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Abstract. We study numerical propagation of energy in a one-dimensional
Ding-Dong lattice composed of linear oscillators with elastic collisions. Wave
propagation is suppressed by breaking translational symmetry, and we consider
three ways to do this: position disorder, mass disorder, and a dimer lattice with
alternating distances between the units. In all cases the spreading of an initially
localized wavepacket is irregular, due to the appearance of chaos, and subdif-
fusive. For a range of energies and of weak and moderate levels of disorder, we
focus on the macroscopic statistical characterization of spreading. Guided by a
nonlinear diffusion equation, we establish that the mean waiting times of spread-
ing obey a scaling law in dependence of energy. Moreover, we show that the
spreading exponents very weakly depend on the level of disorder.
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1. Introduction

Nonequilibrium processes in nonlinear Hamiltonian lattices are the subject of inten-
sive research. Here, typically, three setups are considered. In one setting, thermal
conductivity of such a lattice is of interest, thus one couples it to two thermostats
with different temperatures and studies the properties of the energy flux. An early
review of these studies can be found in reference [1], and for recent progress see [2,
3]. Another setting deals with properties of a relaxation toward an equilibrium chaotic
state with constant energy density. Here one identifies modes which can be treated
as the first and second sound [4–6]. Some of these modes can be described theoret-
ically in the framework of fluctuating hydrodynamics [7, 8]. In this paper we follow
the third widely used setup, where the spreading of an initially localized wavepacket
into a vacuum is considered. In a regular lattice, such spreading is of course dominated
by linear or nonlinear waves, propagating with a constant speed. However, in a disor-
dered lattice, due to Anderson localization, there are no propagating linear waves and
the spreading typically appears as a slow subdiffusion. A very popular model here is
the discrete Anderson nonlinear Schroedinger lattice (DANSE) [9–11]. Another class of
models are oscillator chains [12–15]; in contradistinction to Schroedinger lattices they
possess only one integral of motion (energy) and are therefore simpler to treat. The
spreading of energy in such systems is due to chaos, which in the course of spread-
ing and the corresponding decrease of energy density becomes weaker [16–19]. This
leads to the slowing of the spreading, and there are suggestions that the spreading
may eventually stop [20]. This still unsolved puzzle makes further numerical inves-
tigations of disordered nonlinear lattices, especially at very large times, extremely
relevant.
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In this paper we address the problem of energy spreading for a Ding-Dong model
[21, 22], which has several useful properties. The model is formulated as a chain of
linear oscillators, interacting via elastic collisions (see section 2 below). Thus, calcula-
tion of its evolution in time is quite simple, because one can write an analytic solution
between the collision events and calculate next collision times. This allows following the
evolution until very large times without essential loss of accuracy. In our calculations
below the maximal times are 1010, to be compared with the characteristic period of
oscillators 2π. Furthermore, the Ding-Dong model belongs to a class of strongly non-
linear lattices [23–28], which are characterized by a ‘sonic vacuum’: linear modes (even
localized ones like in disordered models) do not exist. This makes the edges of the
spreading wavepacket extremely (superexponentially for lattices with a smooth poten-
tial) sharp and allows for characterization of propagation via the edge velocity [28].
Below, we define the Ding-Dong model and different types of disorder in it in section 2.
In section 3 the main scaling characteristics of the spreading of energy are introduced,
which are numerically explored in different configurations in section 4. Finally, we dis-
cuss the results and compare them with properties of other strongly nonlinear lattices in
section 5.

2. Disordered Ding-Dong lattice

The Ding-Dong lattice [21] is a chain of linear oscillators described by the Hamiltonian

H =
∑
k

(
p2k
2Mk

+Mk
q2k
2

)
. (1)

The masses of oscillators Mk are generally different, but all the oscillators have the
same frequency ω = 1. The oscillators are aligned along a line, with generally different
distances Rk,k+1 between them. The interaction of oscillators is due to elastic collisions:
when oscillators k and k+ 1 collide, i.e. when qk = Rk,k+1 + qk+1, they exchange their
momenta according to

pk →
2Mkpk+1 + (Mk −Mk+1)pk

Mk +Mk+1
, pk+1 →

2Mk+1pk − (Mk −Mk+1)pk+1

Mk +Mk+1
.

(2)

The Ding-Dong model belongs to a class of strongly nonlinear lattices: here in the
linear approximation of infinitesimal oscillation amplitudes, any interaction between
units is absent, so no waves are propagating (so-called sonic vacuum). In a regular
Ding-Dong lattice, i.e. when Rk,k+1 = R = const and Mk = M = const, nonlinear waves,
compactons, can propagate [21, 22]. As we want to avoid compactons in this study, we
consider three types of inhomogeneous Ding-Dong lattice:

(a) Position-disorder lattice: here we assume that all the masses are the same Mk = 1,
but the distances between the oscillators are distributed randomly. Namely, the
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Figure 1. Example of spreading of an initially local perturbation with energy E =
10 in a position-disorder lattice with r = 0.1. Upper panel: time T(X), at which the
active region achieves size X. Bottom panel: waiting times ΔT(X).

distances are chosen in each realization of disorder as independent random numbers
from a uniform distribution 1− r < R < 1 + r.

(b) Mass-disorder lattice: here we assume that all the distances are the same Rk,k+1 =
1, but the masses are chosen as independent random numbers with a uniform
distribution 1−m < M < 1 +m.

(c) Dimer lattice: here we break the homogeneity in the simplest way, assuming alter-
nating distances between the oscillators: Rk,k+1 = 1 + d(−1)k, while all the masses
are equal Mk = 1.

In all these cases we consider the problem of energy spreading from a local in space
initial distribution of energy. We fix the initial energy E (which is, of course, conserved in
the course of evolution), and prepare the initial conditions by setting the initial momenta
of 10 neighboring particles to be nonzero, and all initial coordinates are zero:

qk(0) = 0, pk(0) =

{
SN(0, 1) for 1 � k � 10,

0 else.
(3)

Here N(0, 1) are Gaussian random numbers, and S is a normalization factor ensuring∑
k
p2k(0)

2Mk
= E. Then we run the evolution, and observe an irregular spreading of energy. It

is illustrated in figure 1, where we show an example of this spreading. At each moment
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of time, there is an ‘excited domain’ k− � k � k+, where the energies of oscillators are
positive, while outside of this domain all the oscillators are at rest. The size of the
excited domain X = k+ − k− + 1 extends by one at certain moments of time T(X), when
a neighboring oscillator at rest is hit by an active one. In figure 1 we plot these times
as a function of the corresponding sizes T(X), and additionally we plot ‘waiting times’
ΔT(X) = T(X+ 1)− T(X), which show how long it takes to extend the size of the
excited domain by one unit. The calculations in figure 1 end when the waiting time
exceeds 1010.

3. Scaling of energy spreading

The main goal of our study is to find statistical properties of the energy spreading,
qualitatively presented in figure 1. Similarly to the analysis of strongly nonlinear lat-
tices with a smooth potential [28], we use a nonlinear diffusion equation (NDE) as a
guiding phenomenological tool. The NDE equation, where the variable ρ(x, t) should be
interpreted as an energy density, reads

∂ρ

∂t
= D0

∂

∂x

(
ρa

∂ρ

∂x

)
=

D0

a+ 1

∂2

∂x2
ρa+1, with

∫
ρdx = E. (4)

This equation possesses a self-similar solution, describing a spreading domain

ρ(x, t) =

⎧⎪⎨
⎪⎩
(t− t0)

−1/(2+a)

(
cE2a/(a+2) − ax2

2(a+ 2)(t− t0)2/(2+a)

)1/a

for |x| < xm,

0 for |x| > xm.

(5)

Here c is a normalization constant,

c =

√
a

2π(a+ 2)

Γ(3/2 + 1/a)

Γ(1 + 1/a)
,

and xm denotes the edge of the excited domain,

xm =

√
2c

2 + a

a
Ea/(2+a)(t− t0)

1/(2+a). (6)

This quantity has the same meaning as X for the Ding-Dong lattice, so our aim is to
use (6) to find the scaling of the spreading presented in figure 1. Here it is convenient
to eliminate an additional parameter t0; according to [28] this can be accomplished by
calculating the time derivative of the edge propagation:

1

E

dt

dxm
∼

(
E

xm

)−a−1

. (7)
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Figure 2. Panel (a): averaged waiting times in a lattice with position disorder r =
0.15, and four values of initial energies. (b): The same data in the scaled coordinates.

In comparing with numerics for the Ding-Dong lattice, we have to identify xm withX, and
the inverse velocity of the propagation dt

dxm
with the waiting time ΔT. Because of strong

fluctuations in particular realizations (see figure 1), we average log10ΔT in narrow ranges
around exponentially spaced values of X. As a result, we obtain dependencies log10ΔT
vs X for different values of the energy E and different values of disorder. The scaling
relation (7) predicts that graphs of log10ΔT/E vs E/X should collapse and provide a
power-law dependence with some exponent a.

4. Numerical results

4.1. Scaling of the wavepacket spreading

As outlined above, we performed a series of simulations of spreading in disordered Ding-
Dong lattices. Here, we present the obtained statistical results. They were obtained
by averaging over realizations where disorder and initial conditions were chosen inde-
pendently from the corresponding distributions (for the dimer lattice only the initial
conditions were random). The number of realizations used was ≈ 2000 for position dis-
order, ≈400 for mass disorder, and ≈500 for the dimer case (the exact values were
slightly different for different sets of parameters, due to fluctuations in the running
times). In each run, we stopped calculations when the waiting time for the propagation
to the next neighbor exceeded a fixed value 1010. We discuss the role of this parameter
in section 5.

Figure 2 illustrates the scaling procedure we apply to characterize the spreading.
Panel (a) shows spreading in a lattice with distance disorder r = 0.15, for four different
values of the energy E. The same data are shown in panel (b) in the scaled form. One
can see a rather good collapse of the data, confirming the qualitative prediction of the
NDE model.
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Figure 3. Spreading of states with different initial energies (markers: open
circles, open squares, filled circles and filled squares correspond to energies
E = 2, 5, 10, 20, respectively) in lattices with different position disorder. r =
0.05, 0.1, 0.15, 0.2, 0.3, 0.4 correspond to colors red, green, blue, cyan, magenta and
brown. The curves for r > 0.05 are shifted vertically for better visibility. The lower
dashed black line has slope 5, and the upper dashed black line has slope 4.8.

In figure 3 we show the same scaling as in figure 2, but for six different levels of
disorder, indicated in the caption. One can see that there are two clearly different regions
of scaling, with a crossover at the energy density ≈0.25 (i.e. at log10(X/E) ≈ 0.6). At
larger densities the spreading is rather fast and the waiting time slowly grows as the
density decreases. For smaller densities, there is a very strong power-law dependence of
the waiting time on the density,

ΔT ∼ E

(
E

X

)−αpd

, αpd ≈ 5. (8)

Equivalently, one can express this as a spreading law,

X ∼ T 1/(αpd+1) ≈ T 1/6. (9)

We mention here that one can expect violations of the scaling for very small energies
and very strong disorders, as here potential waiting times could typically exceed the
maximal value 1010 adopted in our statistical numerical study. A small deviation of the
rescaled data at E = 2 and r = 0.4 (see upper open circle data in figure 3) from the
other values may be an indication of this.
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Figure 4. The same as figure 3, but for mass disorder, m = 0.05, 0.1, 0.15,
0.2, 0.3, 0.4, for the corresponding colors from bottom to top (markers: open circles,
open squares, filled circles and filled squares correspond to energies E = 2, 5, 10, 20,
respectively). The curves for r > 0.05 are shifted vertically for better visibility. The
lower dashed black line has slope 5, and the upper dashed black line has slope 4.25.

Figure 5. The same as figure 3, but for dimer lattices, with d =
0.05, 0.1, 0.15, 0.2, 0.3, 0.4, for the corresponding colors from bottom to top (mark-
ers: open circles, open squares, filled circles and filled squares correspond to energies
E = 2, 5, 10, 20, respectively). The curves for r > 0.05 are shifted vertically for better
visibility. The dashed black lines have slope 6.
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Figure 6. Distribution of waiting times for the lattice with different values of
position disorder, at a prescribed level of the average density. The curves for
r = 0.05, 0.1, 0.15, 0.2 overlap relatively well and can be approximated as P (τ) ∼
τ−c10−a1τ

b1 with c = 1/8, a1 = 4× 10−7, b1 = 8 (white dashed line which can be seen
on top of data), which indicates that the dependence on disorder is very small for
weak disorder. The curves for moderate disorder r = 0.3 and r = 0.4 deviate at the
cutoffs, and they are approximated with the same power-law c = 1/8 with stretched-
exponential cutoffs a2 = 2× 10−8, b2 = 9 and a3 = 10−9, b3 = 10, respectively (black
dashed curves).

Next, we present a similar scaling analysis for a Ding-Dong lattice with mass disorder
(figure 4) and for a dimer lattice (figure 5). Qualitatively, all the results are similar, but
there are small quantitative differences. For the dimer lattice (figure 5), for all values of
the modulation level d the scaling exponent in (8) is αdim ≈ 6. For the random masses
lattice (figure 4), for small disorders m = 0.05, 0.1, the best fit is with exponent αm ≈ 5,
while for larger disorder m = 0.15, 0.2, the value of the exponent is different αm ≈ 4.5,
and for the strongest explored disorder m = 0.3, 0.4, the value of the exponent is close
to αm ≈ 4.25.

4.2. Distribution of waiting times

Here we present the results of the distribution of the waiting times. It is convenient to
calculate the cumulative distribution P(τ) = prob(ΔT > τ). According to the discussion
above, it makes sense to compare these distributions at a fixed value of energy density.
In figure 6 we show these distributions for the case of position disorder. We fix here
E = 10 and calculate the distribution of waiting times at the wavepacket size X = 150
(the curves for E = 20 and X = 300 nearly overlap with the presented ones). One can see
a good overlap of curves at small disorders, which means that waiting times only weakly
depend on the level of disorder if the latter is small. The dashed lines show empirical
fits of the distributions as a power-law with a stretched-exponential cutoff, as explained
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Figure 7. Distribution of waiting times for a lattice with dimer-type heterogeneity.
The times are calculated at the energy density level 0.1, i.e. at X = 50 for E = 5, and
at X = 100 for E = 10. Here, a good overlap is obtained when the time is rescaled
with parameter d, as indicated.

in the caption. The distributions at stronger disorder have cutoffs at larger values of
waiting time.

The dimer lattice shows a different property: here, the average waiting time at a
certain density significantly depends on the modulation level d. We illustrate this in
figure 7, which is quite similar to figure 6, but here to achieve an overlap of different
distributions, a rescaled time is used. We have found that the characteristic waiting time
scales with disorder roughly as τ ∼ d2.8, although the range of disorders is too small to
validate such a power law. Furthermore, in the dependence P(τ) one cannot recognize
a region with a near power-law profile, contrary to the case of distance disorder in
figure 6.

5. Discussion

In this paper we performed a comprehensive numerical exploration of energy spreading
in a disordered Ding-Dong model for different types and strengths of disorder, and for
different initial energies. First, we demonstrated that for all parameters the scaling (7),
corresponding to an NDE, works well. Moreover, the characteristic exponent a in (7)
appears to have very similar values for all cases with mass and position disorder, and
a larger value for the dimer lattice. This power-law dependence of waiting times means
that the spreading at large times is subdiffusive, X ∼ T1/6 for distance and mass disorder,
and X ∼ T1/7 for the dimer lattice.

We stress here that our numerical analysis is based on finite-time calculations: each
run was stopped when the waiting time exceeded 1010. In our previous study of the
Ding-Dong model [22], such a long waiting time for one particular run was interpreted
as an effective stop of spreading. From our present statistical study we cannot draw this
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conclusion, as we do not see any statistically significant ‘slowing down’ of the spreading
at large wavepacket sizes. We stress here that because of a finite-time horizon in the
present work, the question about eventual continuation or stop of spreading cannot be
answered.

It is instructive to compare these findings with the results for lattices composed
of linear oscillators coupled by higher-order smooth potentials [28]. In the latter
case the scaling (7) works as well; however, the resulting curve is not a straight
line in log–log coordinates, which means that a single parameter a does not exist,
rather it increases in the course of spreading. Correspondingly, the spreading is slower
than subdiffusion. In reference [28] also another class of strongly nonlinear lattices
has been considered—lattices of locally nonlinear oscillators , coupled with higher-
order smooth potentials. In this case the scaling of the spreading does not belong
to the class predicted by equation (7) but requires an additional nontrivial parame-
ter (in [28] a fractional nonlinear diffusion equation was adopted to fit this scaling).
It would be interesting to study a nonlinear version of the Ding-Dong model, i.e.
of locally nonlinear oscillators coupled via collisions, but this is a subject of future
research.

We have also found that disorder has only a relatively small effect on the propagation
speed for small disorder levels. Only for the dimer lattice does the value of position
modulation significantly influence the characteristic waiting time. On the other hand,
we have not studied lattices with very strong (beyond 40% modulation) disorder. It
appears that in lattices with very strong disorder a different approach focused on the
bottlenecks (e.g. on situations of exceptionally large distances between the oscillators,
for which extremely long waiting times, larger than those used in the present study, can
be expected) should be developed. The macroscopic averaging method adopted in this
paper does not allow focusing on bottlenecks.

Finally, we would like to mention that a two-dimensional generalization of the Ding-
Dong model is possible; this problem is under investigation now.
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