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Locking and regularization of chimeras by periodic forcing
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We study how a chimera state in a one-dimensional medium of nonlocally coupled oscillators responds to
a homogeneous in space periodic in time external force. On a macroscopic level, where a chimera can be
considered as an oscillating object, forcing leads to entrainment of the chimera’s basic frequency inside an
Arnold tongue. On a mesoscopic level, where a chimera can be viewed as an inhomogeneous, stationary, or
nonstationary pattern, strong forcing can lead to regularization of an unstationary chimera. On a microscopic
level of the dynamics of individual oscillators, forcing outside of the Arnold tongue leads to a multiplateau state
with nontrivial locking properties.
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I. INTRODUCTION

Chimeras in nonlocally coupled oscillator populations
are spectacular patterns combining synchronous and asyn-
chronous patches. Since the first observation by Kuramoto
and Battogtokh [1], significant progress has been achieved
in theoretical and experimental exploration of chimeras; see
recent reviews [2,3]. On a microscopic level, the Kuramoto-
Battogtokh chimera demonstrates coexistence of ordered and
disordered domains: neighboring units are either fully syn-
chronized or partially correlated. On a mesoscopic level, when
one introduces a coarse-grained order parameter, a chimera
constitutes a nonhomogeneous pattern with a continuous pro-
file of the complex order parameter; the latter has absolute
value one in synchronized domains and is less than one in
disordered regions. On a macroscopic level, a chimera can be
treated as an inhomogeneous oscillating structure.

In a homogeneous medium, because of the invariance to
shifts in space and time, a chimera pattern is expected to be
sensitive to a weak inhomogeneity in space and to a small
time-dependent forcing. The former option was explored in
Refs. [4,5], where it was demonstrated that a weak inhomo-
geneity controls a chimera’s position in space. In this paper we
focus on a time-periodic uniform in space forcing. The main
guiding point is that the chimera as a whole is an oscillating
object, and, thus, similar to simple self-sustained oscillators, it
can be phase locked or frequency entrained. In particular, two
coupled chimeras can synchronize in the sense of entrainment
of their mean frequencies, while the internal inhomogeneous
structure of order-disorder is preserved [6,7].

In this paper we explore synchronization properties of
chimera patterns subject to a periodic in time and homo-
geneous in space external force. We employ the reduction
approach of Ref. [8] and formulate the problem of finding
chimera patterns locked to the external field as a problem
of finding periodic orbits in a system of ordinary differential

equations. At this macroscopic level, we determine chimeras
with stable and unstable phase shifts to the forcing, and
regions of their existence (“Arnold tongues”) on the plane
of forcing parameters “amplitude-frequency.” On the meso-
scopic level, locked chimeras can be stationary, breathing, or
turbulent, and we characterize these states through distribu-
tions of the oscillators mean frequencies. Outside the locked
region, interesting microscopic patterns appear, where some
subgroups of oscillators are mutually entrained, and some of
them are entrained by the external force (while the chimera as
a whole is not).

We start with formulation of the basic equations in Sec. II.
Here we also introduce fundamental properties of chimeras on
macroscopic, mesoscopic, and microscopic levels. In Sec. III
we describe our method of finding locked chimeras by virtue
of reduction to a set of ordinary differential equations. We
also briefly discuss here how the stability of these states is
determined. Then we describe in Sec. IV different static, pe-
riodic, and turbulent chimera states observed under forcing.
We conclude with Sec. V. In Appendix A we present the
details of the developed numerical chimera-seeking approach.
In Appendix B we consider a procedure which allows one
to attribute the found uniformly rotating chimeras to specific
regions on the plane of forcing parameters “amplitude-
frequency” at a given medium length, and consequently to
construct synchronization domains for such states. Appendix
C contains some key aspects of the linear stability analysis for
standing chimera patterns.

II. FORMULATION OF THE PROBLEM

A. Basic equations

As a basic model we use the Kuramoto-Battogtokh setup
[1] with additional periodic forcing. We assume that N os-
cillators described by their phases ϕn are arranged in a ring
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and are nonlocally coupled with a coupling kernel Gn,ñ =
LG(L(n − ñ)/N )/N :

dϕn

dt
= Im

(
e−i(ϕn+α)

N∑
ñ=1

Gn,ñeiϕñ + εei(�t−ϕn )

)
. (1)

While this model will be used in numerical examples be-
low, for the theoretical description it is convenient to go to
the continuous space limit, treating x = Ln/N as a continu-
ous variable. Here the setup is a one-dimensional oscillatory
medium of length L, enclosed in a ring, and described by
phases ϕ(x, t ), which are coupled nonlocally. This medium is
additionally subject to a uniform force with amplitude ε and
frequency �:

∂tϕ = Im

[
e−i(ϕ+α)

∫ L

0
G(x − x̃)eiϕ(x̃,t ) dx̃ + εei(�t−ϕ)

]
. (2)

Here the kernel

G(x) = cosh
(|x| − L/2

)/
2 sinh

(
L/2

)
(3)

is a regularized (for periodic boundary conditions) version
of the exponential kernel used by Kuramoto and Battogtokh
[1,8]. It is noteworthy that the kernel G(x) defined by expres-
sion (3) is the inverse of the operator (∂xx − 1) in the periodic
domain of length L, while the exponential kernel is the inverse
in the infinite domain; cf., Eq. (6) below.

The first step in the analysis is the introduction of the
coarse-grained order parameter Z (x, t ) = 〈eiϕ(x,t )〉δ via aver-
aging over a small vicinity δ of point x [8–11]. Physically,
the amplitude of this complex function [which satisfies the
inequality |Z (x, t )| � 1] fully describes the level of synchrony
of the phases ϕ(x, t ) in a small neighborhood of point x. In
a region where |Z (x, t )| = 1, the neighboring elements move
synchronously. When |Z (x, t )| < 1, the neighboring phase os-
cillators rotate asynchronously. The complex order parameter
Z (x, t ) obeys the Ott-Antonsen equation [8–11]

∂t Z = (e−iαH − eiαH∗Z2)/2, (4)

H (x, t ) = εei(�t+α) +
∫ L

0
G(x − x̃)Z (x̃, t ) dx̃. (5)

Here we introduce an auxiliary macroscopic field H (x, t ),
which describes the driving force on oscillators in a small
vicinity of point x. Using a specific form (3) for the kernel
G(x), the integral relation (5) between Z (x, t ) and H (x, t ) can
be equivalently written as the following differential equation:

∂2
xxH − H = −Z − εei(�t+α). (6)

Thus, the problem of finding forced chimera states can be
formulated as that of finding nontrivial patterns in the system
of partial differential equations (4) and (6). Below we fix
α = 1.457, the value adopted in Ref. [1].

B. Microscopic, mesoscopic, and macroscopic levels
of chimera descriptions

Above we introduced a hierarchy of equations describing a
set of coupled oscillators, and correspondingly one can formu-
late different levels at which the chimera state can be treated.
It is instructive to introduce these levels and to outline possible

approaches for their treatment starting from free, nonforced
chimeras.

At the macroscopic level, one can treat a chimera as
a periodic in time (with some frequency �0) solution of
macroscopic equations (4) and (5), having a nontrivial spatial
structure of the complex order parameter Z . If one looks at
this solution as a “limit cycle” in the infinite-dimensional
phase space, then one can expect that the effect of a periodic
force on a chimera will be similar to the known properties
of synchronization of periodic self-sustained oscillators by
an external forcing. Namely, there will be a synchronization
region (Arnold tongue), where the solution remains basi-
cally the same as without forcing, only its frequency will be
entrained by the external forcing frequency �. Practically,
finding a free chimera solution is a nontrivial problem. In
Ref. [12] it is formulated as a nonlinear eigenvalue problem,
and examples of different macroscopic solutions are given for
a piecewise constant and for cosine coupling kernels (where
the Galerkin method was adopted to reduce the dimension
of the infinite-dimensional problem). The basic chimera state
for an exponential kernel has been found as a solution of the
nonlinear self-consistency problem in Ref. [1]. In our previous
publication [8] we used an alternative approach for the kernel
(3). Here the problem reduces to a set of partial differen-
tial equations, which for uniformly rotating patterns further
reduces to a set of equations containing spatial derivatives
only. As a result, the problem of finding uniformly rotating
patterns reduces to the problem of finding periodic solutions
of a three-dimensional system of ordinary differential equa-
tions. This is a much simpler task than that of finding fixed
points for a high-dimensional Galerkin approximation of an
infinite-dimensional nonlinear eigenvalue problem. Indeed, in
this way, many chimera profiles have been found in Ref. [8].
Below we show how this latter approach can be generalized
for the forced chimera (potentially, also Galerkin methods for
solving the nonlinear eigenvalue problem could be general-
ized for the driven system).

At the mesoscopic level, one takes into account the
possibly complex spatiotemporal dynamics of the solution,
remaining, however, on the level of coarse-grained descrip-
tion in terms of the order parameter Z (x, t ), obeying system
(4) and (5). Here, in particular, stability properties of the
obtained solutions are essential. One distinguishes here sta-
tionary chimeras with a time-independent (in the rotating
frame of the basic frequency �0) profile of the order param-
eter, breathing chimeras with periodic pulsations of the order
parameter, and turbulent chimeras. The two latter states can-
not be interpreted as (high-dimensional) limit cycles, rather
they correspond to quasiperiodic and chaotic attractors. Syn-
chronization properties of such systems are nontrivial. We will
see that here the locking of the basic chimera frequency (un-
derstood as one of the basic frequencies in the quasiperiodic
case; and as the mean frequency of the overall order param-
eter in the turbulent case, this latter situation corresponds to
so-called phase synchronization of chaotic oscillators [13])
also can be achieved by an external driving. Furthermore,
we will see that inside the corresponding entrainment re-
gion (which can also be named an Arnold tongue) stability
properties can be governed by the driving: an entrained
breathing chimera may become stationary or turbulent, and
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an entrained turbulent chimera state may become stationary
(regularization).

Finally, one can consider a chimera on the microscopic
level, where one looks at individual oscillators in a large,
but finite set of Eq. (1). The transition to this level is highly
nontrivial due to two reasons. First, even if one remains in
the continuous limit of Eq. (2), the basic “stationary chimera”
solution is no more periodic but quasiperiodic with infinitely
many frequencies: individual oscillators in the coherent do-
main all have the basic frequency �0, but the frequencies in
the incoherent domain are all different and fill an interval.
We are not aware of any mathematical theory of synchro-
nization for such objects. Practically, we can characterize
synchronization at the microscopic level by determining av-
erage frequencies for all individual oscillators. An interesting
feature, reported below, is the appearance of multiple steps in
the frequency profiles for regimes outside of the main Arnold
tongue. Second, the picture of a “stationary chimera” should
be revised if instead of the continuous limit one considers a
finite set of N oscillators. It is known that in such a system
of ordinary differential equations (1) a chimera is a chaotic
state with a nonzero largest Lyapunov exponent [14,15]. Thus,
even synchronization of a “stationary chimera” should for-
mally be considered as the phase synchronization of chaotic
oscillations [13]. But this is not the end of the difficulties. The
weakly chaotic chimera possesses a new, very large timescale
of overall coherence; this time diverges in the continuous limit
but is finite for finite system sizes N . Because of chaos, the
coherent region in a chimera performs a random walk, so that
on a very large timescale each oscillator at some epochs be-
longs to the coherent domain, and at some epochs belongs to
the incoherent domain. This random walk restores symmetry
to spatial shifts: now the mean frequencies of all oscillators
are equal, and this frequency is not the basic frequency of the
“stationary chimera” �0. We, however, will not explore such
long timecales, which appear to be beyond computational
availability for ensemble sizes N = 4096 and N = 8192 used
in simulations below.

III. STATIONARY LOCKED CHIMERA STATES
AND THEIR STABILITY

In this section we present a numerical procedure for finding
standing locked chimeras of system (4) and (6) and determin-
ing the stability of these patterns. These chimeras are periodic
in space solutions of the corresponding set of ordinary differ-
ential equations, describing spatial profiles of patterns rotating
exactly with the external frequency �. This approach allows
us to determine (with desired accuracy) the borders of the
existence domain (Arnold tongue) of chimeras locked by the
forcing, for a fixed length L of the medium. Below we describe
the main steps of our method; details are discussed in the
Appendixes.

We look for the locked patterns uniformly rotating with the
frequency � of forcing:

Z (x, t ) = z(x)ei�t , H (x, t ) = h(x)ei�t . (7)

Substituting this in (4) and (6) yields a system of equations for
the spatial profiles

eiαh∗z2 + 2i�z − e−iαh = 0, h′′ − h = −z − εeiα. (8)

Hereafter primes denote derivatives with respect to the spa-
tial coordinate x. The first algebraic equation allows one to
express z through h (where one of two roots is chosen ac-
cording to the local stability condition [3,8,12,16,17]). Thus,
we obtain the following ordinary differential equation for the
complex function h(x):

h′′ − h = (� +
√

�2 − |h|2)eiβ/h∗ − iεe−iβ, (9)

where, for convenience of further notation, we define param-
eter β = π/2 − α, measuring the deviation of α from π/2.
We also stress that at the boundaries of the interval [0, L),
periodicity conditions h(0) = h(L) and h′(0) = h′(L) should
be satisfied.

In order to find chimera states described by (9), we repre-
sent the complex field h(x) in the form

h(x) = r(x)eiθ (x), (10)

where r(x) and θ (x) are real variables depending on x. How-
ever, unlike the classic exponential form representation of a
complex function, we accept that r(x) can take both positive
and negative values, and then θ (x) does not undergo jumps
by ±π at the points where r(x) becomes zero, but remains a
smooth function passing through these points.

Substituting (10) into (9), equating to zero real and imagi-
nary parts of the resulting expression, and introducing a new
variable q(x) = r2(x)θ ′(x) for convenience, we get the follow-
ing system of real ordinary differential equations of the fourth
order, with parameters β, �, and ε:

r′′ = r + q2

r3
+ �

r
cos β −

√
r2 − �2

r
sin β − ε sin (θ + β ),

q′ = � sin β +
√

r2 − �2 cos β − εr cos (θ + β ), (11)

θ ′ = q
/

r2

in the domain where |r(x)| � |�|, i.e., in the region of syn-
chronous behavior of neighboring medium elements, and

r′′ = r + q2

r3
+ � + √

r2 − �2

r
cos β − ε sin (θ + β ),

q′ = (� +
√

r2 − �2) sin β − εr cos (θ + β ), (12)

θ ′ = q
/

r2

in the domain where |r(x)| < |�|, i.e., in the region of
asynchronous or partially synchronous rotation of phase oscil-
lators. When constructing solutions, we switch between (11)
and (12) at |r(x)| = |�|. Note the uniqueness of solutions is
not violated because there are no solutions tangent to the set
|r(x)| = |�|.

Equations (9), (11), and (12) for the autonomous case (ε =
0) have been explored in Refs. [8,17] to find free (unforced)
chimera patterns. The main difference with the free case is
that the forcing term ε breaks the phase shift invariance θ →
θ + θ0, where θ0 is an arbitrary constant. The latter invariance
allowed us in the autonomous case to reduce the full fourth-
order system (11) and (12) to a third-order system.

Our strategy (described in more detail in Appendixes A
and B) is to find, for each pair of values ε, �, a symmetric
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FIG. 1. (a) Dependence of the length L(�) of a chimera pattern
on the phase shift parameter θ (0) = � for � = −0.8 and ε = 0.025.
The horizontal dashed straight line corresponds to L = L̄ = 4.41.
The vertical dashed lines depict values �1 = −0.92 and �2 = 2.35.
(b, c) Direct numerical simulations of the set of N = 4096 oscillators,
performed within the phase model (1). Spatiotemporal plots show
the phases in the reference frame rotating with an angular velocity �

for (b) � = �1 (stable phase shift) and (c) � = �2 (unstable phase
shift).

periodic solution of (11) and (12) starting from a state r(0) =
R, θ (0) = �, r′(0) = 0, θ ′(0) = 0. The “initial” value r(0) =
R is adjusted to find a periodic solution, the period of which
L will depend on the “initial” phase θ (0) = �. As the de-
pendence L(�) is a 2π -periodic function of �, in a certain
range of system lengths Lmin < L < Lmax we have at least two
solutions for each L (in fact, in all cases presented below this
number are exactly two because we consider only the 1:1 lock-
ing). We illustrate this in Fig. 1. In this figure we also show
the long-time evolution of spatial profiles for both of the two
possible periodically forced chimera states for L = 4.41. It is
clearly seen that one of them (which corresponds to the phase
shift � = �1 = −0.92) is stable (the synchronization pattern
does not change in course of evolution [Fig. 1(b)], and another
one (which corresponds to the phase shift � = �2 = 2.35)
exhibits an unstable behavior (it evolves into the first one due
to the corresponding instability development [see Fig. 1(c)]).
This observation is in full correspondence with generic prop-

FIG. 2. Dependencies Lmax(�) (filled red circles) and Lmin(�)
(open blue circles), numerically calculated for ε = 0.025. The
upward-oriented triangular markers depict the values of Lmin and
Lmax for � = �̄ = −0.8. The downward-oriented triangular markers
show the values of �min and �max for a fixed length L = L̄ = 4.41 of
the medium. The range between �max and �min determines the width
of the Arnold tongue for ε = 0.025 in the case where L = L̄ = 4.41.

erties of the 1:1 locking, where there are two locked solutions,
one phase-shift stable, and another phase-shift unstable.

The next step is determining from the data of Fig. 1(a)
the values of Lmin(ε,�) and Lmax(ε,�) in a range of values
of the forcing frequency �, for fixed ε. These curves are
illustrated in Fig. 2. To find the borders of the Arnold tongue,
i.e., the synchronization region, for a fixed length L of the
medium, we have to inverse these dependencies as �min(ε, L)
and �max(ε, L) (see Fig. 2 and Appendix B for details). Then
the phased locked solutions for a chimera pattern in the system
of length L exist in the Arnold tongue defined as �min(ε, L) <

� < �max(ε, L). As ε → 0, this tongue shrinks to the fre-
quency �0(L) of the autonomous chimera pattern. Examples
of the Arnold tongues are presented in Fig. 3 (details of the
dynamics inside of them will be discussed in Sec. IV).

Additionally, we have to check the general (not only the
phase-shift) stability of the found patterns. To this end one
linearizes the full system (4) and (6) and solves the eigenvalue
problem. Practically, this can be done via a finite-difference
representation described in Refs. [8,17–19] (see more detailed
discussion in Appendix C), allowing for reducing the problem
to that of finding eigenvalues of large matrices. The method
yields reliable estimation of discrete eigenvalues, which are
responsible for possible instabilities (see detailed discussion
in Refs. [12,16]).

IV. EFFECT OF PERIODIC FORCING ON CHIMERAS
OF DIFFERENT COMPLEXITY

A. Stable, breathing, and turbulent free chimeras

We first discuss different types of autonomous chimeras,
and then describe how the external force governs them. The
stability analysis as described in Appendix C also can be
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FIG. 3. Existence domains of the locked chimera patterns for (a) L = 4.41, (b) L = 6.854, and (c) L = 7.332. The corresponding natural
frequencies of autonomous stationary chimeras are (a) �0 = −0.8 (stable), (b) �0 = −0.69 (unstable, evolves to a breather), and (c) �0 =
−0.68 (unstable, evolves to a turbulent state); cf., Fig. 4. Inside of each presented Arnold tongue, in domain A (blue color) one of the two
existing locked chimeras is stable. In regions B and C (red and yellow colors), all stationary chimeras are unstable, and the observed state is
either turbulent in domain B or time-periodic (breathing chimera) in region C.

applied to autonomous chimera patterns [8,17–19], corre-
spondingly one distinguishes stable and unstable unforced
chimeras. The latter solutions evolve typically into breath-
ing (time-periodic) [18–21] or turbulent chimeras [11,19].
These three possible regimes are illustrated in Fig. 4. Here we
present the results of direct numerical simulation (panels a, b,
and c) in the framework of the phase oscillator system (1) for
parameters corresponding to cases of zero external force ε =
0, i.e., at the tip of the Arnold tongue. In Fig. 4 we also show
the spatial profiles of functions |z(x)| and |h(x)| (panels d, e,
and f), and the corresponding spectra of eigenvalues λ (panels
g, h, and i). Point eigenvalues λp (red diamonds) are quite well
separated from the seemingly continuous spectrum λc (violet
circles), which does not have exactly a T -shaped form [12,16],
but is distorted due to finite approximation effects (see Ap-
pendix C for details). For �0 = −0.8, the point spectrum λp

satisfies condition Re(λp) < 0 [Fig. 4(g)], and a stable single-
cluster chimera is realized in the phase model (1) [Fig. 4(a)].
For �0 = −0.69, a pair of complex conjugate numbers from a
point spectrum exists with Re λp > 0 [Fig. 4(h)], a stationary
chimera is therefore unstable, and a breathing chimera is ob-
served in the system (1) [Fig. 4(b)]. For �0 = −0.68, a pair of
complex conjugate point eigenvalues has even larger real parts
[Fig. 4(i)]; here the unstable stationary chimera evolves to a
turbulent regime with irregular dynamics of phases [Fig. 4(c)].
Below we show how an external forcing acts on these
states.

B. Locking of a stable chimera

Here we consider the effect of external periodic forcing
on a stable chimera. We exemplify this case with parame-
ters L0 = 4.41, �0 = −0.8 [Figs. 4(a), 4(d), and 4(g)]. For
small forcing amplitudes ε � 0.05, we obtain a “standard”
Arnold tongue on the plane ε, �, inside of which a locked
chimera is stable [see Fig. 3(a)]. The dynamics of locking
is illustrated in Fig. 5(b). Here we show the phases of the
oscillators in a free-running state until time t0 = 500, at which
time the forcing with frequency � = −0.83 and amplitude
ε = 0.025 is applied. The phases are shown in the reference
frame rotating with the external frequency �, and thus for
t < t0 one observes rotation of the phase in the synchronous
domain. The effect of locking is evident by inspection of the
phase difference between the external force and the coherent

domain for t > t0: in the locked state it is constant. This
corresponds to the shift of the profile of average frequencies
of all the oscillators [Fig. 5(e)]: the whole profile shifts, so
that the frequency of the coherent domain becomes exactly
the external one (depicted by the dotted line). It is noteworthy
that the size of the regular domain increases under forcing.

Outside of the locking region (i.e., for a large mismatch
between � and �0), one observes unlocked quasiperiodic
regimes [Figs. 5(a) and 5(c)]. For � < �0, all the oscillators
have frequencies larger than �, and one can clearly see the
plateaus at the modulation frequency and its harmonics in
the profile of average frequencies [Fig. 5(d)]. For � > �0,
the major part of the coherent oscillators have a frequency
less than �, but there exists another plateau exactly at the
driving frequency [Fig. 5(f)]. Remarkably, the phases of these
oscillators, in the reference frame rotating with �, are not
constants, but experience rather large variations (see Fig. 6);
nevertheless, they are perfectly frequency entrained by the
force. The existence of the plateaus in the frequency profile
resembles that for breathing chimeras [18,20,22]. In the latter
case, however, an extra modulation frequency appears due
to the instability of the stationary chimera; in our case the
modulation frequency is due to the imperfect locking to the
external field.

C. Stabilization of a breathing chimera

Next we consider how the periodic force affects a breathing
chimera. The latter exists for parameters L0 = 6.854, �0 =
−0.69. Here the stationary chimera state is weakly unsta-
ble with two discrete complex eigenvalues having a positive
real part. In the autonomous, unforced situation, a breathing,
time-periodic state appears. Here also the Arnold tongue can
be constructed as described above. However, only in part A
of this locked region is the constructed stationary chimera
state stable. In part B of the Arnold tongue colored red in
Fig. 3(b), the constructed stationary chimera state is unstable
and evolves into a turbulent chimera. We illustrate these two
situations in Fig. 7. It shows two regimes, one of a stable
locked chimera (panels a, c, and e), and one of an unstable
chimera (panels b, d, and f), for two points inside the Arnold
tongue Fig. 3(b).

For very small forcing, the locked chimera inherits the
instability of the autonomous chimera and evolves into a
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FIG. 4. Dynamics of the system (1) in the autonomous case
ε = 0. Panels (a)–(c) show a space-time plot of the phases in the
reference frame rotating with angular velocity �0. Panels (d)–(f) de-
pict profiles |z(x)| (solid line) and |h(x)| (dotted line), found with the
method of Sec. III, and determining the initial phase distribution for
a numerical simulation. Panels (g)–(i) demonstrate the spectrum λ of
linear perturbations of solutions (7) of Eqs. (4) and (5). Violet circles
are the eigenvalues of the finite-size matrices, not corresponding to
the discrete part of the spectrum. Because of a finite discretization,
this set consists not only of purely real negative and purely imaginary
numbers, although it has the characteristic T shape. Red diamonds
are eigenvalues belonging to the point spectrum λp responsible
for instability. (a, d, g) Stable chimera for �0 = −0.8, L = 4.41.
(b, e, h) Breathing chimera state for �0 = −0.69, L = 6.854. (c, f, i)
Turbulent regime for �0 = −0.68, L = 7.332.

breathing state [a tiny yellow region C close to the tongue tip
in Fig. 3(b)]. In Fig. 8 we illustrate with the phases [Fig. 8(a)]
and with the order parameter [Fig. 8(b)] how a breathing state
develops into a stable stationary chimera for a not-so-small
forcing. One can clearly observe the free breathing chimera up
to time t0 = 1000, at which the forcing is switched on. Then,
for t > t0, the mean frequency becomes locked by the force,
and periodic modulations of the order parameter disappear,
which means establishing of a standard stationary chimera
state.

Figure 9 provides a more detailed characterization of
regimes at larger values of forcing. Locking properties of
the chimera pattern are characterized by the phase of the
global complex order parameter Z̄ = N−1 ∑N

n=1 eiϕn = R̄ei�̄.

FIG. 5. Locking of a stable chimera. Direct numerical simula-
tions of the set of N = 4096 oscillators performed within the phase
model (1) with parameters ε = 0.025 and different driving frequen-
cies: (a, d) � = −0.86, (b, e) � = −0.83, and (c, f) � = −0.725.
Panels (a)–(c) show spatiotemporal plots of the phases in the ref-
erence frame rotating with the driving frequency �. Panels (d)–(f)
demonstrate average frequencies of the elements (blue lines) together
with the forcing frequency � (gray doted line); insets in panels
(d) and (f) enlarge plateaus on frequency profiles. In each case, the
initial state was close to the autonomous chimera state at the length
L = 4.41 and the corresponding natural frequency �0 = −0.8. For
situations depicted in panels (a) and (c), the external force was
presented during the full simulation time. In the case shown in panel
(b), the force was switched on abruptly at the time instant t0 = 500
(black dashed straight line in panel (b)). A red dashed curve in panel
(e) shows a profile of average frequencies of the oscillators for a
free-running chimera state.

FIG. 6. Phase (in the reference frame rotating with the force
frequency �) vs time for the oscillator belonging to the subgroup
entrained by the external force. The diagram shows the dynamical
behavior of the element located at x = 0.64 in the numerical simula-
tion corresponding to Figs. 5(c) and 5(f).
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FIG. 7. Synchronization of a breathing chimera. Panels (a) and
(b) show a space-time plot of the phases in the reference frame
rotating with the driving frequency � for L = 6.854. Panels (c) and
(d) depict profiles |z(x)| (solid line) and |h(x)| (dotted line), found
with the method of Sec. III, and determining the initial phase dis-
tributions for numerical simulations. Panels (e) and (f) demonstrate
the spectrum λ of linear perturbations for the corresponding so-
lutions. Violet circles are the eigenvalues of discrete matrices not
corresponding to the discrete part of the spectrum. Red diamonds
are eigenvalues belonging to the point spectrum λp responsible for
instability. (a, c, e) Stable chimera for � = −0.74, ε = 0.05. (b, d, f)
Turbulent regime for � = −0.63, ε = 0.05.

We calculated the global observed frequency �obs = 〈 ˙̄�〉 and
compared it to the driving frequency �. In parallel, we calcu-
lated the standard deviation of the global real order parameter
R̄ from a mean value. The latter observable provides a reli-
able characterization of regularity of the chimera; for regular
patterns it is very small, while it has finite values for turbulent
and time-periodic patterns. Inspection of Fig. 9 reveals that
domains of frequency locking (where �obs = �) and regu-
larity coincide. This means that in a disordered state inside
the domain B of Fig. 3(b), the chimera on average is not
locked, although temporary locked patches may be observed
(see Fig 7). The standard deviation of the global real order
parameter is a good indicator of the existence of stationary

FIG. 8. Synchronization of breathing chimera for L = 6.854.
(a) Spatial distribution of the phases in the reference frame rotat-
ing with the driving frequency �. (b) Absolute value |Z (x, t )| of
the complex order parameter. Numerical simulations of the set of
N = 8192 oscillators were performed within the framework of the
phase model (1) with ε = 0.06, � = −0.69. The initial conditions
were chosen in the form of an unforced breathing chimera state.
The force was switched on abruptly at the time instant t0 = 1000,
as marked by a black dashed straight line. The coarse-grained order
parameter Z (x, t ) was calculated via local averaging with a Gaussian
kernel exp (−x2/2ς 2), with ς = 0.1.

chimera (where this quantity is very small), and thus it was
used to draw boundaries of region A in Fig. 3. However,
this quantity cannot differentiate turbulent and periodic states
(which is needed to draw a border between regions B and
C). Here just a visual inspection of the time series R̄(t ) [see
Fig. 9(c)] was adopted. Because of finite-size effects, period-
icity in the breathing state C is not perfect, and thus the border
between regions B and C should be considered as a fuzzy one.

Figure 9 shows that the locking of chimeras occurs in blue
domains A of Fig. 3 only. Loss of locking can happen in two
ways. At small values of � the locking-unlocking transition
happens exactly at the values where the locked solution disap-
pears (left boundary of the triangle region in Fig. 3). At large
values of �, the transition to turbulent state (red domain B)
is simultaneously the locking-unlocking transition. In Fig. 3
we did not color the states outside of the triangular existence
domain of stationary locked solutions; however, Fig. 9 shows
that there is not any regime change at the right border of red
domain B; the turbulent unlocked state just continues to exist
at larger values of �.

D. Regularization of a turbulent chimera state

Finally, we discuss regularization of a turbulent chimera.
The latter is observed for L0 = 7.332, �0 = −0.68. Here
the instability of a free chimera solution is so strong that a
disordered state, where the local order parameter fluctuates
in space and time, is observed. The calculated Arnold tongue
is presented in Fig. 3(c). Again, the domain of existence of
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FIG. 9. (a, b) Dependencies of the frequency difference �obs −
� (filled circles) and the standard deviation of the global real mean
field R̄ fluctuations (triangles) for the case of a forced breathing
chimera of Fig. 3(b), in a lattice of N = 4096 units. (a) ε = 0.03,
(b) ε = 0.05. Dashed horizontal line shows zero level; dashed verti-
cal lines are borders of existence of the locked solution [bold black
lines in Fig. 3(b)]. One can see that transition to turbulence (at the
right side of the panels) is rather abrupt and immediately leads to a
deviation of the observed frequency from the forced one. (c) Time
series of the global real mean field R̄(t ) for a stationary chimera
(dotted blue line), for a periodic chimera (solid brown line) and for a
turbulent chimera (dashed red line).

a locked stationary chimera looks like a standard triangular
synchronization domain, but only in a relatively small part A
(blue region) is this solution stable. We illustrate this situation
with the evolution of the order parameter in Fig. 10(b). A
turbulent chimera is observed prior to the force onset time
t0 = 1500, where under forcing it is transformed to a stable
stationary chimera.

For larger values of the driving frequency [red region B in
Fig. 3(c)], locked solutions in the presence of driving typically
inherit the instability of the free chimera, so that also under
periodic forcing are turbulent states observed [Fig. 10(a)].
Dependencies of the global frequency and of the standard
deviation of the global order parameter are similar to those
presented in Fig. 9. We stress here, that for very large forcing
amplitudes, an observed turbulent state is a transient one,
evolving after a long irregular evolution into an absorbing
fully synchronized regime.

V. CONCLUSION

Summarizing, we studied the effect of a periodic forcing
on a chimera state in a one-dimensional medium. We have
constructed stationary locked chimera patterns as periodic in
space and time profiles via solutions of a proper ordinary
differential equation. The simplest picture is observed if the
free chimera is stable. Here the macroscopic effect of forcing

FIG. 10. Synchronization of turbulent chimera for L = 7.332.
The dynamics of amplitude of the local complex order parameter
|Z (x, t )| calculated as in Fig. 8 in direct numerical simulations of
the set of N = 8192 oscillators within the phase model (1) with the
parameters (a) ε = 0.03, � = −0.68, and (b) ε = 0.06, � = −0.68.
The initial conditions were chosen in the form of a stationary chimera
solution, which develops due to the instability into a turbulent state.
The force was switched on abruptly at the time instant t0 = 1500,
which is marked by a black dashed straight line. One can see that a
large enough forcing can stabilize and regularize the behavior of the
system, which evolves to a standard chimera regime (see panel b).

on it is very similar to a general synchronization setup: there
is a locking region within which the chimera is locked by the
forcing, while outside of the Arnold tongue a quasiperiodic
dynamics is observed. Inside the Arnold tongue, on the meso-
scopic level, one observes enlargement of the synchronized
domain. On the microscopic level of individual oscillators,
no essential changes are observed inside the Arnold tongue.
However, the dynamics on the microscopic level becomes
nontrivial outside the Arnold tongue, with several plateaus
of oscillators subgroups appearing. In particular, we observed
that while the basic frequency of the chimera is not entrained,
some groups of oscillators may be entrained to the external
frequency, and for these units quite large variations of the
phase difference from the forcing one are observed despite
frequency entrainment.

At the mesoscopic level of the spatiotemporal dynamics of
the coarse-grained order parameter, we described the effect of
regularization of nonstationary chimeras, breathing or turbu-
lent; such an effect does not exist in simple synchronization
setups. Here, inside the Arnold tongue there are subdomains,
at sufficiently strong coupling, where external forcing stabi-
lizes a stationary chimera. On the contrary, in some domains a
weakly nonstationary (breathing) chimera may become turbu-
lent due to forcing, but still with an entrained basic frequency.

Our approach is based on the explicit construction of the
phase-locked solutions and on the analysis of their stability.
Then these conclusions are checked in direct numerical sim-
ulations of the basic set of phase equations. In this way our
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study differs from the approach of Refs. [6,7] where compre-
hensive direct numerical simulations of two coupled chimera
ensembles have been performed, and regimes of phase lock-
ing between them (or their mean fields) identified. Direct
simulations of forced chimera states seems to be the only
possibility in cases, where it is hard to find chimera profiles
and to analyze their stability, like in an example studied in
Refs. [23,24].

An extension of the presented approach to the cases where
the interaction kernel is not exponential, but a sum of a
few Fourier harmonics (like in Ref. [22]) would potentially
simplify the stability analysis; however, in the present pa-
per we focused on the “classical” Kuramoto-Battogtokh case
[1]. Furthermore, potentially high-order Arnold tongues may
also exist (in another system they have been observed in
Refs. [23,24]), but construction of such solutions appears
hardly possible with our methods, because they are not sta-
tionary in the reference frame rotating with the external
frequency.
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APPENDIX A: DETAILS OF NUMERICAL METHOD
OF FINDING STATIONARY CHIMERA PATTERNS

Here we describe our numerical chimera-seeking approach
based on Eqs. (11) and (12). The goal is to find period-L
solutions r(x), r′(x), q(x), and θ (x). [Note that in this work
we confine ourselves to the analysis of stationary profiles
of macroscopic fields without any twist of the phase when
passing across the entire medium, i.e., we discuss only cases
where θ (L) = θ (0), while in general solutions with θ (L) =
θ (0) + 2πm, where m is integer, are also admissible.] Fur-
thermore, because of the invariance with respect to spatial
shifts and the observation that the force-free chimera patterns
are symmetric, we seek solutions in the class of symmetric
functions r(x), θ (x) and antisymmetric functions r′(x), q(x),
where symmetry is defined with respect to the point x = L/2.
For such solutions of system (11) and (12), by virtue of the
periodic boundary conditions, the equalities r(0) = r(L) and
q(0) = q(L) should be fulfilled only if r′(x) and q(x) vanish
at points x = 0, x = L/2, and x = L. In our previous work
[8,17–19] we demonstrated that in the case where an external
force is absent, i.e., ε = 0, for a given parameter � these con-
straints determine the value of L and the possible form of the
functions r(x), r′(x), and q(x) [and therefore also θ (x) and the
complex field h(x)] that is exactly repeated with the period L.
As has been discussed in Refs. [8,17–19] for the autonomous

case ε = 0, it is convenient to fix the basic frequency of the
pattern �, and find periodic solutions, the period of which
L(�) is the function of this parameter.

In the case ε = 0 the dimension of the system of real
ordinary differential equations (11) and (12) can be reduced
because Eq. (9) is invariant to a constant phase shift of the
complex field h(x). Hence, the function θ (x) is defined up to
an arbitrary constant shift θ0. An external uniform force with
amplitude ε �= 0 and frequency � in the right-hand side of
(2) breaks the phase shift invariance of Eq. (9). If ε �= 0, it
is required to consider the full system of four-order ordinary
differential equations (11) and (12) and to find its periodic
solutions. Now our strategy consists of two main steps, which
are as follows.

First, we look for symmetric periodic trajectories in the
phase space of the system (11) and (12) for fixed values of
parameters ε, � and for a fixed value � of the phase at
x = 0. We employ the shooting method [25]: Eqs. (11) and
(12) are solved numerically (using the Runge-Kutta method of
fourth order [25]) with “initial” conditions r(0) = R, r′(0) =
0, q(0) = 0, and θ (0) = � at the starting point x = 0. Inte-
gration ends at a point x = �, where the condition r′(�) = 0
is fulfilled. To satisfy the condition q(�) = 0, one has to vary
the remaining free parameter R. Its value can be found using
a root-finding method [25]. This found value R determines
profiles r(x), r′(x), q(x), and θ (x), which are periodic with
length L = 2�. This length L = 2� depends on the parameters
ε, � (and also α) of Eqs. (11) and (12) and on a value of
the “initial” phase �. In this way, one can obtain the chimera
length as a function L(ε,�,�) of three variables. An example
of this calculation is seen in Fig. 1(a).

At the next stage of the numerical procedure, we set
L = 2�, substitute the previously chosen values of ε, � into
Eq. (9) and solve it numerically on the interval [0, L), taking
h(0) = Rei� and h′(0) = 0 as “initial” conditions. As a result,
we find the profile h(x), which corresponds to the standing
chimera state for the locally coupled phase oscillators dis-
tributed continuously over an interval of length L = 2� with
periodic boundary conditions.

Noteworthy, the function h(x) has to satisfy the condi-
tions of periodicity h(L) = h(0) = Rei� and h′(L) = h′(0) =
0. Thus, this fact allows us to additionally check that the
solution h(x) we obtain numerically can be associated with
a pattern existing in oscillatory medium closed to the ring.
Finally, we note that the proposed method can be employed in
the case of chimeras with any number of synchronous regions,
choosing the corresponding point where r′(x) and q(x) vanish
simultaneously.

APPENDIX B: ARNOLD TONGUE
FOR LOCKED CHIMERAS

Here we describe how the found chimera patterns are at-
tributed to certain domains of �, ε at a given medium length
L. According to Appendix A, L(ε,�,�) is a 2π -periodic
function of � if ε �= 0. Hence, in a certain range of sys-
tem length Lmin(ε,�) < L < Lmax(ε,�) we have at least two
solutions for each L [cf., Fig. 1(a)]. On the other hand, in
the absence of forcing, i.e., when ε = 0, Eqs. (11) and (12)
have the property of phase shift invariance θ → θ + θ0, so the

042218-9



BOLOTOV, SMIRNOV, OSIPOV, AND PIKOVSKY PHYSICAL REVIEW E 102, 042218 (2020)

function L(0,�,�) does not depend on the “initial” phase
� at the point x = 0. In this situation, for the fixed value
of � = �0 we can set � = 0 and consider only a solution
with L = L(0,�0, 0). This defines a relation between the fre-
quency �0 of uniformly rotating autonomous chimera and the
length L of the medium.

Next, we fix the value L̄ as one that possesses a stable
or unstable unforced chimera state with the basic frequency
�0. Hence, from the found patterns we have to select those
having period L̄. For fixed parameters ε, �, this reduces to
an additional one-dimensional root-finding problem which is
easy to accomplish [25]. For example, in Fig. 1(a) the value
L̄ = 4.41, corresponding to the frequency �0 = �̄ = −0.8, is
depicted by the horizontal dashed straight line. It is clearly
seen that two phases �1 = −0.92 and �2 = 2.35 exist, for
which L(ε,�,�) = L̄. Existence of at least two solutions is
a must, as at locking of periodic oscillations by an external
force there are typically two locking states, one stable and one
unstable. Such stably and unstably locked synchronization
patterns are demonstrated in Figs. 1(b) and 1(c), respectively.

To obtain the boundaries of chimera locked domains for
fixed L, we determine functions Lmin(ε,�) and Lmax(ε,�) as
the minimum and maximum of curves L(ε,�,�) for given
�, ε. Next, for a given length L, we have to inverse these
dependencies as �min(L, ε) and �max(L, ε), which would then
correspond to the left and right boundaries of the locked
domain, respectively (see Fig. 2). In other words, if for fixed
values ε, � and some L the inequalities �min(L, ε) < �(L) <

�max(L, ε) are satisfied, then the point ε, � lies in the locked
domain of the unforced (free) chimera existing in the medium
of length L. The natural frequency of this chimera �0 is deter-
mined from the condition L = L(0,�0, 0). We present three
locked domains (Arnold tongues) for static chimera states in
media with three different lengths in Fig. 3.

APPENDIX C: STABILITY ANALYSIS
OF CHIMERA STATE

Here we outline the linear stability analysis of the sta-
tionary chimera patterns. Temporal stability of the standing
chimera state (7) uniformly rotating with the frequency � can
be studied by linearizing the integral-differential equation (4)
and (5) near the solution (7). For this purpose we assume that
the local complex order parameter Z (x, t ) has the following
form:

Z (x, t ) = [z(x) + Z (x, t )]ei�t , (C1)

where Z (x, t ) describes x-periodic small deviations from the
chimera profile z(x). After the substitution of the expression
(C1) into Eq. (4) and the linearization of the result with respect
to the variations Z (x, t ), we arrive at

∂tZ = −[i� + eiαz(x)h∗(x)]Z + [e−iαH − eiαz2(x)H∗]/2,

(C2)

where H(x, t ) is the coupling force for Z (x, t ) defined in
terms of the convolution operator

H(x, t ) =
∫ L

0
G(x − x̃)Z (x̃, t ) dx̃. (C3)

Next, we rewrite Eq. (C2) together with (C3) in the form
of a linear operator equation

∂tζ = (
M̂ + K̂

)
ζ (C4)

for the two-component vector function ζ(x, t ) consisting of
the real ζ1(x, t ) and imaginary ζ2(x, t ) parts of the complex
function Z (x, t ) = ζ1(x, t ) + iζ2(x, t ). Here M̂ is a multipli-
cation operator

M̂ζ =
(
μ1(x) −μ2(x)
μ2(x) μ1(x)

)(
ζ1(x, t )
ζ2(x, t )

)
(C5)

and K̂ is an integral operator

K̂ζ =
(
κ11(x) κ12(x)
κ21(x) κ22(x)

) ∫ L

0
G(x − x̃)

(
ζ1(x̃, t )
ζ2(x̃, t )

)
dx̃. (C6)

For convenience and brevity of the provided above represen-
tations of M̂ and K̂, we have introduced the above two real
functions into (C5):

μ1(x) = − Re[eiαz(x)h∗(x)],

μ2(x) = − Im[eiαz(x)h∗(x)] − �, (C7)

and the following notations into (C6):

κ11(x) = {
cos α − Re[eiαz2(x)]

}
/2,

κ12(x) = {sin α − Im[eiαz2(x)]}/2,

κ21(x) = κ12(x) − sin α, κ22(x) = cos α − κ11(x). (C8)

It is noteworthy that for the continuous profiles z(x) and h(x)
under consideration and any piecewise-smooth kernel G(x),
definitions (C5) and (C6) imply that both operators M̂ and
K̂ are bounded, and, in addition, the integral operator K̂ is
compact [12].

According to Eq. (C4), stability of the chimera state is
determined by the spectrum of the eigenvalues λ of the lin-
ear time-independent composite operator M̂ + K̂. As follows
from the general spectral theory of linear operators, this spec-
trum λ is symmetric with respect to the real axis of the
complex plane and consists of two different parts, a continu-
ous spectrum λc and a point spectrum λp (see Refs. [12,16] for
details). According to these references, the temporal stability
of the standing chimera states is determined only by the point
spectrum λp of the composite operator M̂ + K̂. To identify the
point spectrum, we use the approach suggested earlier by us
in Refs. [8,17] and successfully employed in Refs. [18,19,21].
The main idea of this approach is based on the observation that
the procedures of spatial discretization and replacement of in-
tegrals by large-dimension matrices (in particular, the choice
of discretization points) hardly affect the point eigenvalues
λp. This property of λp allows one to determine the point
spectrum λp reliably for most values of the parameters L, α, ε,
and � of the model (1) by repeatedly solving the approximate
matrix eigenvalue problem (see Refs. [8,17,26]).

It should be mentioned that another approach for the study
of the perturbation spectrum for chimera states, based on
the Galerkin approximation of the solution with some basis
functions, has been outlined in Ref. [12]. However, to the best
of our knowledge, this method has been successfully applied
to the chimeras with a harmonic interaction kernel only, where
the problem can be reduced to a finite-dimensional one. It
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would be interesting to implement the Galerkin method [12]
to the problem considered in this paper and to compare results.
In this respect we mention calculations of the perturbation
spectrum in a two-dimensional setup in Ref. [27], where,

however, a dissipative (i.e., corresponding to an ensemble of
nonidentical oscillators) version of the Ott-Antonsen equa-
tions was treated, so that the essential spectrum was separated
from the imaginary axis.
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