, a bistability between a
desynchronized and a synchronized states. In Section 2 we consider coupled autonomous oscillators
with chaotic phases, constructed by S.P. Kuznetsov and the author in [4]. This system demonstrates a
rather reach behavior with asynchronous, completely synchronous, and complex partially synchronous
states.

1. Kuramoto-Bernoulli model

In this section we construct a model of interacting phase oscillators, which combines features of
the Kuramoto model [5] (global attractive coupling of the phases) with the hyperbolic chaotic dynamics
of the phases described by a Bernoulli map.

1.1. Kuramoto ensemble and Ott-Antonsen ansatz evolution. Consider N phase oscillators
@y interacting via Kuramoto mean-field coupling

S _pie_ 1 i

¢r = nRsin(® — ¢;), Z = Re _Nzk:e%. (1)
Here Z is the complex mean field, and p is the coupling constant. Quantity R is called Kuramoto
order, it characterizes asynchronous (12 < 1) and synchronous (R = 1) regimes. We assume that all the
oscillators have the same frequency, and write equations in the reference frame where this frequency
vanishes, so it does not enter in (1). For u > 0 the coupling is attractive, and in this situation all the
oscillators eventually synchronize: R — 1, and a state where 1 = @2 = ... @y establishes.

Synchronization transition is monotonous (in fact, there exists a Lyapunov function that governs

it), but it can be generally hardly expressed analytically. An analytic solution is, however, possible,
if the Ott—Antonsen (OA) ansatz [6], which applies to the thermodynamic limit N — oo, is peformed.
In the OA ansatz it is assumed that the distribution of the phases is a wrapped Cauchy distribution, and
the complex circular moments

Z = (™) )

can all be expressed via the complex mean field Z;, = Z*. Then the equation for the order parameter
reads [6]

R= %R(l ~RY).
Evolution of the complex mean field during a time interval 7' is

R(0)

R(T) = \/R2(0) + (1 — R%(0)) exp[—uT] .

3)
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One can see that the only parameter in this transformation is y = exp(—u7’). Evidently, R — 1 as
T — o0, and the rate of this convergence is larger for smaller vy.

1.2. Bernoulli map of phases. Consider a Bernoulli map acting on the phases

@(n+1) = Kg(n), )

with an integer parameter K. For an ensemble of Bernoulli maps (4), it is easy to express the evolution
of the probability density of phases through the complex circular moments (2):

Zm(n+1) = Zgm(n).

One can see that the OA ansatz is invariant under Bernoilli maps. Indeed, if Z,,(n) = 2™,
then Z,,,(n+1) = ZK™ = (ZK)™ . Thus, the evolution of the complex mean field under the Bernoulli
map is

Z(n+1)=2%n). (5)

1.3. Kuramoto ensemble and Bernoilli map. We construct a Kuramoto-Bernoulli (KB) model
as a sequence of applications of the Kuramoto dynamics (3) and of the Bernoulli dynamics (5).
Application of the expressions (3), (5) leads to the following map for the order parameter

R¥(n)
(R?(n) + (1 = R2(n))y)~/>

R(n+1) =

This map has always a stable asynchronous fixed point R,s = 0, and synchronous fixed point Rg = 1.
The fixed point R = 1 is stable for

1

< =, 6

V< (6)

in this case also an unstable partially synchronous fixed point with 0 < R,s < 1 exists, so there is a
bistability asynchrony-synchrony.

The threshold for synchrony stability (6) is valid not only in the OA approximation, but generally.

Indeed, close to the synchronous state the deviations of the phases satisfy, in the Kuramoto stage, the

linear equation

d
aécp = —udy

so that combined map for the linear deviations is
dp(n + 1) = Kydgp(n)
from which (6) follows.

We illustrate the dynamics of the KB model in Fig. 1. There we show the evolution of the oder
parameter R for different values of parameter y and different initial states. The fully synchronous state
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Fig. 1. Illustration of the dynamics in a Kuramoto-Bernoulli model with K = 2 and different v, ensemble size N = 1000.
Red curves: disordered initial state; blue curves: ordered initial state (distribution of phases in an interval (0, 0.1))

is absorbing (exactly the same phases remain the same) for all system sizes N, while there are finite-
size fluctuations around the disordered state. For small y, one observes a finite-size induced transition
to the synchronous state.

2. Globally coupled Kuznetsov-Pikovsky oscillators

Here we study globally coupled chaotic phase oscillators introduced by S.P. Kuznetsov and the
author in Ref. [4].

2.1. One Kuznetsov—Pikovsky oscillator. An individual Kuznetsov-Pikovsky (KP) oscillator
consists of three modes described by their complex amplitudes u, v, w. The equation of one unit are

1
= —iu+ (1= [uf* = SJol* = 2w*)u +elm(v?) |
1
b= —iv+ (L - o = S[w® — 2JuP)o + elm(w?) @
1
= —iw + (1= [w]* = S [ul* = 2[v[*)u + elm(u?) .

Below we fix the internal coupling parameter € = 0.075. For € = 0, system (7) has a stable homoclinic
cycle, where the modes are excited consequentially w — v — v — w — ..., with increasing periods
of the cycle. The effect of coupling € > 0 is twofold: first, the cycle period is limited from above (see
Fig. 2, b), and second, at each stage where a mode amplitude passes close to zero, its phase attains
the doubled value of the exciting mode. The latter property is described in Ref. [4] in details; here we
illustrate it with figure 3. Thus, the KP oscillator (7) has a chaotic phase obeying a Bernoulli map.
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Fig. 2. Illustration of the dynamics in a KP model. Panel a: phase portrait of the observable z = u + v + w (complex
amplitude of oscillations). Panel b: amplitudes of the modes
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Fig. 3. Illustration of the phase transformation in model (7). The consecutive phases arg(u) — arg(v) — arg(w) are
depicted. The transformation arg(u) — arg(u) would be ¢ — 23¢

2.2. Globally coupled KP oscillators. Here we introduce a global coupling of N oscillators
(numbered by index k), such that complete synchrony is possible:

. . 1

dy, = —iug, + (1 — |ug)? — é\ka — 2wg|H)u + elm(v) + wlug)>(U — uy),

. . 1

by = —ivg + (1 — |vg|* — §|w/§|2 — 2Jug|*)v + elm(wy) + plop[*(V = vg),

. , 9 19 2 2 2 ®)
Wy = —twg + (1 — Jwg|* — §|uk| — 2|vg])u + elm(ug) + pwlwi|*(W — wy),

U:%Zuk, V:%ka, W:%Zwk.
k k k
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Fig. 4. Bifurcation diagram of model (8) for N = 10*

The coupling term is proportional to the parameter u, it contains three complex mean fields U, V, W,

corresponding to three modes of each oscillator.

Figure 4 intends to characterize the dynamical regimes in the system, in dependence on the

coupling parameter w. Here two quantities have been calculated. First, I present the dynamics of the

global complex mean field

ZO) =Ub) + V() +W ().

I calculated the time average (|Z|); and its fluctuations ((|Z| — (|Z|)¢)?):, these quantities are shown
in Fig. 4 with red (fluctuations as error bars). Additionally, for each moment of time, I calculated the
spread in the ensemble

D) = 3 3 [lua(t) — U@ + [olt) — VP + hut) ~ W)
k

and then average this quantity over time. This quantity is shown with blue.

84

Below I describe different states on the bifurcation diagram.

Complete synchronization. This regime is observed for u > 0.95. Here u, = uj, vy = vj,
wy, = wj for all k, j. In this state D = 0.

Asynchronous state. This regime is observed for u < 0.22. Here the mean field vanishes, and
one has effectively a set of non-interacting oscillators.

Periodic mean field. This regime is observed in the range 0.22 < u < 0.31. Here the complex
mean field Z(¢) is nearly periodic. We illustrate this in Fig. 5, a, b. There are visible fluctuations
for p = 0.23, but for u = 0.3 periodicity is nearly perfect. The transition to a periodic mean field
at u ~ 0.22 is very much similar to one described in Ref. [7].

Weakly irregular mean field. This state is illustrated in Fig. 5, ¢. At u = 0.35 the mean field is
close to periodic one, but has a seemingly nearly quasi-periodic modulation.
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Fig. 5. The dynamics of the global complex order parameter for u = 0.23 (panel a), p = 0.3 (panel b), and p = 0.35
(panel ¢)
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Fig. 6. The dynamics of the global complex order parameter for @ = 0.45 (panel a), u = 0.6 (panel b), and u = 0.8 (panel c)

5. Irregular mean field. This state is observed for 0.4 < p < 0.95, we illustrate it in Fig. 6, a—c.
Fluctuations of the mean field are essential, eventually for large u they become close to the
fluctuations of the field z(¢) in one chaotic oscillator.

Discussion

In this paper I studied effects of coupling on oscillators with hyperbolic chaotic dynamics of
the phases. In the simplest, rather artificial Kuramoto-Bernoulli model, an exact mapping for the
order parameter has been derived in the Ott-Antonsen approximation in the thermodynamic limit.
The dynamics here, beyond a certain level of coupling, is bistable: synchronous and asynchronous
states coexist. In relatively small ensembles, for strong enough coupling, only synchronous states
survives as it is a truly absorbing one. A more realistic model of coupled autonomous continuous-time
oscillators with hyperbolic dynamics of the phases demonstrated much more rich dynamics. Together
with a fully asynchronous state at small coupling strengths, and a completely synchronous at strong
coupling strengths, it demonstrates different states with partial synchrony. Close to the asynchronous
state, the mean field is nearly periodic; and with increase of coupling strength it becomes irregular
through presumably a quasi-periodic state. Detailed exploration of partially synchronous states in this
model will be a subject of a separate study.
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